Нетрадиционные способы и источники получения энергии

Анализ действия и оценка перспектив использования альтернативных методов получения электрической энергии в России. Вклад в обеспечение государства электроэнергией гидроэлектростанций, ветроэнергетических установок, солнечных и приливных электростанций.

Рубрика Физика и энергетика
Вид контрольная работа
Язык русский
Дата добавления 11.04.2010
Размер файла 55,9 K

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

Однако широкому строительству ОТЭС в настоящее время препятствуют некоторые технические проблемы. Так, например, еще нет достаточно эффективных и экономически приемлемых средств для борьбы с коррозией и биологическим обрастанием оборудования и трубопроводов.

ОТЭС экологически чисты. Однако, при утечке в контуре, по которому циркулирует рабочая жидкость, возможен существенный ущерб для морской флоры и фауны.

Описанный способ преобразования тепловой энергии океана наиболее эффективен там, где выше перепад температур между верхними и нижними слоями воды. Наиболее перспективны в этом отношении тропические и субтропические районы океана. Разновидностью описанного способа утилизации тепловой энергии океана является метод, основанный на использовании разности температур воды и воздуха над ее поверхностью. Он перспективен для арктических районов океана. В России исследуется возможность сооружения таких ОТЭС на побережье Северного Ледовитого океана, где температура воды на 30…40 °С выше температуры атмосферного воздуха. Предполагается, что в этом случае ОТЭС, обеспечивая потребности в электроэнергии районов Крайнего Севера, смогут конкурировать по экономическим показателям с тепловыми электростанциями, работающими в этом регионе на привозном топливе.

Энергетические установки, использующие энергию океанических течений. Всю акваторию Мирового океана в различных направлениях пересекают течения, в которых сосредоточены значительные запасы кинетической энергии (около 7,2Ч1012 кВтЧч). Эту энергию можно превратить в механическую и далее в электрическую.

Важнейшее морское течение - Гольфстрим. Оно проходит близ полуострова Флорида (США) и несет воды в 50 раз больше, чем все реки мира. Его ширина составляет 60 км, глубина - до 800 м. Мощность, которую развивает такой поток воды со скоростью примерно 2 м/с, более в 2 раза превышает суммарную мощность всех ГЭС стран СНГ. Полностью реализовать энергию Гольфстрима не удастся, но даже некоторое практическое ее использование, даст экологически чистую электроэнергию. В США разрабатывается программа Кориолис. Она предусматривает установку во Флоридском проливе, в 30 км восточнее г. Майами, 242 подводных установок мощностью 83 МВт каждая (суммарно 20086 МВт). В качестве первичного двигателя таких установок предполагается использовать прямоточные турбины диаметром 168 м с частотой вращения 1 об/мин. Расстояние между лопастями турбины будет таково, чтобы обеспечить безопасный проход самых крупных рыб. Установка будет погружена на 30 м под уровень океана, с тем, чтобы не препятствовать судоходству. Стоимость всего сооружения оценивается в 20 млрд. долл., что соизмеримо со стоимостью строительства ТЭС такой же мощности, но позволяет экономить около 130 млн. баррелей нефти в год.

В Японии исследуется возможность использования энергии теплого течения Куросио, расход воды которого 55Ч106 м3/с, а скорость у восточного побережья страны - 1,5 м/с. Для выработки ЭЭ предлагается применение двух трехлопастных гидротурбин с диаметром рабочего колеса 53 м.

Разработан проект использования течения в Гибралтарском проливе, расход воды которого 20…40 тыс. м3/с достаточен для получения 150 млрд. кВтЧч электроэнергии в год.

