Проект кабельной линии автоматики, телемеханики и связи на участке железной дороги Чита – Хилок (Забайкальская ж/д)

Составление карты проектируемого участка железной дороги Чита-Хилок. Размещение усилительных и регенерационных пунктов на трассе линии связи. Выбор арматуры для монтажа кабельной магистрали. Защита кабеля и аппаратуры связи от опасных и мешающих влияний.

Рубрика Физика и энергетика
Вид курсовая работа
Язык русский
Дата добавления 06.02.2013
Размер файла 7,1 M

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

Низкочастотные цепи имеют значительно меньшее затухание и, снижая влияние на дальний конец, можно увеличить влияние на ближний конец и наоборот. Поэтому симметрирование низкочастотных кабелей производят небольшими участками, называемыми шагами симметрирования. Обычно длину шага симметрирования непупинизированных кабелей принимают равной 2 км, а пупинизированных 1,7 км.

В железнодорожных кабелях дальней связи имеются как высокочастотные, так и низкочастотные четверки и приходится при симметрировании таких кабелей применять оба метода.

8.1.1 Симметрирование низкочастотных цепей

В кабелях со звездной скруткой жил, наибольшие влияния имеют место между цепями внутри четверок. Влияние между цепями смежных четверок меньше вследствие различных шагов их скрутки. Однако при большой длине кабеля это влияние может превысить допустимое. Уменьшают его смешиванием четверок, которое заключается в том, что на протяжении кабельной линии четверки меняются местами, то, удаляясь, друг от друга, то сближаясь. Перед началом симметрирования все ответвления и вводы должны быть замонтированы. Для симметрирования четверок сначала измеряют емкостные связи в соединяемых строительных длинах кабеля. Затем производят симметрирование, которое осуществляют в три этапа: внутри шагов симметрирования, при соединении шагов и на смонтированном усилительном участке.

Симметрирование внутри шагов симметрирования (первый этап) может выполняться в одной, трех и семи точках, расположенных на одинаковом расстоянии друг от друга и от концов шага симметрирования. Муфты, в которых производится симметрирование скрещиванием, называют симметрирующими; муфты, в которых производится симметрирование скрещиванием и конденсаторами, называют конденсаторными, муфты, в которых симметрирование не производится и жилы соединяются напрямую, называют прямыми муфтами.

Для удобства процедуры скрещивания (х) и прямого соединения (*) называют операторами. При одноточечной схеме сначала монтируют прямые муфты, а затем конденсаторную. В случае трехточечной и семиточечной схемы вначале осуществляют монтаж прямых муфт, затем симметрирующих и только потом конденсаторных.

Схемы скрещивания жил при соединении четверок в симметрирующих муфтах выбирают по данным измерений емкостных связей и асимметрии. Выбирают ту схему, при которой связь и асимметрия имеют наименьшие значения. Когда нельзя одновременно уменьшить связи и асимметрию, оператор выбирают исходя из задачи уменьшения связей. Если скрещиванием не удалось снизить связи и асимметрию до допустимых величин, то применяют симметрирование конденсаторами. При соединении шагов между собой (второй этап) симметрирование выполняется способом скрещивания по результатам измерений переходного затухания между цепями на частоте 800 Гц. Выбирают операторы, которые дают наибольшее переходное затухание. Наращивание шагов производят последовательно, начиная от концов усилительного участка в его середине по измерениям переходного затухания на ближний и дальний концы, добиваясь наибольшего их значения. Одновременно выравнивают рабочие емкости и сопротивления жил основных цепей в шаге симметрирования так, чтобы асимметрия не превышала 0.1 Ом. Если это не удается, то ее уменьшают включением резисторов.

Симметрирование на смонтированном усилительном участке (третий этап) производят в муфте, расположенной в середине участка. В этой муфте определяют наилучший оператор по измерениям переходного затухания на дальнем конце. В четверках, не удовлетворяющих нормам, производят дополнительно симметрирование с помощью конденсаторов.

