Полное магнетосопротивление ферромагнетиков

Строение, особенности и классификация ферромагнетиков. Магнитные и механические свойства железоникелевых сплавов. Краткая теория гальваномагнитных явлений в ферромагнетиках. Описание экспериментальной установки, результаты измерений и их обсуждение.

Рубрика Физика и энергетика
Вид дипломная работа
Язык русский
Дата добавления 21.10.2010
Размер файла 7,5 M

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

В работе японского физика Мияты (36) установлено, что знак термомагнитного эффекта в монокристальных проволоках никеля вблизи точки Кюри становится отрицательным, т. е. он здесь обусловлен парапроцессом. Следует, однако, отметить, что термомагнитный эффект в области парапроцесса мало исследован.

§ 4 МАГНЕТОСОПРОТИВЛЕНИЕ

Итак, опыт показал, что при намагничивании ферромагнетика во внешнем магнитном поле его электросопротивление меняет свою величину. Это явление было названо магнетосопротивлением.

Магнетосопротивление обычно определяется как относительное изменение удельного электросопротивления образца в виде стержня (проволоки) Дс по отношению к его удельному сопротивлению в отсутствие магнитного поля с0. При этом, если поле параллельно или перпендикулярно стержню, то мы имеем соответственно

и

Если поле H составляет с осью стержня угол ц, то:

.

На рис. 11 приведены типичные кривые и . Продольный эффект в области технического намагничивания имеет положительный знак, поперечный - отрицательный.

Под полным магнетосопротивлением мы будем понимать разность двух эффектов:

.

Теперь дадим общее описание зависимости указанных явлений в ферромагнитных телах от направления вектора Is .

Обозначая через б величину магнетосопротивления, а через и соответственно направляющие косинусы вектора Is и вектора электрического напряжения g по отношению к ребрам куба кристалла согласно закону Акулова имеем:

, (*)

где и - константы анизотропии четных эффектов, которые определяются следующим образом:

,

Здесь и - четные эффекты в кристалле в направлении ребра и диагонали кубического кристалла.

В некоторых случаях соотношением (*) можно пользоваться для описания гальваномагнитных эффектов также и в поликристаллических образцах. Исследования показывают, что для никеля в первом приближении можно считать, что , тогда из (*) и (**) следует:

где - четный эффект при насыщении в указанном направлении монокристалла никеля, а - угол между направлением Is и вектором g внутри кристалла.

Формула позволяет вычислить изменение электропроводности в поликристаллическом образце никеля под различными углами к направлению магнитного поля. Если измерения сначала проводятся в направлении магнитного поля, а затем в перпендикулярном направлении, то для этих двух случаев имеем:

и .

Деля одно на другое, получаем соотношение выражающее собой так называемое второе правило четных эффектов. Аналогичное правило имеет место и для магнитострикции. Оно находится в хорошем согласии с измерениями величин гальваномагнитного эффекта в никеле, обладающим отрицательной магнитострикцией. В других ферромагнитных материалах это соотношение часто не выполняется из-за наличия больших объемных эффектов. (23)

,

На рис. 18 приведены данные по Бозорту (пунктиром) для обычных сплавов. А сплошная кривая проведена по расчетам упрощенной теории четных эффектов.

Далее, к сожалению, в литературе не указывается температура и поле, при которых проводились исследования, что ухудшает их ценность.

На рис. 19 приведены экспериментальные данные японского физика Ширакава для полного изменения удельного электрического сопротивления железо-никелевых сплавов при различных температурах и в магнитном поле 1500 эрстед.

К сожалению, не известна форма исследуемых образцов и следовательно размагничивающий фактор, поэтому нельзя с уверенностью сказать, что при поперечном намагничивании были достигнуты поля насыщения.

При обычно используемых полях э и при комнатных температурах магнетосопротивление для большинства металлов весьма мало. Например, в случае меди. при э. Исключением является висмут, у которого ?2 при э. В полупроводниках этот эффект значительно больший, чем в металлах (кроме висмута): ?, а, например, в германии при T ? 100° К и ? 3.

