Элементарные частицы

Основные характеристики и классификация элементарных частиц. Виды взаимодействий между ними: сильное, электромагнитное, слабое и гравитационное. Состав атомных ядер и свойства. Кварки и лептоны. Способы, регистрация и исследования элементарных частиц.

Рубрика Физика и энергетика
Вид курсовая работа
Язык русский
Дата добавления 08.12.2010
Размер файла 65,7 K

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

Замедление нейтронов осуществляется за счёт упругого рассеяния. В этом случае энергия, теряемая замедляемой частицей, зависит от соотношения масс сталкивающихся частиц. Максимальное количество энергии теряется, если частицы имеют одинаковую массу. С этой точки зрения идеальным замедлителем должно бы быть вещество, содержащее обычный водород, например, вода (массы протона и нейтрона примерно одинаковы). Однако такие вещества оказались непригодными в качестве замедлителя, потому что обычный водород поглощает нейтроны.

Ядра замедлителя должны обладать малым сечением захвата нейтронов и большим сечением упругого рассеяния. Этому условию удовлетворяют дейтерий, а также ядра графита и бериллия.

3.2 Методы наблюдения элементарных частиц

Элементарные частицы удаётся наблюдать благодаря тем следам, которые они оставляют при своём прохождении через вещество. Характер следов позволяет судить о знаке заряда частицы, её энергии, импульсе и т. п. Заряженные частицы вызывают ионизацию молекул на своём пути. Нейтральные частицы следов не оставляют, но они могут обнаружить себя в момент распада на заряженные частицы или в момент столкновения с каким-либо ядром. Следовательно, нейтральные частицы также обнаруживаются по ионизации, вызванной порождёнными ими заряженными частицами.

Приборы, применяемые для регистрации ионизирующих частиц, подразделяются на две группы. К первой группе относятся устройства, которые регистрируют факт пролёта частицы и позволяют судить об её энергии. Вторую группу образуют трековые приборы, т. е. приборы, позволяющие наблюдать следы частиц в веществе. К числу регистрирующих приборов относятся ионизационные камеры и газоразрядные счётчики. Широкое распространение получили черенковские счётчики и сцинтилляционные счётчики.

Заряженная частица, пролетающая через вещество, вызывает не только ионизацию, но и возбуждение атомов. Возвращаясь в нормальное состояние, атомы испускают видимый свет. Вещества, в которых заряженные частицы возбуждают заметную световую вспышку (сцинтилляцию), называют фосфорами. Фосфоры бывают органические и неорганические.

Сцинтилляционный счетчик состоит из фосфора, от которого свет подается по специальному светопроводу к фотоумножителю. Импульсы, получающиеся на выходе фотоумножителя, подвергаются счету. Определяется также амплитуда импульсов (которая пропорциональна интенсивности световых вспышек), что дает дополнительную информацию о регистрируемых частицах.

Счетчики часто объединяются в группы и включаются так, чтобы регистрировались только такие события, которые отмечаются одновременно несколькими приборами, либо только одним ним из них. В первом случае говорят, что счетчики включены по схеме совпадений, во втором -- по схеме антисовпадений.

К числу трековых приборов относится камеры Вильсона, пузырьковые камеры, искровые камеры и эмульсионные камеры.

Камера Вильсона.

Так называют прибор, созданный английским физиком Ч. Вильсоном в 1912 г. Дорожка из ионов, проложенная летящей заряженной частицей, становится видимой в камере Вильсона, потому что на ионах происходит конденсация пересыщенных паров какой-либо жидкости. Прибор работает не непрерывно, а циклами. Сравнительно короткое время чувствительности камеры чередуется с мертвым временем (в 100--1000 раз большим), в течение которого камера готовится к следующему рабочему циклу.

Пересыщение достигается за счет внезапного охлаждения, вызываемого резким (адиабатическим) расширением рабочей смеси, состоящей из неконденсирующегося газа (гелия, азота, аргона) и паров воды, этилового спирта и т. п. В этот же момент производится стереоскопическое (т. е. с нескольких точек) фотографирование рабочего объема камеры.

Стереофотографии позволяют воссоздать пространственную картину зафиксированного явления. Так как отношение времени чувствительности к мертвому времени очень мало, приходится иногда делать десятки тысяч снимков, прежде чем будет зафиксировано какое-либо событие, обладающее небольшой вероятностью. Чтобы увеличить вероятность наблюдения редких явлений, используются управляемые камеры Вильсона, у которых работой расширительного механизма управляют счетчики частиц, включенные в электронную схему, выделяющую нужное событие.