8.1.2 Симметрирование высокочастотных цепей

Симметрирование ВЧ кабелей производится по результатам измерений годографа (частотной зависимости) комплексной электромагнитной связи взаимодействующих цепей. Эта связь может иметь произвольную величину и фазу в пределах от 0 до 360° и вектор связи может находиться в любом из четырех квадрантов.

Симметрирование выполняется в два этапа:

На первом этапе при соединении строительных длин кабеля в соединительных муфтах на всем усилительном участке для уменьшения влияния через третьи цепи высокочастотные четверки соединяют по оператору х. Одновременно разделывают кабели на боксах и производят монтаж всех муфт, за исключением двух ближайших к усилительным пунктам и трех, расположенных на одинаковом расстоянии друг от друга и от усилительных пунктов.

На втором этапе в двух муфтах, ближайших к усилительным пунктам, выбирают наилучший оператор по измерениям переходного затухания на ближнем конце. Затем в оставшихся несмонтированных трех муфтах подбирают наилучшие операторы по результатам измерений защищенности цепей на дальнем конце. Если с помощью скрещивания не удается получить требуемые значения затухания, то производят в тех же муфтах симметрирование контурами противосвязи.

Измерения затуханий производят на наибольшей передаваемой частоте, контролируя и на более низких частотах. В результате симметрирования затухания должны удовлетворять нормам.

Кроме приведенного метода симметрирования высокочастотных цепей (кабелей) с помощью контуров противосвязи, по измерениям переходного затухания и защищенности между цепями, существуют и другие. Для кабелей низкого качества применяют метод симметрирования по результатам измерений комплексных связей. Получил распространение метод симметрирования участками большой протяженности (200 км и более) от одного обслуживаемого усилительного пункта до другого без симметрирования по отдельным усилительным участкам.

9. Расчет параметров оптического тракта

При конструировании оптического кабеля необходимо учитывать общие требования, предъявляемые к оптической кабельной линии связи в целом с точки зрения обеспечения заданного качества связи. При выборе параметров кабеля следует стремиться к тому, чтобы кабель, предназначенный для использования на линиях до определённой длины, имел затухание, обеспечивающее длину регенерационного участка, равного данной длине, и одновременно давал дисперсию сигнала на данном расстоянии, соответствующую максимально допустимому уширению импульсов в работающей по нему системе передачи.

Существует много оптических параметров и параметров передачи ОВ, такие как:

· диаметр сердцевины одномодового ОВ;

· рабочая нормированная частота;

· эффективный диаметр поля моды;

· числовая апертура;

· нижний предел коэффициента затухания в ОВ;

· ориентировочная длина регенерационного участка;

· полоса пропускания ОВ;

дополнительные потери от изгибов ОВ и т.д.

9.1 Волоконно-оптическая система связи

Волоконные световоды из особо чистого кварцевого стекла называются оптическими волокнами и составляют основу оптических кабелей. Перспективность волоконно-оптических линий передачи обусловлена большой пропускной способностью волокна, защищенностью от внешних электромагнитных полей, вследствие чего не требуется применять специальные меры по защите от опасных напряжений линий электропередачи и электрифицированных железных дорог. Также существует возможность прокладки кабеля между точками с большой разностью потенциалов; высокой помехозащищенностью цифровых линейных трактов; малой металлоемкостью и отсутствием дефицитных цветных металлов (медь, свинец) в кабеле; малым значением коэффициента затухания в широкой полосе частот, что обеспечивает большие длины регенерационных участков по сравнению с электрическими кабелями (10-150 км вместо 2-6 км); небольшими размерами кабеля. Структурная схема волоконно-оптической линии передачи показана на рисунке 9.1.

Рисунок 9.1 - Структурная схема волоконно-оптической линии передачи

Для работы одной многоканальной системы связи требуются два оптических волокна (ОВ): по одному передаются сигналы в направлении от А к Б, по другому - в обратном. В оконечных пунктах передающий оптоэлектронный модуль (ПОМ) предназначен для преобразования электрических сигналов в оптические. Приемный оптоэлектронный модуль (ПРОМ) предназначен для преобразования оптических сигналов в электрические.