Рис. 18

Глава 3 ПРИЛОЖЕНИЕ

§ 1 ОПИСАНИЕ ЭКСПЕРЕМЕНТАЛЬНОЙ УСТАНОВКИ

Исследования по изучению удельного электрического сопротивления железоникелевых сплавов проводились на установке, которая представляет собой синтез баллистической установки БУ-3 и одинарно-двойного моста Р-329 (в наших исследованиях работа велась в режиме двойного моста постоянного тока). Схема установки приведена на рисунке 20.

Рис 20

Установка БУ-3 состоит из следующих основных элементов:

1. КБ - блок контакторов.

2. Кв - катушка взаимной индуктивности.

3. П - пермеаметр сильных полей.

4. БГ - баллистический гальванометр для определения баллистической постоянной.

5. G - зеркальный гальванометр М17/11.

6. Р-329 - одинарно-двойной мост постоянного тока.

7. Rрег и R - реостаты.

8. НУ - намагничивающее устройство.

Схематическое устройство пермеаметра представлено на рис. 21.

Массивное ярмо 1 из листовой электротехнической стали состоит из двух половин, одна из которых может перемещаться относительно другой при помощи винта 2. Между полуярмами зажимаются передвижные вкладыши 3 с Т-образными полюсными наконечниками 4.

Намагничивающие катушки 5, соединенные между собой последовательно, охватывают вкладыши. Для измерения магнитной индукции в испытуемом образце на последний навивается измерительная обмотка Кв. Напряженность магнитного поля измеряется при помощи катушки Кн, которая плотно прижимается к образцу и в момент измерения удаляется от него при помощи отбрасывающего устройства. Вкладыши 3 изготовлены из листовой электротехнической стали, Т-образные наконечники - из стали «Армко».

Измерительная катушка напряженности поля устанавливается в направляющую отбрасывающего устройства. Направляющая при помощи пружины может перемещаться внутри трубы, вертикально расположенной кронштейне.

Рис. 21

Положению измерительной катушки (Кн) на образце соответствует заведенное состояние пружины, удерживаемой храповиком с собачкой. Для измерения напряженности поля включают тяговый электромагнит, якорь которого, будучи жестко связан с собачкой, освобождает пружину. Последняя приводит в движение барабан, связанный гибкой лентой с направляющей. Труба отбрасывающего устройства при установке катушки на образец может перемещаться в кронштейне в вертикальном направлении.

Поворотный кронштейн позволяет отводить отбрасывающее устройство в сторону при смене испытываемых образцов. Для испытания коротких образцов в пермеаметре имеются две съемных деревянных подставки, располагаемые в междуполюсном промежутке на вертикально перемещающейся зубчатой рейке. Последняя при помощи шестерни может приводиться в движение оператором вращением маховичка.

Все части отбрасывающего устройства изготовлены из не магнитных материалов. Пермеаметр расположен на деревянном столе, снабженном роликами для перемещения. На стол пермеаметра расположены зажимы для присоединения его в схему.

Регулировочное устройство состоит из двух регулировочных блоков, каждый из которых включает четыре реостата. Последние выполнены константановой проволокой на металлических каркасах с асбоцементными изолирующими накладками. При вращении привода регулировочного устройства, благодаря срабатыванию пружинных переключающих устройств, токосъемы перемещаются в определенной последовательности, благодаря чему происходит переключение реостатов каждого из блоков с параллельного включения на последовательное, что обеспечивает плавное изменение тока намагничивания.

Регулировочное устройство смонтировано на каркасе углового железа и заключено в перфорированный железный кожух, снабженный болтом для заземления.

Размагничивающее устройство типа РУ-3 предназначено для размагничивания образца, когда последний находится в пермеаметре.

