Электронные пускорегулирующие аппараты для разрядных ламп высокого давления
Классификация пускорегулирующих аппаратов - светотехнических изделий, с помощью которых осуществляется питание разрядной лампы от электрической сети. Стартерные и бесстартерные ПРА для люминесцентных ламп. Зажигающие устройства для ламп высокого давления.
Рубрика | Физика и энергетика |
Вид | курсовая работа |
Язык | русский |
Дата добавления | 02.05.2011 |
Размер файла | 434,9 K |
Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже
Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.
В ЭПРА установлен электролитический конденсатор С4 типа ASH-ELB 043. Эти, специально разработанные для применения в электронных схемах питания люминесцентных ламп, конденсаторы характеризуются большим сроком службы (15000 часов) при температурах до 85°С и выдерживают значительные пульсации тока.
Силовыми ключами в инверторе являются полевые МОП-транзисторы типа PHX3N50E (индекс "Е" свидетельствует о повышенной надежности прибора). Благодаря использованию принципа переключения при нулевом напряжении, потери на переключение МОП-транзисторов минимизированы. Нагрев каждого из транзисторов вызывается только потерями в проводящем состоянии, и степень повышения температуры зависит от сопротивления открыто го канала сток-исток (Rds on) и теплового сопротивления корпуса (Rth)-Продолжительности этапов подогрева и зажигания достаточно малы, в силу чего выбор типа МОП-транзистора был обусловлен величиной тока, протекающего через балластную катушку индуктивности в режиме горения лампы. PHX3N50E характеризуются максимальным постоянным напряжением сток-исток 500 В и сопротивлением открытого канала менее 3 Ом, что делает эти приборы весьма привлекательными для применения данного ЭПРА.
Конструкция выдерживающей пиковые токи зажигания до 2,5 А балластной катушки L1 с индуктивностью 1 мГн позволяет применять ее в схемах без защитного заземления.
Поджигающим в ЭПРА является конденсатор С7 с емкостью 8,2 нФ типа КР/ММКР376. Этот тип конденсаторов разработан для применения в цепях с высокими скоростями нарастания напряжения и большой частотой повторения. Установленный конденсатор способен выдержать размах напряжения до 1700 В (600 В действующего значения синусоидального напряжения).
"Сердцем" ЭПРА является UBA2021. Эта специализированная ИМС предназначена для управления компактными и трубчатыми люминесцентными лампами. В состав UBA2021 входит высоковольтный драйвер со схемой запуска, генератор и таймер, обеспечивающие управление на стадиях пуска, подогрева, зажигания и горения лампы, а также защиту от емкостного режима. ИМС выдерживает напряжения до 390 В и кратковременные всплески напряжений (t < 0,5 с) до 570 В. Низковольтное напряжение питания внутренне фиксируется, что устраняет необходимость установки внешнего стабилитрона. Фиксация осуществляется при токах до 14 мА с кратковременными (t < 0,5 с) всплесками до 35 мА.
6. ЗАЖИГАЮЩИЕ УСТРОЙСТВА ДЛЯ ЛАМП ВЫСОКОГО ДАВЛЕНИЯ
Как уже указывалось, лампы высокого давления зажигаются без предварительного нагрева электродов. Лампы требуют для своего зажигания значительных импульсов напряжения, исключение составляют четырехэлектродные лампы типа ДРЛ, которые зажигаются от синусоидального напряжения сети. Зажигающие устройства для ламп высокого давления обычно содержат импульсные генераторы, которые автоматически отключаются после пробоя лампы. По способу подключения импульсного генератора по отношению к лампе различают схемы параллельного и последовательного поджига. Кроме того, импульсные зажигающие устройства можно разделить на четыре группы, по способу генерации импульсного напряжения: 1) прерыватели, которые обеспечивают генерацию на лампе импульсного напряжения за счет энергии, запасенной в индуктивности дросселя в момент прерывания пускового тока. Работа этих устройств принципиально не отличается от работы стартеров тлеющего разряда;
2) резонансные, в которых импульсное напряжение возникает за счет разряда в резонансном контуре, образованном балластным дросселем и дополнительным конденсатором;
3) конденсаторные, в которых энергия, необходимая для формирования импульса, накапливается в специальном накопительном конденсаторе, а затем конденсатор разряжается на первичную обмотку импульсного трансформатора, создавая на вторичной обмотке импульс, амплитуда которого определяется коэффициентом трансформации этого трансформатора;
Рисунок 20. Принципиальная схема включения лампы высокого давления с дросселем и зажигающим устройством: а -- параллельного типа; б-- последовательного типа
4) комбинированные, в которых одновременно используется несколько способов генерации.
Основным коммутирующим элементом всех устройств являются полупроводниковые приборы, управляемые обычно напряжением, создаваемым на элементах схемы.
Для включения ламп высокого давления типов ДРИ и ДНаТ выпускаются импульсные зажигающие устройства (ИЗУ), выполненные по схемам параллельного или последовательного, поджнга.