Основными элементами приемопередающих модулей являются источник излучения с длиной волны, соответствующей одному из минимумов полных потерь в оптическом волокне, и приемник излучения. Оба модуля содержат электронные схемы для преобразования электрических сигналов и стабилизации режимов работы и разъемные соединители. Линейный тракт содержит оптический кабель (ОК), в который через примерно равные промежутки включены линейные регенераторы, а в случае использования волнового уплотнения оптических волокон - оптические усилители.

Дальность непосредственной связи по волоконно-оптической линии передачи, так же, как и длина регенерационного участка, зависит от параметров оптических волокон и энергетических характеристик приемопередающих устройств.

Оптическое волокно (ОВ) представляет собой нить, состоящую из сердцевины и отражающей оболочки изготовленных из ОСЧ - кварцевого стекла. Еще в процессе вытяжки на него наносят первичное защитное покрытие.

Сердцевина - это область в центре волокна, показатель преломления которой больше, чем у оболочки, и в которой распространяется большая часть энергии светового сигнала.

Оболочка - это область волокна вокруг сердцевины, которая чаще всего изготавливается с постоянным и всегда более низким, чем у сердцевины, показателем преломления. Конструкция ОВ показана на рисунке 9.2.

Рисунок 9.2 - Структура волоконно- оптического кабеля

С точки зрения передачи сигналов ОВ представляет собой диэлектрический волновод, работающий в оптическом диапазоне волн. Канализация распространения света создается путем скачкообразного или плавного изменения показателя преломления (диэлектрической проницаемости) кварцевого стекла в поперечном сечении волновода.

Условия распространения светового импульса по оптическим волокнам определяются законом изменения показателя преломления в поперечном сечении сердцевины, величиной разности показателей преломления в центре сердцевины и отражающей оболочки, а также диаметром сердцевины и толщиной отражающей оболочки.

Для сохранения параметров передачи ОВ при их упаковке в кабель, а также в процессе прокладки и эксплуатации кабеля, оптические волокна необходимо защитить от механических воздействий. Для этого, кроме первичного защитного покрытия, используются также защитные оболочки.

9.2 Расчет числовой апертуры

Важной характеристикой световода является числовая апертура NA. Представляет собой произведение показателя преломления среды , из которого луч падает на торец световода на синус максимального угла падения лучей, который соответствует модам, распространяющихся по сердцевине. Моды - это типы волн.

,(9.1)

,(9.2)

где - показатель преломления сердцевины;

- показатель преломления оболочки.

В курсовом проекте мы будем рассчитывать одномодовое волокно - волокно с малым диаметром сердцевины (диаметр превышает длину волны передачи в несколько раз), по которому в рабочем диапазоне длин волн может распространяться только одна фундаментальная (основная) мода.

Числовая апертура для одномодового световода:

,

где, - согласно заданию по волоконно-оптической линии связи.

9.3 Расчет числа мод

Число мод определяет способность световода "принимать" свет. Чем больше мод, тем больше световой энергии можно ввести в световод от источника. С увеличением числа мод полоса передаваемых частот снижается. Чем меньше число мод, тем лучше качество связи и можно организовать большее число каналов.

Для расчета числа мод необходимо рассчитать нормированную частоту:

,(9.3)

где - радиус сердечника световода,

-длина волны.

По заданию преподавателя =10 мкм, =1,3 мкм, следовательно

.

Общее число передаваемых мод в световодах может быть определено по формуле:

для ступенчатого профиля -

(9.4)

для градиентного профиля -

(9.5)

Произведём расчёт общего числа передаваемых мод по формулам 10.4 и 10.5:

- для ступенчатого профиля;

- для градиентного профиля

9.4 Определение длины регенерационного участка

Длина регенерационного участка ВОЛС определяется передаточными характеристиками кабеля, коэффициентом затухания , дисперсией .

Затухание кабеля приводит к уменьшению передаваемой мощности, что соответственно лимитирует длину регенерационного участка.