Размагничивающее устройство включает в себя секционированный трансформатор, автотрансформатор с плавно регулировкой и переключатели. Все элементы устройства помещены в металлический кожух, на лицевой панели которого расположены рукоятка переключателя «Напряжение цепи размагничивания» и рукоятка автотрансформатора «ток намагничивания». На панели также расположены зажимы, дающие возможность включать размагничивающее устройство в схему.

Размагничивание образца осуществляется следующим образом: переключатель с обозначением «напряжение цепи размагничивания» устанавливают в положение «0,05» и автотрансформатором «ток размагничивания» увеличивают ток, наблюдая за показаниями амперметра, включенного в цепь размагничивания. Поворачивают рукоятку автотрансформатора до упора в сторону меньше и переводят рукоятку переключателя «напряжение цепи размагничивания» на ближайшее большее напряжение.

Описанные операции продолжают до получения заданной величины тока размагничивания. Все переключающие элементы установки, а также амперметры и магазин сопротивлений размещаются на деревянном столе управления.

Для изменения направления тока в намагничивающей цепи пермеаметра предназначен блок контакторов (рис. 20). Переключатель «намагнич. устройство -- KB» пакетного типа служит для включения в схему пермеаметра или первичной обмотки катушки взаимной индуктивности Р-536. Последняя включается через предохранители ПК-45 с номинальным током 1 А. Переключатель телефонного типа «Кв--Кн» и служит для включения в цепь баллистического гальванометра катушек «Кв» или «Кн».

Выключатель «измерение H выкл.» предназначен для включения тягового электромагнита отбрасывающего устройства. Для торможения подвижной части баллистического гальванометра имеется кнопка КЗ. Подключение приборов осуществляется гибкими проводами.

Напряженность магнитного поля меду полюсами пермеаметра измерялась при помощи катушки Кн, которая плотно прижималась к образцу и момент измерения быстро удалялась от него при помощи отбрасывающего устройства. При этом световой указатель гальванометра, в цепь которого включена катушка Кн делал отброс б на шкале.

Напряженность магнитного поля рассчитывалась по формуле:

, (1)

где - постоянная измерительной катушки напряженности поля.

б - отклонение баллистического гальванометра в делениях шкалы.

- баллистическая постоянная.

Для определения баллистической постоянной гальванометра в схеме установки имеется катушка взаимной индуктивности Кв, действительная величина взаимной индуктивности M0.

При изменении силы тока в первичной обмотке катушки происходит изменение потока сцепления, что вызовет импульс количества электричества в цепи гальванометра, соединенного со вторичной обмоткой, т.е.

откуда

(максвелл/деление шкалы) (2)

где - изменение силы тока в первичной обмотке катушки взаимной индуктивности в амперах.

б - отклонение гальванометра в делениях шкалы.

В связи с тем, что баллистическая постоянная зависит от сопротивления цепи гальванометра, как при определении постоянной, так и при измерениях, сопротивление цепи должно быть одно и тоже.

Для этой цепи вторичная обмотка катушки взаимной индуктивности всегда остается включенной в цепь гальванометра.

Таким образом, с помощью формул (1) и (2) мы рассчитали напряженность магнитного поля. График зависимости напряженности поля от силы тока в пермеаметре представлен на рис. 21 а.

Рис. 21а

Максимальная ошибка при расчете напряженности поля составила 7,7%.

Для измерения продольного и поперечного магнетосопротивления был изготовлен специальный патрон в виде полой латунной коробки с цилиндрическим гнездом в центре. Со стороны гнезда на патроне были смонтированы разъемы для присоединения исследуемых образцов. В целях уменьшения погрешности измерений, вследствие нагревания образца, в патроне была предусмотрена стабилизация температуры проточной водой.