Пузырьковая камера.

В изобретенной Д. А. Глезером в 1952 г. пузырьковой камере пересыщенные пары заменены прозрачной перегретой жидкостью (т. е. жидкостью, находящейся под внешним давлением, меньшим давления ее насыщенных паров). Пролетевшая через камеру ионизирующая частица вызывает бурное вскипание жидкости, вследствие чего след частицы оказывается обозначенным цепочкой пузырьков пара -- образуется трек.

Пузырьковая камера, как и камера Вильсона, работает циклами. Запускается камера резким снижением (сбросом) давления, вследствие чего рабочая жидкость переходит в метастабильное перегретое состояние. В качестве рабочей жидкости, которая одновременно служит мишенью для пролетающих через нее частиц, применяются жидкий водород (в этом случае нужны низкие температуры).

Искровые камеры.

В 1957 г. Краншау и де-Биром был сконструирован прибор для регистрации траекторий заряженных частиц, названный искровой камерой. Прибор состоит из системы плоских параллельных друг другу электродов, выполненных в виде каркасов с натянутой на них металлической фольгой либо в виде металлических пластин. Электроды соединяются через один. Одна группа электродов заземляется, а на другую периодически подается кратковременный (длительностью 10-7 сек) высоковольтный импульс (10-- 15 кВ). Если в момент подачи импульса через камеру пролетит ионизирующая частица, её путь будет отмечен цепочкой искр, проскакивающих между электродами.

Прибор запускается автоматически с помощью включенных по схеме совпадений дополнительных счетчиков, регистрирующих прохождение через рабочий объем камеры исследуемых частиц. В камерах, наполненных инертными газами, межэлектродное расстояние может достигать нескольких сантиметров. Если направление полета частицы образует с нормалью к электродам угол, не превышающий 40°, разряд в таких камерах развивается по направлению трека частицы.

Метод фотоэмульсий.

Советские физики Л. В. Мысовский и А. П. Жданов впервые применили для регистрации элементарных частиц фотопластинки. Заряженная частица, проходя через фотоэмульсию, вызывает такое же действие, как и фотоны. Поэтому после проявления пластинки в эмульсии образуется видимый след (трек) пролетевшей частицы.

Недостатком метода фотопластинок была малая толщина эмульсионного слоя, вследствие чего получались полностью лишь треки частиц летящих параллельно плоскости слоя. В эмульсионных камерах облучению подвергаются толстые пачки (весом до нескольких десятков килограммов), составленные из отдельных слоев фотоэмульсии (без подложки). После облучения пачка разбирается на слои, каждый из которых проявляется и просматривается под микроскопом. Для того чтобы можно было проследить путь частицы при переходе из одного слоя в другой, перед разборкой пачки на все слои наносится с помощью рентгеновских лучей одинаковая координатная сетка.

3.3 Великое объединение

Одной из основных целей современной теоретической физики является единое описание окружающего нас мира. Например, специальная теория относительности объединила электричество и магнетизм в единую электромагнитную силу. Квантовая теория, предложенная в работах Глеэшоу, Вайнберга и Салама, показала, что электромагнитное и слабое взаимодействия могут быть объединены в электрослабое. Так что есть основания полагать, что все фундаментальные взаимодействия в конечном итоге объединятся. Если мы начнём сравнивать сильное и электрослабое взаимодействия, то нам придётся уходить в области всё больших энергий, пока они не сравняются по силе и не сольются в одно в районе энергий в 1016 ГэВ. Гравитация же присоединится к ним согласно Стандартной Модели в районе энергий в 1019 ГэВ. К сожалению, такие энергии сталкивающихся на ускорителях частиц не только недоступны, но и но и вряд ли будут доступны в будущем. Однако теоретические исследования по поиску единой теории всех фундаментальных взаимодействий идут полным ходом.