На рис. 20, а приведена принципиальная схема параллельного поджига, состоящая из импульсного трансформатора с первичной W1 и вторичной W2 обмотками, основного накопительного конденсатора С1 тиристора VS и стабилитрона VD. При подаче на схему напряжения питания начинается заряд конденсатора С1 через конденсатор С2, резистор R и вторичную обмотку трансформатора W2. При заряде конденсатора С1 до напряжения стабилизации стабилитрона VD в цепи управляющего электрода тиристора VS появляется ток, тиристор открывается и конденсатор С1 разряжается на обмотку с меньшим числом витков W1 импульсного трансформатора. Во вторичной обмотке индуцируются импульсы высокого напряжения. Амплитуда импульсов может изменяться в зависимости от коэффициента трансформации импульсного трансформатора. Длительность и число импульсов в серии можно регулировать параметрами конденсатора С2 и резистора R. По аналогичной схеме выпускаются универсальные импульсные зажигающие устройства (УИЗУ) и ИЗУ, применяемые для зажигания ламп типов ДРИ и ДНаТ. Основные параметры ИЗУ и УИЗУ приведены в табл. 2. Недостатком схем параллельного поджига является шунтирующее действие индуктивности дросселя, что снижает амплитуду импульса.
Таблица №2. Параметры ИЗУ и УИЗУ.
В схемах последовательного поджига обмотка импульсного трансформатора включается последовательно с лампой, поэтому она должна быть рассчитана на полный ток лампы. Кроме того, включение в токовую цепь лампы дополнительного сопротивления вызывает необходимость изменения параметров балластного дросселя, что препятствует использованию одних и тех же дросселей, например для ламп типов ДРЛ и ДРИ. Принципиальная схема включения лампы с ИЗУ последовательного типа приведена на рис. 20,б. Импульсные зажигающие устройства используют с натриевыми лампами высокого давления, для которых унификация параметров дросселей менее важна, так как эти лампы из-за меньших значений рабочего напряжения требуют применения специальных дросселей.
СПИСОК ЛИТЕРАТУРЫ
1. Афанасьева Е. И., Скобелев В. М. Источники света и пускорегулирующая аппаратура: Учебник для техникумов. -- 2-е изд., перераб. -- М.: Энергоатомиздат, 1986. -- 272 с: ил.
2. Краснопольский А. Е. и др. Пускорегулирующие аппараты для разрядных ламп/ А. Е. Краснопольский, В. Б. Соколов, А. М. Троицкий; Под общ. ред. А. Е. Краснопольского.-- М.: Энергоатомиздат, 1988.-- 208 с: ил.
3. Березин М.Ю., Троицкий А.М. Электронные пускорегулирующие аппараты для разрядных ламп высокого давления. Новости светотехники. Выпуск 8. Обзор зарубежной литературы под. ред. Ю.Б. Айзенберга. М.: Дом Света, 1998. С.3-16.
Размещено на Allbest.ru
Подобные документы
Спектральные характеристики излучения разных видов производимых ламп – источников света. Принцип действия, срок службы стандартных ламп накаливания, галогеновых, люминисцентных, разрядных ламп высокого давления, светодиодов. Оценка новых разработок.
реферат [1,3 M], добавлен 04.03.2012Классификация и основные параметры электрических источников света. Лампы накаливания. Люминесцентные лампы низкого и высокого давления. Схемы питания люминесцентных ламп. Основные светотехнические величины. Техника безопасности.
курсовая работа [710,5 K], добавлен 21.09.2006Применение разрядных ламп в различных областях народного хозяйства. Технические данные некоторых трубчатых ксеноновых ламп. Перспективность дальнейшего совершенствования трубчатых ксеноновых ламп. Конструктивные особенности, виды режимов работы ламп.
презентация [3,4 M], добавлен 24.06.2012Лампы общего назначения, их принцип действия, конструкция. Преимущества и недостатки ламп накаливания. Декоративные и иллюминационные лампы. Ограничения импорта, закупок и производства ламп накаливания. Утилизация отработавших люминесцентных ламп.
реферат [1020,9 K], добавлен 08.02.2012Преимущества люминесцентных ламп, их виды и применение, устройство и принцип действия. Марки и характеристики проводов и кабелей, применяемых при электромонтажных работах. Применяемые механизмы, инструменты и приспособления; монтаж люминесцентных ламп.
реферат [665,5 K], добавлен 22.07.2010Основные преимущества люминесцентных ламп перед лампами накаливания. Параметры и виды люминесцентных ламп, правила их утилизации и особенности маркировки. Запуск и подключение, область применения. История и принцип работы. Причины выхода из строя.
реферат [344,3 K], добавлен 06.01.2011Высокий спрос на энергосберегающие технологии. Устройство и принцип действия энергосберегающих ламп. Сравнительный анализ мощности и светоотдачи энергосберегающих ламп и ламп накаливания. Экономичность энергосберегающих ламп при их использовании.
презентация [640,7 K], добавлен 13.10.2016Требования к энергоэкономичности освещения. Кривая силы света компактной люминесцентной лампы. Преимущества галогенных ламп. Применение газоразрядных ламп высокого накаливая. Светодиоды: понятие, особенности использования. Системы управления освещением.
реферат [103,2 K], добавлен 30.10.2012Изучение наиболее простых методов экономии электроэнергии. Преимущества и принцип работы люминесцентных ламп, проблема их утилизации. Различие между лампами накаливания и люминесцентными. Оценка эффективности практического применения данных ламп.
реферат [49,5 K], добавлен 18.01.2011Исследование истории изобретения, преимуществ и недостатков ламп накаливания, а также вреда от них. Характеристика элементов конструкции ламп: тела, колбы, токовводов. Описания использования декоративных, иллюминационных, зеркальных, сигнальных ламп.
курсовая работа [722,6 K], добавлен 28.09.2011