Исследуемые образцы представляли собой проволоку толщиной 0,25 мм., намотанную на тонкую полую кварцевую трубку длиной 15 мм и диаметром 12 мм. Намотка проволоки велась параллельно оси трубки, равномерно вдоль всей стенки. Для предотвращения закорачивания соседних витков, поверх проволоки наматывалась хлопчатобумажная прочная нить, которая удерживала соседние витки от соприкосновения между собой. Для исследования образцы помещались в цилиндрическое гнездо специального патрона, а концы проволоки припаивались к разъемам, подведенным к гнезду. Затем патрон вместе с исследуемым образцом помещался между полюсами пермеаметра. Исследование велось в двух пространственных положениях патрона:

1. Положение, при котором магнитное поле параллельно образцу (измерение продольного магнетосопротивления).

2. Положение, при котором магнитное поле перпендикулярно образцу (измерение поперечного магнетосопротивления).

По исследуемому образцу пропускался ток 0,1 А.. Электросопротивление образца измерялось с помощью одинарно-двойного моста постоянного тока Р-329., работающего в комплекте с зеркальным гальванометром М 17/11. Градуировка шкалы гальванометра производилась в следующей последовательности.

С помощью ручек декадного переключателя моста Р-329 световой указатель зеркального гальванометра устанавливался в нулевое положение. Затем поворотом ручки декадного переключателя на одно деление ценой 10-3 Ом, производился отброс на число делений , таким же образом световой указатель отклонялся в другую сторону от нулевого положения при изменении направления тока. Среднее значение отклонения рассчитывалось по формуле:

. (3)

По заданному изменению сопротивления 10-3 Ом и отклонению можно определить чувствительность установки:

Ом/мм2 (4)

Погрешность при определении чувствительности установки составила 0,5%.

Зная S, по отклонению светового указателя гальванометра г, которое возникает за счет изменения электросопротивления образца под действием внешних сил, можно определить относительное изменение сопротивления образца при параллельном и перпендикулярном намагничивании по формулам:

§ 2 РЕЗУЛЬТАТЫ ИЗМЕРЕНИЙ И ИХ ОБСУЖДЕНИЕ

На установке были проведены измерения удельного электросопротивления сплавов с различным содержанием никеля, а также продольного и поперечного гальваномагнитного эффектов.

Получены следующие результаты, которые приведены в таблице и на графиках.

Состав сплава

0% Ni

1.27·10-1

30.8·10-4

-3.7·10-4

34·10-4

9% Ni

2.72·10-1

40.2·10-4

-12·10-4

52·10-4

19% Ni

4.20·10-1

10·10-4

-7·10-4

17·10-4

30% Ni

7.10·10-1

11·10-4

-0.9·10-4

11.9·10-4

39,9% Ni

6.10·10-1

2.4·10-4

-30·10-4

32.4·10-4

50% Ni

3.30·10-1

35·10-4

-9.5·10-4

44·10-4

59% Ni

2.38·10-1

52·10-4

-28·10-4

80·10-4

70% Ni

1.65·10-1

89·10-4

-61·10-4

150·10-4

76,6% Ni

1.71·10-1

123·10-4

-82·10-4

205·10-4

79% Ni

1.55·10-1

117·10-4

-105·10-4

222·10-4

82% Ni

6.35·10-1

22·10-4

-41·10-4

63·10-4

89% Ni

1.31·10-1

137·10-4

-106·10-4

243·10-4

100% Ni

0.098·10-1

100·10-4

-49·10-4

149·10-4

ГРАФИК 1

ГРАФИК 2

ГРАФИК 3

ГРАФИК 4

ГРАФИК 5

Если сравнивать полученную кривую (график 3) с кривой, которую приводит в своей монографии Бозорт (рис. 18), то видно, что ход этих кривых одинаков, однако максимальные значения величины в области концентрации никеля 70-100% несколько меньше данных других авторов, которые исследовали образцы, прошедшие обычный отжиг. Из общей кривой зависимости от содержания никеля в сплавах выпадает сплав с 82% Ni. Дело в том, что ранее в литературе отмечалось, что не только гальваномагнитные эффекты имеют в этом сплаве минимальные значения, но также гальваноупругие, термомагнитные, термоупругие.