Объединение двух фундаментальных теорий современной физики - квантовой теории и общей теории относительности - в рамках единого теоретического подхода до недавнего времени было одной из важнейших проблем. Примечательно, что эти две теории взятые вместе, воплощают почти всю сумму человеческих знаний о наиболее фундаментальных взаимодействиях в природе. Поразительный успех этих двух теорий состоит в том, что вместе они могут объяснить поведение материи практически в любых условиях - от внутриядерной до космической области. Большой загадкой, однако, была несовместимость этих двух теорий. И было непонятно почему природа на своём глубоком фундаментальном уровне должна требовать двух разных подходов с двумя наборами математических методов, двух наборов постулатов и физических законов? В идеале хотелось бы иметь Единую теорию поля, объединяющую эти две фундаментальные теории. Однако попытки их соединения постоянно разбивались из-за появления бесконечностей (расходимостей) или нарушения некоторых важнейших физических принципов. Объединить эти теории удалось лишь в рамках теории струн и суперструн.

История создания теории струн началась с чисто случайного открытия в квантовой теории, сделанного в 1968 году Дж.Венециано и М.Судзуки. Перелистывая старые труды по математике, они случайно натолкнулись на бета-функцию, описанную в XVIII веке Леонардом Эйлером. К своему удивлению, они обнаружили, что, используя эту функцию, можно замечательно описать рассеяние сталкивающихся на ускорителе частиц. В 1970 - 1971 годах Намбу и Гото поняли, что за матрицами рассеяния скрывается классическая (не квантовая) релятивистская струна, то есть некий микроскопический объект, отдалённо напоминающий тонкую, натянутую струну. Потом были сформулированы и построены методы квантования таких струн. Однако оказалось, что квантовую теорию струн корректно (без отрицательных и больших единицы квантовых вероятностей) можно построить лишь в 10 и 26 измерениях, и модель сразу перестала быть привлекательной. 10 лет эта идея влачила жалкое существование, потому что никто не мог поверить, что 10- или 26-мерная теория имеет какое-либо отношение к физике в 4-мерном пространстве. Когда в 1974 году Шерк и Шварц предположили, что эта модель является на самом деле теорией всех известных фундаментальных взаимодействий, никто не принял это всерьёз. Спустя 10 лет, в 1984 году, появилась знаменитая работа М.Грина и Д.Шварца. В этой работе было показано, что возникающие при квантовомеханических расчётах бесконечности в точности сокращаться благодаря симметриям, присущем суперструнам. Струны бесконечно тонки, но длина их конечна и составляет около 10-33 см. Это ничтожно мало даже по сравнению с размером нейтрино, так что для многих задач можно считать объекты точечными. Но для квантовой теории струнная природа элементарных частиц очень важна.

Струны бывают открытыми и замкнутыми. Двигаясь в пространстве-времени, они покрывают (заметают) поверхности, называемые мировыми листами. Отметим, что поверхность мирового листа гладкая. Из этого следует одно важное свойство струнной теории - в ней нет ряда бесконечностей, присущих квантовой теории поля с точечными частицами.

Струны имеют определённую устойчивую форму колебаний - моды, которые обеспечивают частице, соответствующей данной моде, такие характеристики, как масса, спин, заряд и другие квантовые числа. Это и есть окончательное объединение - все частицы могут быть описаны через один объект - струну. Таким образом, теория суперструн связывает все фундаментальные взаимодействия и элементарные частицы между собой способом, похожим на тот, которым скрипичная струна позволяет дать единое описание всех тонов - зажимая по-разному скрипичные струны, можно извлекать самые разные звуки.

Простейшее струнное взаимодействие, описывающее процесс превращения двух замкнутых струн в одну, можно представлять в виде устоявшейся аналогии - обычных брюк, форму которых приобретают их мировые листы. В этом случае штанины символизируют сближающиеся струны, сливающиеся в одну в районе верхней части брюк. Соединим два простейших струнных взаимодействия между собой (склеим двое брюк в районе пояса) и получим процесс, в котором две замкнутые струны взаимодействуют через объединение в промежуточную замкнутую струну, которая потом опять распадается на две, но уже другие.

В струнной теории, в частности, существует замкнутая струна, соответствующая гравитону. Одной из особенностей теории является то, что она естественно и неизбежно включает в себя гравитацию как одно из фундаментальных взаимодействий.

Суперструны существуют в 10-мерном пространстве-времени, в то время, как мы живём в 4-мерном. И если суперструны описывают нашу Вселенную, нам необходимо связать эти два пространства. Для этого обычно сворачивают 6 дополнительных измерений до 10-33 см. Из-за малости этого расстояния оно становится абсолютно незаметным для всех современных ускорителей элементарных частиц. В конечном итоге мы получим привычное 4-мерное пространство, каждой точке которого отвечает крохотное 6-мерное пространство, так называемое Калаби-Яу.

