Пространство и время. Принципы относительности. Необратимость времени

Развитие представлений о пространстве и времени, их общие свойства. Необратимость времени как проявление асимметрии, асимметрия причинно-следственных отношений. Гипотезы Н.А. Козырева о новых свойствах времени. Теория N–мерности пространства и времени.

Рубрика Физика и энергетика
Вид контрольная работа
Язык русский
Дата добавления 05.10.2009
Размер файла 99,9 K

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

Причина действует на следствие, а следствие оказывает сопротивление "обратным винтом". Встречные давления при этом полностью гасят друг друга, вызывая внутренние напряжения, а периферические вращения создают пару направленных в противоположные стороны сил. Это похоже на то, как мы давим на руль велосипеда при повороте. Силы деформируют предмет и тоже вызывают в нем напряжения. Все эти напряжения как раз и есть та энергия, которую вносит в тело втекающий в него поток времени.

Действуя на тело, время не может сдвинуть его с места, но способно его развернуть. В этом смысле оно родственно вращению, и можно сделать еще одно смелое предположение: не только время порождает вращение, но и обратно - любое вращение увеличивает плотность временного потока, создавая дополнительный "временной винт" вдоль своей оси.

Другими словами, предполагается, что всякое вращающееся тело, будучи включенным в причинно-следственную связь, обязательно деформируется и, кроме того, создает пару сил, одна из которых приложена в точке расположения причины, а вторая - в точке следствия.

Это очень важная гипотеза. Если все предыдущие имели скорее философский, нежели физический характер, то эту можно количественно проверить на опыте.

Рассмотрим, например, быстро вращающийся волчок-гироскоп, прикрепленный к потолку лаборатории длинным эластичным подвесом. Ясно, что после того как затухнут качания такого необычного маятника, он вытянется вдоль вертикали - пока нет внешних причинных связей, дополнительный "временной винт" вращающегося гироскопа несколько его деформирует, но не смещает центра тяжести. Пара сил тоже "спрятана" внутри гироскопа.

Ситуация изменится, если маятник включить в какой-либо внешний процесс, к примеру, установить на потолке, в точке подвеса, электровибратор, который будет служить причиной колебаний, передающихся по отвесу к гироскопу. Если верить "причинной механике", в этом случае сразу же возникнет пара сил. Одна из них будет действовать на причину - вибратор, другая будет приложена к вращающемуся гироскопу, с которым связано поглощение колебаний (следствие). Отвес должен отклониться от вертикали.

Если теперь вибратор укрепить на самом гироскопе, то есть поменять местами причину и следствие (колебания будут теперь поглощаться потолком комнаты), то направление "временного винта" изменится на обратное и отвес тоже должен отклониться в противоположную сторону.

И что вы думаете - когда Козырев проделал такие опыты, они подтвердили его предсказания!

В другом эксперименте он взвешивал вращающийся гироскоп на аналитических весах, состоящих из центральной стойки и укрепленного на ней коромысла с подвешенными чашечками - одна для взвешиваемого предмета, другая - для уравновешивающих его гирек. Такие весы часто используют фотографы и аптекари.

Когда нет внешнего процесса, все временные деформации опять-таки спрятаны внутри гироскопа и его вес не зависит от вращения. Стоит, однако, включить вибратор, действующий на стойку весов, как сразу же возникнет пара сил: одна приложена к причине - вибрирующей стойке, вторая - к центру тяжести вращающегося гироскопа, и равновесие чашек нарушается. В зависимости от направления вращения гироскопа, по или против часовой стрелки, его вес должен уменьшиться или возрасти. И эксперимент снова подтвердил теорию.

Отклонения от обычной, "непричинной" механики невелики - всего лишь несколько тысячных процента, но они повторялись от одного опыта к другому.

Кроме вибрационной, использовались и другие причинно-следственные цепи. Маятник с металлической струной-подвесом и вращающийся гироскоп включались в сеть внешнего тока, в других случаях точка подвеса сильно нагревалась или охлаждалась. И Козырев всегда обнаруживал эффект, предсказываемый его новой механикой. Похожие результаты получили и другие исследователи.

Если допустить, что в этих опытах нет каких-либо скрытых систематических ошибок, то их результаты нельзя объяснить с помощью известных нам физических законов. А это означает, что мы - на пороге открытий, несравненно более фундаментальных, чем теория относительности и квантовая механика.

Вопрос настолько серьезный, а наблюдаемые эффекты так малы, что прежде чем прийти к окончательным выводам, требуется тщательная ревизия экспериментов

4. N-мерность пространства

Основные понятия о пространстве были сформированы в глубокой древности, и как бы смысл этого слова остался и дошел до наших дней. И сейчас, с большим разнообразием открытий понимание этого слова меняется. Еще две тысячи лет назад пространство делилось на мир вещей материи и мир идей сознания, на два полюса материальность и идеальность, на две закрытые части (рис. п.1).

И целью настоящего исследования является раскрытие определения «Пространство и время это формы существования материи».