Так как данные, полученные при исследовании железоникелевых сплавов концентраций 70-100% Ni ниже литературных данных, то была поставлена задача выяснить: сильно ли изменяются гальваномагнитные эффекты если сплав прошел специальную термообработку на упорядочение.

С этой целью отожженный сплав 76,6% Ni закалили. Почему именно этот сплав взяли для закалки? Потому что он наиболее склонен к упорядочению, т.к по процентному содержанию он близок к сплаву 75% Ni у которого наблюдаются максимальные эффекты упорядочения.

Закалка отожженного сплава проводилась следующим образом. Сплав помещался в кварцевую трубку, в которой создали вакуум порядка 0,01 мм. рт. ст. и нагревали до температуры 600° С. Затем резким охлаждением образца происходила закалка с целью нарушения упорядоченной структуры сплава. После закалки изменилось лишь удельное электросопротивление на 3,4%, а гальваномагнитные эффекты практически не изменились.

Этот же сплав и сплав 100% Ni были проверены на полевую зависимость. Была обнаружена некоторая странность хода кривой при поперечном гальваномагнитном эффекте, что не соответствует данным, которые приводит Вонсовский. В литературе не указывается какой формы исследовали образец. Мы исследовали образцы в виде тонкой проволоки, намотанной на кварцевые трубки. По всей вероятности при намагничивании образца в поперечном магнитном поле, образец находился не строго перпендикулярно полю, а под некоторым небольшим углом. Вследствие этого намагничивание происходило не строго перпендикулярно образцу, что и привело к необычному ходу кривой. Кроме того, на результат опыта повлияла погрешность измерения, связанная, прежде всего, с особой формой образцов, а также со способом их фиксации в установке.

ЗАКЛЮЧЕНИЕ

Новыми моментами в данной работе являются данные по поперечному гальваномагнитному эффекту всей системы железоникелевых сплавов, данные по продольному гальваномагнитному эффекту в области концентрации никеля от 0 до 30%, применение достаточно сильных полей для исследования образцов, прошедших специальную термообработку на упорядочение.

Итак, в данной работе:

1. Исследовано полное магнетосопротивление железоникелевых сплавов, прошедших специальную термообработку на упорядочение в области концентрации никеля от 0 до 100%.

2. Получена концентрационная кривая поперечного гальваномагнитного эффекта в системе Fe-Ni.

3. Получена концентрационная кривая продольного гальваномагнитного эффекта в области концентрации никеля от 0 до 100% и кривая полного магнетосопротивления в этой области.

4. Исследована полевая зависимость поперечного и продольного гальваномагнитного эффектов в сплавах с 76,6% Ni и чистым никелем.

5. Обнаружено, что из общепризнанной кривой полного магнетосопротивления «выпадает» сплав с 82% Ni.

6. Наименьшее значение полного магнетосопротивления приходится на инварные сплавы, причем имеет место увеличение полного магнетосопротивления, как в сторону высоких концентраций никеля, так и в сторону более низкой концентрации никеля (инварной области).

7. Выявлено, что проведенная термообработка на упорядочение, не повлияла на величины гальваномагнитных эффектов.

ЛИТЕРАТУРА

1. Боровик Е.С., Мильнер А.С., Лекции по ферромагнетизму, Изд. Харьковский университет, 1960.

2. Займовский А.С., Усов В.В., Металлы и сплавы в электротехнике, ГЭИ, 1949.

3. Гершензон Е.М., Малов Н. Н., Мансуров А.Н., Эткин В. С., Курс общей физики - М.: Просвещение, 1982.

4. Детлаф А.А., Яворский Б.М., Миликовская Л.Б., Курс физики Т-2, Электричество и магнетизм - М.: Высшая школа, 1977.

5. Киренский Л.В., Магнетизм, - М.: Наука, 1970.

6. Калашников С.Г., Электричество - М.: Наука, 1970.