У струн есть ещё одно замечательное свойство - они могут «наматываться» на компактное измерение. Это приводит к появлению так называемых оборотных мод в спектре масс. Лёгкость оборотных мод позволяет интерпретировать их как наблюдаемые нами элементарные частицы.

Величайший парадокс теории суперструн заключается в том, что она сама по себе не едина. Можно выделить 5 различных согласованных суперструнных теорий, известных как: тип I, тип IIА, тип IIВ, SO(32) и Е8 х Е8.

В начале последнего десятилетия ХХ века одним из принципиальных вопросов теоретической физики был вопрос выбора той или иной струнной теории качестве кандидата на роль Единой теории. В решении этого фундаментального вопроса в последние годы был достигнут значительный прогресс. Оказалось, что все известные теории суперструн связаны между собой преобразованиями дуальности, открытыми в 1995 году. Дуальность теорий - это их существенное различие в деталях, но опись одной и той же физической реальности. На основе анализа взаимосвязи разных теорий выдвинута гипотеза, согласно которой все известные теории суперструн являются предельными случаями некоей фундаментальной М-теории. Эта теория живёт в 11-мерном пространстве-времени и на больших расстояниях описывает 11-мерную супергравитацию.

С открытием дуальности связана третья струнная революция. Первая струнная революция была вызвана изучением амплитуд рассеяния. Вторая струнная революция связана с открытием Грином и Шварцем суперсимметрии. Суперсимметрия - это симметрия между бозонами и фермионами.

заключение

Действительно, элементарные частицы невозможно ни потрогать, ни понюхать, ни увидеть, ни попробовать на вкус. Информацию об их существовании ученые получают посредством громоздких детекторов, которые выдают для обработки наборы электрических или световых сигналов. Только специальным образом анализируя полученные сигналы, физики могут изучать свойства элементарных частиц. На первый взгляд, нет абсолютно никакой гарантии, что в длинной цепочке передачи сигнала из микромира к макроскопическому наблюдателю физики - экспериметаторы правильно учитывают помехи, ошибки или искажения первичной информации. Следовательно, элементарные частицы могут оказаться лишь мороком, неправильной интерпретацией искаженных сигналов. Иное дело - макроскопические объекты. Человек может узнать характеристики макроскопических объектов без всяких посредников, только при помощи органов чувств. Поэтому в реальности макроскопического окружающего мира, как правило, не сомневается. Но так кажется только на первый весьма поверхностный взгляд.

В своей повседневной жизни человек сталкивается с множеством сил, действующих на тела. Здесь и сила ветра или набегающего потока воды, давление воздуха, мощный выброс взрывающихся химических веществ, мускульная сила человека, вес тяжелых объектов, давление квантов света, притяжение и отталкивание электрических зарядов, сейсмические волны, вызывающие подчас катастрофические разрушения, и вулканические извержения, приводившие к гибели цивилизации, и т. д. Одни силы действуют непосредственно при контакте с телом, другие, например, гравитация, действуют на расстоянии, через пространство. Но, как выяснилось в результате развития теоретического естествознания, несмотря на столь большое разнообразие, именно эти взаимодействия в конечном счете отвечают за все изменения в мире, именно они являются источником всех преобразований тел и процессов.

Список используемой литературы

1. Бопп, Ф. Введение в физику ядра, адронов и элементарных частиц: учебник / Пер. с нем. - М.: «Мир», 1999.- 277 с.

2. Фейнман, Р. Элементарные частицы и законы физики /Пер. с англ. - М.: «Мир», 2000. -137 с.

3. Любимов, А. Введение в экспериментальную физику частиц / под ред. А. Любимов, Д. Киш. 2-е изд., перераб. и доп. - М.: Физматлит, 2001. -267 с.

4. Ляховский, В.Д. Группы симметрии и элементарные частицы: учеб. пособие / В.Д. Ляховский, А.А. Болохов. 2-е изд., испр. - М.: УРСС, 2002. - 371с.

5. Верин, О.Г. Динамика вакуума и солитонная теория элементарных частиц / О.Г. Верин. - М.: Пресс, 2002. - 99 с.