Само слово «пространство» это обобщение. Историю понятия этого слова можно начать с идей ученика Платона Аристотеля, который, кроме того, что сопоставил линии, поверхности и телам числа 1, 2, 3, к тому же связал идеи с объектами, лишив их полной самостоятельности, вечности по Платону. С этого момента философия развивается вместе с развитием знаний о природе, расходится и смешивается по направлениям физики, математики, философии, личности и общества, со старым делением, и с другим оттенком на материализм и идеализм.

Все направления философии равноценны. Но можно отметить, открытость физики, и замкнутость других направлений, связанных с нашим сознанием. Поэтому, понять философию Природы можно только поняв, что такое пространство физики и что такое законы физики (рис. п.2).

Рис. п.1. Начальное определение пространства

Рис. п.2. Современное определение пространства

Единственное преимущество физики это минимальное абстрагирование, а абстракция это вид кодирования информации. Материя, Природа сама по себе неизмерима и, не потому что “бесконечна” в своем разнообразии, а потому, что измеряем. И в физике была применена абстракция в виде измерения, но не к самой материи в самом общем ее виде, а к ее качествам частным видам.

Физика это наука измерения того, что мы видим, слышим и ощущаем.

Математика это наука измерения всего, что мы можем себе вообразить, но вообразить мы можем только то, что нас окружает, в этом находится связь физики и математики.

Философия это наука, которая одновременно использует возможности внешнего и внутреннего мира для понимания законов Природы и описания их словами.

Далее мы рассмотрим только свойства физических измерений, как бы со стороны и только факты. Для того чтобы измерять, используется эталон, как мера, мерность, размерность.

Мера целое или рациональное число значения эталона измерения, или золотая константа физической величины.

Мерность целое число логарифмического пространства измерения, имеющего основанием постоянную тонкой структуры.

Размерность символ пространства измерения для физической величины, сама физическая величина обозначается одним символом и имеет традиционную какую-либо единицу измерения.

Измерению подвергаются разные свойства вещества (качества и виды) и, снизившись на уровень ниже, чем Природа, уже на этом уровне, чтобы измерения различать, их обозначают символами физических величин, и между физическими величинами существуют определенные закономерности, их называют законами. Рассматривая вместе разные измерения, получаем законы свойств измерения.

Теперь немного усложним понимание измерения тем, что измерения связаны с материей через формы измерения материи в виде качества, мерности и количества в обобщенной системе координат.

И когда рассматриваются свойства материи, часто подразумевается под ним пространство. И в то же время понятие пространства применимо к любому абстрактному объекту.

Но как подступиться к этому его свойству? Традиционно для этого понятие пространства сужается и сводится, как к происходящему от объема, и тогда возникает вопрос: «Почему пространство трехмерно?» [3] и, что такое многомерное пространство? Рассмотрим один из древних подходов, имеющий исходящими точку, мерность которой 0, и ее движение.

Движение точки дает линию, отрезок которой является мерой длины, имеющей мерность 1.

Движение линии дает плоскость, часть которой является мерой площади, имеющей мерность 2.

Движение плоскости дает объем, часть которого является мерой объема, имеющего мерность 3.

Движение трехмерной фигуры, создает четырехмерное пространство и так далее. В продолжении это чисто математический подход. Физики остановились на мерности 4, а далее пошли математики, применив математический подход или тензорное исчисление для определения метрик физического пространства, и, опять же, замкнулись на сложном ничего не объясняющем математическом подходе.

Цель этих подходов создание n-мерных ФОРМ.

Остается только выяснить, как и для чего? Ответ простой: формы служат для измерения и форма это пространство. То есть на самом деле понятие ПРОСТРАНСТВА это обобщение и в него заложены все ФОРМЫ ИЗМЕРЕНИЯ материи. Таким образом, новым в философии будет то, что N-мерное ПРОСТРАНСТВО ЭТО ФОРМА Физической Величины, а все физические величины это формы измерения материи, а не формы ее существования. Материя существует независимо от форм измерения и физическая величина не материальна. Физическая величина служит для измерения это идея, абстракция. Природа развивается из планковских точек. И пока существует природа, существует пространство. Нами изучается пространство формами нами изобретенными, и на этом уровне формы служат нам целям измерения. Одной из таких форм (четвертой) является время.

К качественным формам относятся все вещественные и квантовые состояния объектов, отметим из них черные дыры, крайним состоянием которых являются планковские точки.

К классическим количественным формам относятся объемная и временная. Объемная форма, в свою очередь, состоит из длины, площади и собственно объема. Все эти формы составляют как некоторый набор величин, которыми оперирует математика математических величин, так и часть самых простых величин, которыми оперирует физика. Так как на основе использования физических величин описаны все законы природы, то за основу реальной мерности форм примем мерность физических величин.

Все физические величины имеют одно начало, в котором они все вместе, как кирпичики, плотно подходят друг к другу, образуя монолит. Это состояние физических величин находится в реально существующей планковской точке в месте соприкосновения материи и первоматерии (материя находится снаружи планковской точки, а первоматерия - внутри). В этой точке все физические величины единичны и каждая такая физическая единица имеет, в виде мерности, свой номер целое число.