7. Лифшиц И.М., Азбель М. Я., Коганов М. Н., Электронная теория металлов - М.: Наука, 1971.

8. Савельев И. В., Курс общей физики, Т-2, Электричество и магнетизм. Волны. Оптика: Учебное пособие - М.: Наука ГРФМЛ, 1982.

9. Свирский М. С., Электронная теория вещества. - М.: Просвещение, 1980.

10. Телеснин Р.В., Яковлев В. Ф., Курс физики. Электричество. - М.: Просвещение, 1969.

11. Уэрт Ч., Томсон Р., Физика твердого тела. - М.: Мир, 1966.

12. Волькенштейн Ф.Ф., Электроны и кристаллы. - М.: Наука, 1983.

13. Коганов М.И., Электроны. Фононы. Магноны. - М.: Наука, 1979.

14. Физический энциклопедический словарь Т-1, 2, 3, 4, 5, - М.: Советская энциклопедия, 1960.

15. Зильбеман Г.М., Электричество и магнетизм. - М.: 1970.

16. Яворский Б.М., Детлаф А.А., Справочник по физике. - М.: Наука, ГРФМЛ, 1985.

17. Фриш С.Э., Тиморева А.В., Курс общей физики, Т-1. - М.: ФМЛ, 1962.

18. Савельев И. В., Курс общей физики Т-3. - М.: Наука, ГРФМЛ, 1971.

19. Тамм И.Е., Основы теории электричества. - М.: Наука, ГРФМЛ 1966.

20. Захаров Ю.В., Маньков Ю.И., Хлебопрос Р.Г., Электропроводность и доменная структура металлических ферромагнетиков, Красноярск 1974.

21. Иродов И. Е. Основные законы электромагнетизма: Учебное пособие для вузов, - М.: Высшая школа, 1983.

22. Яворский Б. М., Селезнев Ю.А. Справочное руководство по физике для поступающих в вузы и для самообразования. - М.: Наука, 1989.

23. Белов К.П., Упругие, тепловые, электрические явления в ферромагнетиках. - М.: 1957г.

24. Бозорт Р.М., Ферромагнетизм, 1956г.

25. Вонсовский С.В., Магнетизм. - М.: Наука, 1971.

26. Тикадзуми С. Физика ферромагнетизма. Магнитные характеристики и практические применения: Пер. с японского. - М.: Мир, 1987.

27. Иващенко Т.В., Магнетосопротивление железоникелевых сплавов. - Лесосибирск, 1988.

28. Лупик А.Н., Электросопротивление железоникелевых сплавов при упругой деформации в магнитном поле. - Красноярск, 1979.

29. Магнитные свойства металлов и сплавов, под ред. С. В. Вонсовского, издательство иностранной литературы, - М.: 1961.

30. Тикадзуми С., Физика ферромагнетизма. Магнитные свойства вещества. Пер. с японского. - М.: Мир, 1983.

31. Савельев И. В., Курс общей физики, т. 2. Электричество и магнетизм. Волны. Оптика: учебное пособие. - 2-е изд., перераб. - М.: Наука. Главная редакция физико-математической литературы, 1982.

32. С.В. Вонсовский, Л.Я. Кобелев, К.П. Родионов, Изв. АН СССР (серия физ.) т. 16, №5, 1952.

33. Волков Д.И., ЖЭТФ 9,446, 798 (1939).

34. Феденев Д.Р. ЖЭТФ 5, 386 (1935); Феденев Д.Р и Вампилов Ц.Н., ЖЭТФ 9, 994 (1939).

35. Дрожжина В.И., Лужинская М.Г., Морозова В.М. и Шур Я.С., Труды Инст. физики металлов уральского филиала АН СССР, вып. 15, 42 (1954).

36. Miyata N. and Funatogawa Z., Journ. Phys. Soc. Japan 9, 967 (1957).

37. Белов К.П., Магнитные превращения, М., Физматиздат,1959.