Дисперсия кабеля приводит к наложению передаваемых импульсов, и как следствие к их искажению. Чем длиннее линия, тем больше вносимые искажения импульсов, что, в свою очередь, накладывает ограничения по пропускной способности кабеля.

Длина регенерационного участка выбирается по наименьшему значению затухания или пропускной способности.

Исходные данные для расчета:

- Система передачи ИКМ-120;

- Оптический кабель ОМЗКГ-10;

- Коэффициент затухания ;

- дисперсия .

Оптические кабели ОМЗКГм-10 предназначены для прокладки в грунт всех категорий, кроме подверженных мерзлотным деформациям. Рекомендуется для прокладки в местах заражения грызунами, имеет броню из стальной проволоки, где 1 - ОВ, 2 - гидрофобный заполнитель, 3 - полимерная трубка, 4 - стальной трос, 5 - гидрофобный заполнитель, 6 - скрепляющая лента, 7 - промежуточная оболочка, 8 - стальная проволока, 9 - полимерная оболочка. Структура данного вида оптического кабеля представлен на рисунке 9.3.

Рисунок 9.3 - Структура оптического кабеля ОМЗКГм-10 в сечении

1) По данным дисперсии определяем пропускную способность световода на 1 км длины:

.

Требуемая пропускная способность для системы передачи ИКМ-120 составляет

2) Определяем длину регенерационного участка:

,(9.6)

где - энергетический потенциал аппаратуры,

- коэффициент затухания кабеля,;

- коэффициент затухания на стыке, .

-число некачественных стыков, =11, подставляя данные значения, получим:

км.

Для выбора длины регенерационного участка воспользуемся следующими формулами:

,(9.7)

.(9.8)

По полученным зависимостям построим график, изображённый на рисунке 9.4, на котором также отметим значение допустимой пропускной способности (?Fдоп = 140 Мбит/с) и значение энергетического потенциала аппаратуры (а=38 дБ/км). Получим точки пересечения графика зависимости и ?Fдоп , а также и . l1=204 м, l2 = 95 м.

Рисунок 9.4 - Выбор длины регенерационного участка одномодового световода

По графику, изображённому на рисунке 9.4, видно, что исходя из затухания, длина регенерационного участка составляет 95 м (точка 2), а исходя из дисперсии - 204 м (точка 1). Чтобы удовлетворить обоим требованиям, необходимо принять длину регенерационного участка по наименьшему значению и расположить регенераторы через 95 м.

Заключение

В результате проделанной работы была спроектирована трёхкабельная линия связи на участке железной дороги Чита - Хилок, на которой обеспечено 350 каналов магистральной связи, 140 каналов дорожной связи и различные виды отделенческой связи. При проектировании учитывались физико-географические данные участка, его административно-хозяйственная структура; выбран кабель типа МКПАБ 741,05+520,7+10,7 и МКПАБ 1441,05+520,7+10,7 - для основной магистрали, ТЗБ 441,2 - для создания ответвлений, описан выбор арматуры для монтажа кабельной магистрали, произведена разработка схемы связи с размещением оконечных и промежуточных усилительных пунктов. Также были произведены расчеты мешающих и опасных влияний от контактных сетей железных дорог и линии электропередачи, приведены описания методов защиты от влияний, приведены схемы защиты аппаратуры связи. Приведена методика симметрирования, целью которой является уменьшение взаимных влияний. Произведен расчёт длины регенерационного участка для волоконно-оптической системы передачи информации.

Выполнение данного курсового проекта способствовало закреплению теоретических знаний по курсу линий железнодорожной автоматики, телемеханики и связи, и появлению практических навыков, необходимых при эксплуатации проектировании, разработке и усовершенствовании устройств железнодорожной автоматики, телемеханики и связи.

Список использованных источников

1) Требина Е. Г., Костиков В. У. Электромагнитные влияния высоковольтных линий на цепи связи: Методические указания к дипломному и курсовому проектированию. / Омский ин-т инж. ж.-д. транспорта. Омск, 1980.-- 34 с.

2) Атлас География России / Федеральная служба геодезии и картографии Росси - Омская картографическая фабрика, 2004. - 72 с.