6. Рузавин, Г.И. Концепции современного естествознания: учеб. пособие для вузов / Г.И. Рузавин. - М.: Гардарики, 2005. - 303 с.

7. Рау, В.Г. Основы теоретической физики. Физика ядерного ядра и элементарных частиц: учеб. пособие для вузов / В.Г. Рау. - М.: Высш. шк., 2005. - 141 с.

8. Верин, О.Г. Природа элементарных частиц, квантовая теория и великое объединение / О.Г. Верин. - М.: Контур, 2006. - 131 с.

9. Бояркин, О.М. Введение в физику элементарных частиц: учеб. пособие / О.М. Бояркин. 2-е изд., испр. - М.: URSS, 2006. - 259 с.

10. Дирак, П.А.М. Собрание научных трудов. Т.2.: Квантовая теория (научные статьи 1924 - 1947) / П.А.М. Дирак.: [под общ. ред. А.Д. Суханова]. - М.: Физматлит, 2003. - 846 с.


Подобные документы

  • Фундаментальные физические взаимодействия. Гравитация. Электромагнетизм. Слабое взаимодействие. Проблема единства физики. Классификация элементарных частиц. Характеристики субатомных частиц. Лептоны. Адроны. Частицы - переносчики взаимодействий.

    дипломная работа [29,1 K], добавлен 05.02.2003

  • Основные понятия, механизмы элементарных частиц, виды их физических взаимодействий (гравитационных, слабых, электромагнитных, ядерных). Частицы и античастицы. Классификация элементарных частиц: фотоны, лептоны, адроны (мезоны и барионы). Теория кварков.

    курсовая работа [1,0 M], добавлен 21.03.2014

  • Характеристика методов наблюдения элементарных частиц. Понятие элементарных частиц, виды их взаимодействий. Состав атомных ядер и взаимодействие в них нуклонов. Определение, история открытия и виды радиоактивности. Простейшие и цепные ядерные реакции.

    реферат [32,0 K], добавлен 12.12.2009

  • Основные подходы к классификации элементарных частиц, которые по видам взаимодействий делятся на: составные, фундаментальные (бесструктурные) частицы. Особенности микрочастиц с полуцелым и целым спином. Условно истинно и истинно элементарные частицы.

    реферат [94,8 K], добавлен 09.08.2010

  • Виды фундаментальных взаимодействий в физике. Классификация, характеристика и свойства элементарных частиц. Несохранение чётности в слабых взаимодействиях. Структура и систематика адронов. Теория унитарной симметрии. Кварки как гипотетические частицы.

    реферат [24,3 K], добавлен 21.12.2010

  • Свойства всех элементарных частиц. Связь протонов и нейтронов в атомных ядрах. Классификация элементарных частиц. Величина разности масс нейтрона и протона. Гравитационные взаимодействия нейтронов. Экспериментальное значение времени жизни мюона.

    реферат [24,3 K], добавлен 20.12.2011

  • Структуры и свойства материй первого типа. Структуры и свойства материй второго типа (элементарные частицы). Механизмы распада, взаимодействия и рождения элементарных частиц. Аннигиляция и выполнение зарядового запрета.

    реферат [38,4 K], добавлен 20.10.2006

  • Изучение процессов рассеяния заряженных и незаряженных частиц как один из основных экспериментальных методов исследования строения атомов, атомных ядер и элементарных частиц. Борновское приближение и формула Резерфорда. Фазовая теория рассеяния.

    курсовая работа [555,8 K], добавлен 03.05.2011

  • Количество элементарных частиц. Существование кварков. Супермультиплеты. Три кошмарные частицы. Парк, нарк, ларк. Новые кварки. Поиски кварков. Минимальная энергия, необходимая для рождения кварка. Камера Вильсона. Современная физика о проблеме кварков.

    реферат [17,9 K], добавлен 24.04.2007

  • Метод совпадений и антисовпадений как один из экспериментальных методов ядерной физики и физики элементарных частиц. Регистрация частиц и квантов с заданной между ними корреляцией в пространстве и во времени. Способы повышения временного разрешения.

    контрольная работа [295,2 K], добавлен 15.01.2014

Работы в архивах красиво оформлены согласно требованиям ВУЗов и содержат рисунки, диаграммы, формулы и т.д.
PPT, PPTX и PDF-файлы представлены только в архивах.
Рекомендуем скачать работу.