38. Бушманов Б. Н. и Хромов Ю. А., Физика твердого тела. Учебн. пособие для втузов. - М., «Высш. школа», 1971.

39. Материалы в машиностроении, М., Машиностроение, 1968.

40. Перкао М.Д., Кардонокий В.М., Высокопрочные мартенситностареющие стали, М., Металлургия, 1970.

41. Туричин A.M., Новицкий П.В. и др., Электрические измерения неэлектрических величин, Л., Энергия, 1975.

42. Вонсовский С.В., Современное учение о магнетизме, М., ШГТЛ, 1953.

43. Садовский В.Д., Сб. "Металловедение", М., Наука, 1971.


Подобные документы

  • Действие магнитного поля. История открытия эффектов Холла, Эттингсгаузена, Нернста и Риги-Ледюка. Количественная теория гальваномагнитных явлений. Техническое применение эффекта магнетосопротивления. Изменение траекторий носителей в магнитном поле.

    реферат [570,0 K], добавлен 02.03.2013

  • Растворимость водорода в аллотропической форме титана. Влияние водорода на механические свойства титана высокой чистоты. Классификация сплавов титана по легирующим элементам. Сущность механизма и признаки водородного охрупчивания титановых сплавов.

    реферат [2,0 M], добавлен 15.01.2011

  • Исследование особенностей деформации микрокапель прямых и обратных эмульсий в магнитных и электрических полях. Изучение указанных явлений с помощью экспериментальной установки (катушек Гельмгольца), создавая переменные и постоянные магнитные поля.

    лабораторная работа [1,0 M], добавлен 26.08.2009

  • Кристаллическая структура и магнитные свойства манганитов. Теплоемкость манганитов в области фазовых переходов. Основные результаты исследования температурной зависимости теплоемкости монокристаллов системы в различных магнитных полях и их обсуждение.

    курсовая работа [795,4 K], добавлен 21.05.2019

  • Изучение кинематики материальной точки и овладение методами оценки погрешностей при измерении ускорения свободного падения. Описание экспериментальной установки, используемой для измерений свободного падения. Оценка погрешностей косвенных измерений.

    лабораторная работа [62,5 K], добавлен 21.12.2015

  • Составление схемы установки для исследования энергетической и кристаллохимической структуры твердого тела методом изучения во внешних полях. Принцип действия используемых установок, получение спектров поглощения, результаты измерений и их обсуждение.

    реферат [268,2 K], добавлен 30.06.2009

  • Действие внешнего магнитного поля на вещество и процесс намагничивания. Особенности и главные свойства ферромагнетиков. Электромагнитная индукция как фундаментальное явление электромагнетизма. Гипотеза и уравнение Максвелла для электромагнетизма.

    реферат [58,6 K], добавлен 08.04.2011

  • Образование непрерывного ряда твердых растворов с никель-арсенидной структурой в системе Co1-xNixTe при закалке от температур, близких к температуре солидуса, их поведение. Измерения удельной намагниченности сплавов системы, ее температурная зависимость.

    реферат [1,1 M], добавлен 26.06.2010

  • Электрификация производственных процессов на участке твердых сплавов, расчет электрического освещения и облучения. Расчет внутренних сетей. Описание изобретения для смешивания сыпучих материалов. Меры безопасности при обслуживании установки, охрана труда.

    курсовая работа [1,5 M], добавлен 20.01.2010

  • Основные свойства полупроводников. Строение кристаллов. Представления электронной теории кристаллов. Статистика электронов в полупроводниках. Теория явлений переноса. Гальваномагнитные и термомагнитные явления. Оптический свойства полупроводников.

    книга [3,8 M], добавлен 21.02.2009

Работы в архивах красиво оформлены согласно требованиям ВУЗов и содержат рисунки, диаграммы, формулы и т.д.
PPT, PPTX и PDF-файлы представлены только в архивах.
Рекомендуем скачать работу.