3) Линии железнодорожной автоматики, телемеханики и связи: Методические указания по курсовому проекту - М: 1988 - 40 с.

4) "Энциклопедия Забайкалья", том I, - Новосибирск, "Наука", 2002

5) Горбачев Н.С., Купряшин И.А. Расчет параметров волоконно-оптических кабелей: Методические указания к дипломному и курсовому проектированию по дисциплине "Многоканальная связь на железнодорожном транспорте" / Омский ин-т инж. ж.-д. транспорта. Омск, 2002.-- 35 с.

Размещено на Allbest.ru


Подобные документы

  • Выбор типа кабельной магистрали на проектируемом участке железной дороги. Организация оперативно-технологической связи по электрическому кабелю в пределах перегона. Переходы и пересечения. Расчет волновых параметров передачи симметричной кабельной цепи.

    курсовая работа [1,5 M], добавлен 15.12.2015

  • Организация связи и цепей автоматики по кабельной магистрали. Выбор типа и емкости магистральных кабелей, распределение цепей по четверкам. Выбор трассы прокладки кабельной линии и устройство ее переходов. Расчет влияний тяговой сети переменного тока.

    курсовая работа [1,3 M], добавлен 27.07.2013

  • Проектирование кабельной линии. Расчет токов короткого замыкания, определение сопротивлений элементов сети. Выбор комплектных трансформаторных подстанций и распределительных устройств. Расчет параметров релейной защиты, селективности ее действия.

    курсовая работа [677,2 K], добавлен 01.05.2010

  • Этапы реконструкции существующей линии на базе электрического кабеля связи с заменой системы передачи между г. Казань и г. Набережные Челны. Проектирование вновь строящейся линии с использованием оптических кабелей между г. Набережные Челны и г. Уфа.

    курсовая работа [3,8 M], добавлен 05.11.2011

  • Расчет сопротивлений элементов схемы и величин токов. Расчет защиты высоковольтного двигателя, кабельной линии, сборных шин, силового трансформатора, воздушной линии. Проверка трансформатора тока, выбор контрольного кабеля, дифференциально-фазная защита.

    курсовая работа [1014,9 K], добавлен 11.05.2010

  • Выбор и расчет устройства релейной защиты и автоматики. Расчёт токов короткого замыкания. Типы защит, схема защиты кабельной линии от замыканий. Защита силовых трансформаторов. Расчетная проверка трансформаторов тока. Оперативный ток в цепях автоматики.

    курсовая работа [1,3 M], добавлен 08.01.2012

  • Оптимизация интервалов при пропуске поездов повышенной массы. Анализ и расчет режимов работы системы тягового электроснабжения участка Аячи – Уруша Забайкальской железной дороги. Определение параметров реактивной мощности установки емкостной компенсации.

    дипломная работа [2,5 M], добавлен 08.06.2017

  • Расчёт коротких замыканий. Сопротивление кабельной линии. Отстройка от минимального рабочего напряжения линии. Выбор трансформатора тока. Проверка токовой отсечки по чувствительности. Расчет дифференциальной защиты трансформатора. Защита электродвигателя.

    курсовая работа [1,1 M], добавлен 15.03.2014

  • Понятие и назначение кабельной линии электропередачи, их применение в сетях внешнего и внутреннего электроснабжения. Порядок и правила устройства и монтажа кабельных линий, их эксплуатация и ремонт. Техника безопасности при проведении монтажных работ.

    реферат [134,3 K], добавлен 19.08.2009

  • Виды влияний, оказываемых электрическими железными дорогами на линии проводной связи, характеристика и сущность этих влияний. Методика и порядок расчета сглаживающего устройства на тяговой подстанции постоянного тока, определение влияний в тяговой сети.

    курсовая работа [153,2 K], добавлен 03.02.2009

Работы в архивах красиво оформлены согласно требованиям ВУЗов и содержат рисунки, диаграммы, формулы и т.д.
PPT, PPTX и PDF-файлы представлены только в архивах.
Рекомендуем скачать работу.