6. Список литературы

1. Молчанов Ю.Б. Четыре концепции времени в философии и физике. М., Hаука, 1977.

2. Рейхенбах Г. Hаправление времени. М., 1962.

3. Аугустынек З. Проблема анизотропии времени.//История и методология естественных наук, М., Изд. МГУ, 1968, Вып. 6, сер. "Физика".

4. Аскин Я.Ф. Hаправление времени и временная структура процессов.//Пространство, время, движение. М., 1971.

5. Свиридонов М.H. К вопросу о необратимости времени в физике. //Философия и физика., Воронеж, 1972.

6. Пенроуз Р. Сингулярности и асиметрия во времени //Общая теория относительности. М., Мир, 1983.

7. Козырев H.А. Причинная механика и возможность экспериментального исследования свойств времени. //История и методология естественных наук. М., изд. МГУ, 1963, вып. 2, сер. "Физика".

8. Уитроу Дж. Естественная философия времени. М., Прогресс, 1964.

9. Грюнбаум А. Философские проблемы пространства и времени. М., 1969.

10. Молчанов Ю.Б. Парадокс Эйнштейна- Подольского- Розена и принцип причинности. //Вопросы философии. 1963, N3.

11. Мостепаненко А.М. Пространство и время в макро-, мега- и микромире. М., Политиздат, 1974.

12. Предводителев А.С. Учение о пространстве и времени в современной науке //История и методология естественных наук. М., Изд. МГУ, вып. 2, сер. "Физика".

13. Козырев H.А., "Время как физическое явление", ГАО АH СССР (Ленинград).

14. Козырев H.А., "Источники звёздной энергии и теория внутреннего строения звёзд", в сборнике Козырев Н.А., Избранные труды, Л.: Изд-во ЛГУ, 1991, стр. 448.


Подобные документы

  • Положения теории относительности. Релятивистское сокращение длин и промежутков времени. Инертная масса тела. Причинно-следственные связи, пространственно-временной интервал между событиями. Единство пространства и времени. Эквивалентность массы и энергии.

    контрольная работа [25,0 K], добавлен 16.12.2011

  • Развитие представления о пространстве и времени. Парадигма научной фантастики. Принцип относительности и законы сохранения. Абсолютность скорости света. Парадокс замкнутых мировых линий. Замедление хода времени в зависимости от скорости движения.

    реферат [21,5 K], добавлен 10.05.2009

  • Актуальность понятия времени. Включение времени в галилеевскую механику. Метафорическое обозначение направления времени. Связь направления времени с направлением процесса увеличения расстояния между галактиками. Выделенность направления времени.

    презентация [501,5 K], добавлен 04.10.2013

  • Основные принципы и законы в классической механике. Специальная теория относительности в пространстве и времени. Относительность одновременности. Изучение роли категории "пространство" и "время" в построении физической картины мира. Принцип инерции.

    презентация [4,3 M], добавлен 11.06.2019

  • Сравнение показаний неподвижных атомных часов, и атомных часов, летавших на самолете. Сущность и содержание теории относительности, свойства пространства и времени согласно ей. Гравитационное красное смещение. Квантовая механика, ее интерпретация.

    презентация [393,5 K], добавлен 17.05.2014

  • Исследование представлений о времени древних людей и открытий, связанных со временем. Характеристика понятия времени в классической и релятивистской физике. Анализ гипотез о перемещении человека или другого объекта из настоящего в прошлое или будущее.

    презентация [2,3 M], добавлен 06.06.2012

  • Создание выдержки времени при передаче электрических сигналов в системах автоматики и телемеханики с помощью реле времени. Подача сигнала на сцепление двигателя с редуктором. Особенности реле времени постоянного тока и с электромагнитным замедлением.

    практическая работа [78,0 K], добавлен 12.01.2010

  • Преобразования Лоренца и основные следствия из них. Четырехмерное пространство Эйнштейна. Расстояние между точками трехмерного пространства. Интервал между двумя событиями. Промежуток собственного времени. События, разделенные вещественным интервалом.

    лекция [212,8 K], добавлен 28.06.2013

  • Физическая теория материи, многомерные модели Вселенной. Физические следствия, вытекающие из теории многомерных пространств. Геометрия Вселенной, свойства пространства и времени, теория большого взрыва. Многомерные пространства микромира и Вселенной.

    курсовая работа [169,4 K], добавлен 27.09.2009

  • Рассмотрение наиболее важных технических характеристик реле времени РЭВ-201, анализ сфер использования. Электронное реле времени как устройство, управляемое входным напряжением и переключающее свои выходные контакты с той или иной временной задержкой.

    контрольная работа [842,5 K], добавлен 02.05.2015

Работы в архивах красиво оформлены согласно требованиям ВУЗов и содержат рисунки, диаграммы, формулы и т.д.
PPT, PPTX и PDF-файлы представлены только в архивах.
Рекомендуем скачать работу.