Работа нетрадиционных источников в энергосистеме

При технико-экономическом обосновании строительства СЭС, ВЭС или других нетрадиционных источников наряду со стоимостью сэкономленного топлива большое значение имеет энергетическая эффективность их использования. Она зависит от соотношения установленных мощностей этих электростанций и общей мощности энергосистемы, в которой они работают. Чем меньше это отношение, тем меньшее значение они будут иметь для нее. На эффективность их использования могут оказывать влияние также режимные ограничения, диктуемые энергосистемой и ее отдельными элементами. Эти ограничения определяются характером энергопотребления и условиями использования отдельных энергоресурсов.

Солнечные и ветровые электростанции действуют только при наличии соответствующих погодных условий и их энергоотдача носит случайный характер. Энергоотдачу СЭС или ВЭУ нельзя считать достаточно надежной во времени. Мощности этих электростанций следует считать дублирующими, т.е. их работа необходима только для экономии других энергоресурсов, в особенности, органического топлива. При этом энергосистема должна располагать достаточными резервами генерирующей мощности в любое время суток и года. Выполнение этого условия усложняется по мере роста доли нетрадиционных источников в энергосистеме. При выводе в ремонт традиционных энергоисточников часть мощности может быть покрыта за счет СЭС и ВЭУ или других альтернативных источников ЭЭ. Если ВЭУ расположены на расстоянии нескольких сотен километров друг от друга, но работают на общую сеть, энергосистема может получить дополнительную резервную мощность.

Большое значение для планирования участия СЭС или ВЭУ в покрытии суточных графиков нагрузки энергосистемы имеет наличие достаточно достоверных и заблаговременных метеорологических прогнозов как на сутки в целом, так и на отдельные их интервалы.

Сооружение СЭС или ВЭУ не позволяет уменьшать строительство других электростанций в энергосистеме без снижения надежности электроснабжения. Выходом из этого положения может служить использование аккумуляторов энергии. При этом возможны два варианта:

? аккумуляция вырабатываемой СЭС или ВЭУ электроэнергии;

? аккумуляция первичных источников энергии, используемых другими входящими в данную энергосистему электростанциями.

Аккумуляция электроэнергии в больших масштабах пока еще не получила большого развития. Для реализации второго способа наиболее эффективно использовать водохранилища ГЭС. При этом во время работы СЭС и ВЭУ снижается мощность ГЭС и сэкономленная вода расходуется затем по требованию энергосистемы. Возможно также применение обычного принципа гидроаккумуляции, при котором мощность, развиваемая нетрадиционными источниками, используется для перекачки воды из нижнего бьефа ГЭС в водохранилище. Такой режим можно осуществить на основе обратимых агрегатов ГЭС, или с помощью специальных насосов. Однако при этом необходима свободная емкость водохранилища.

Совместная работа СЭС, ВЭУ и ГЭС может привести к ощутимому повышению гарантированной мощности гидроэлектростанций, что в свою очередь повысит эффективность энергосистемы в целом. В этом случае может оказаться целесообразным увеличение мощности ГЭС за счет установки дополнительных агрегатов. Возможна также дополнительная выработка электроэнергии ГЭС за счет работы ее на повышенных напорах. Эти напоры создаются путем увеличения уровня верхнего бьефа ГЭС при аккумуляции гидроэнергии. Ограничением для аккумуляции гидроэнергии служит режим нижнего бьефа ГЭС, диктуемый неэнергетическими потребителями воды. Это особо важно в южных районах страны, где вода из нижнего бьефа забирается для орошения полей.

Аккумуляция солнечной или ветровой энергии в водохранилищах будет эффективной и при работе СЭС и ВЭУ совместно с малыми ГЭС в автономных системах электроснабжения.

Режим генерации энергии ВЭУ соответствует интенсивности энергии ветра. Использовать такую электроэнергию могут потребители, не предъявляющие высоких требований к бесперебойности электроснабжения. Ими, в частности, могут быть электролизеры для производства водорода как весьма ценного энергетического ресурса, насосные установки для подъема подземных вод и др. Число таких потребителей весьма ограничено, а для всех других электроприемников генерирующую мощность ВЭУ необходимо дублировать каким-либо гарантированным источником энергии. Им может быть любая энергетическая установка, способная работать в переменном режиме.

Более эффективные перспективы использования энергии ветра появляются при создании энергокомплекса, состоящего из ВЭУ и подземной ГАЭС. Использование в этом случае двух подземных бассейнов воды практически полностью исключает всякие ограничения, свойственные функционированию водохранилищ ГЭС, при сохранении в то же время достоинств энергокомплекса ГЭС - ВЭУ.

Используемая литература

1. Астахов Ю.Н., Веников В.А., Тер-Газарян А.Г. Накопители энергии в электрических системах. М.: Высшая школа, 1989. - 159 с.

2. Батенин В.М., Баранов Н.Н. Создание новых видов автономных энергоустановок на основе методов прямого преобразования энергии // Изв. РАН. Энергетика. 1997. №2.С. 3-28.

3. Батищев В.Е., Мартыненко Б.Г., Сысков С.Л. и др. Энергосбережение: справочное пособие. Екатеринбург: ЭнергоПресс, 1999. - 304 с.

4. Веников В.А., Путятин Е.В. Введение в специальность. М.: Высшая школа, 1988. - 239 с.

5. Веников В.А., Журавлев В.Г., Филиппова Т.А. Энергетика в современном мире. М.: Знание, 1986. - 192 с.

6. Волков Э.П., Поливода А.И., Поливода Ф.А. Перспективы применения солнечных фотоэлектрических станций с теплоутилизирующим паросиловым циклом // Изв. РАН. Энергетика. 1997. №3. С. 61-91.

7. Гаврилов Е.И., Васильев В.А., Саломзода Ф.Г. и др. Развитие геотермальной энергетики в России // Изв. РАН. Энергетика. 1997. №4. С. 18-26.

8. Дэвис Д. Энергия. /Под ред. Д.Б. Вольфберга. М.: Энергоатомиздат, 1985. - 360 с.

9. Жимерин Д.Г. Энергетика: настоящее и будущее. М.: Знание, 1978. - 192 с.

10. Злобин А.А. Производство электроэнергии. М.: Изд. МЭИ, 1984. - 56 с.

11. Кокорев Л.С., Харитонов В.В. Прямое преобразование энергии и термоядерные энергетические установки. М.: Атомиздат, 1980. - 216 с.

12. Коровин Н.В. Электрохимическая энергетика. Состояние, проблемы и перспектив // Изв. РАН. Энергетика. 1997. №4. С. 48-65.

13. Кошелев А.А., Шведов А.П. Потенциальные возможности вовлечения возобновляемых природных ресурсов в топливно-энергетический баланс Иркутской области. Иркутск: Изд. ИСЭМ, 1998. -64 с.

14. Лукутин Б.В. Проблемы малой ветро- и гидроэнергетики // Энергетика: экология, надежность, безопасность. Томск: Изд. ТПУ, 1997. С. 87-93.

15. Непорожний П.С., Обрезков В.И. Введение в специальность: гидроэнергетика. М.: Энергоатомиздат, 1990. - 352 с.

16. Поваров О.А., Томаров Г.В. Физико-технические проблемы геотермальной энергетики // Изв. РАН. Энергетика. 1997. №4. С. 3-18.

17. Пронтарский А.Ф. Системы и устройства электроснабжения. М.: Транспорт, 1983. - 264 с.

18. Сиуда И.П. Введение в специальность «Электрические системы». Новочеркасск,:1984.-88 с.

19. Стырикович М.А., Шпильрайн Э.Э. Энергетика: проблемы и перспективы. М.: Энергоиздат, 1981. - 192 с.

20. Тарнижевский Б.В., Резниковский А.Ш. Оценка масштабов использования возобновляемых источников в электроэнергетике России на период до 2015 года // Изв. РАН. Энергетика. 1997. №4. С. 65-72.

21. Твайделл Д., Уэйр А. Возобновляемые источники энергии. М.: Энергоатомиздат, 1990. - 392 с.

22. Телдеши Ю, Лесны Ю. Мир ищет энергию. М.: Мир, 1984. -439 с.

23. Технический прогресс энергетики СССР / Под ред. П.С. Непорожнего. М.: Энергоатомиздат, 1986. - 224 с.

24. Швец И.Т., Толубинский В.И., Букшпун И.Д. и др. Энергетика. Киев: Вища школа, 1974,-616 с.

25. Ядерная и термоядерная энергетика будущего /Под. Ред. В.А. Чуянова. М.: Энергоатомиздат, 192 с.


Подобные документы

  • Актуальность поиска нетрадиционных способов и источников получения энергии, в особенности возобновляемых. Эксплуатация малых гидроэлектростанций, развитие промышленной ветроэнергетики. Характеристика солнечных, приливных и океанических электростанций.

    курсовая работа [487,3 K], добавлен 15.12.2011

  • Существующие источники энергии. Типы электростанций. Проблемы развития и существования энергетики. Обзор альтернативных источников энергии. Устройство и принцип работы приливных электростанций. Расчет энергии. Определение коэффициента полезного действия.

    курсовая работа [82,0 K], добавлен 23.04.2016

  • Характеристика возобновляемых источников энергии: основные аспекты использования; преимущества и недостатки в сравнении с традиционными; перспективы использования в России. Способы получения электричества и тепла из энергии солнца, ветра, земли, биомассы.

    курсовая работа [3,9 M], добавлен 30.07.2012

  • Производство электрической энергии. Основные виды электростанций. Влияние тепловых и атомных электростанций на окружающую среду. Устройство современных гидроэлектростанций. Достоинство приливных станций. Процентное соотношение видов электростанций.

    презентация [11,2 M], добавлен 23.03.2015

  • Основные способы получения энергии, их сравнительная характеристика и значение в современной экономике: тепловые, атомные и гидроэлекростанции. Нетрадиционные источники энергии: ветровая, геотермальная, океаническая, энергия приливов и отливов, Солнца.

    курсовая работа [57,0 K], добавлен 29.11.2014

  • Изучение особенностей использования ветроэнергетических установок в сельском хозяйстве. Анализ состояния российской энергетики, проблем энергосбережения. Расчет плоского солнечного коллектора и экономии топлива, биогазовой и ветродвигательной установок.

    курсовая работа [261,7 K], добавлен 10.03.2013

  • Распространение солнечной энергии на Земле. Способы получения электричества из солнечного излучения. Освещение зданий с помощью световых колодцев. Получение энергии с помощью ветрогенераторов. Виды геотермальных источников энергии и способы ее получения.

    презентация [2,9 M], добавлен 18.12.2013

  • Обзор развития современной энергетики и ее проблемы. Общая характеристика альтернативных источников получения энергии, возможности их применения, достоинства и недостатки. Разработки, применяемые в настоящее время для нетрадиционного получения энергии.

    реферат [4,5 M], добавлен 29.03.2011

  • Ветроэлектростанции, их характеристики. Разновидности геотермальных электростанций, их применения в децентрализованных системах электроснабжения. Основные способы преобразования энергии биотопливa в электроэнергию. Классификация солнечных электростанций.

    реферат [202,6 K], добавлен 10.06.2014

  • Промышленная и альтернативная энергетика. Преимущества и недостатки гидроэлектростанций, тепловых и атомных электростанций. Получение энергии без использования традиционного ископаемого топлива. Эффективное использование энергии, энергосбережение.

    презентация [1,2 M], добавлен 15.05.2016

Работы в архивах красиво оформлены согласно требованиям ВУЗов и содержат рисунки, диаграммы, формулы и т.д.
PPT, PPTX и PDF-файлы представлены только в архивах.
Рекомендуем скачать работу.