Разработка вопросов энергосбережения за счет использования ветроэнергетической установки

Хозяйственная деятельность предприятия, анализ схемы электроснабжения. Расчет электрических нагрузок, выбор трансформаторов. Разработка рациональной схемы электроснабжения. Расчет ветроэнергетической установки: энергетические и экономические показатели.

Рубрика Физика и энергетика
Вид дипломная работа
Язык русский
Дата добавления 16.06.2011
Размер файла 723,6 K

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

Рисунок 8.1- Расчетная схема электропередачи для расчета токов короткого замыкания

8.2 Схема замещения для расчета токов К3

По исходной схеме составляется схема замещения (рис. 8.2), на которой показываются индуктивные и активные сопротивления основных элементов электропередачи: системы, линий, трансформаторов. На схеме расставляются точки КЗ, наносятся обозначения сопротивлений (в числителе) и их числовые значения (в знаменателе) приведенные к базисным условиям.

Рисунок 8.2- Схема замещения для расчетов токов КЗ

Для приведения сопротивлений к базисным условиям в простых распределительных сетях, чаще всего применяется система именованных единиц, в которой все сопротивления приводятся к базисному напряжению Uб. За базисное напряжение принимается средненоминальное напряжение одной из ступеней, 10,5 или 0,4 кВ. Примем Uб=10,5 кВ.

Определяются сопротивления схемы замещения, приведенные к базисным условиям.

Ниже приводятся формулы для расчета сопротивлений, приводимых к базисным условиям, в которых индекс, обозначающий базисные условия, имеет букву «б», величины измеряются: S - в Ва, U - в В, Z - в Ом, L - в км, r0 и х0 - в Ом/км, ?Рк - в Вт, Та - в с, I - в А.

8.1 Сопротивление системы

. (8.1)

8.2 Сопротивление трансформатора

; (8.2)

. (8.3)

8.3 Сопротивление линии

; (8.4.)

. (8.5.)

8.4 Результирующие сопротивления до точек КЗ

Для каждой точки КЗ суммируются все сопротивления от начала электропередачи и находятся полные сопротивления

. (8.6.)

8.5 Рассчитываются токи трехфазного КЗ

(8.7)

Для точек КЗ, в которых Uс ном= Uб, выражение (8.5) принимает вид:

8.6 Токи двухфазного КЗ

(8.8)

8.7 Ударные токи

(8.9)

где Ку - ударный коэффициент.

(8.10)

где Та - постоянная времени затухания апериодической составляющей тока КЗ

(8.11)

Значения Ку можно найти по кривым ку=F(Хб?/ Rб?) - зависимости коэффициента от отношения результирующих сопротивлений до соответствующей точки КЗ [11].

8.8 Мощность КЗ

(8.12)

Если в расчетах токи КЗ получаются значительными, их удобнее выразить в кА; мощности КЗ (S3к) выражать в МВА. Результаты расчетов сводятся в таблицу 8.1.

Таблица 8.1-Результаты расчетов токов К3

Точки К3

Напряже-ние, кВ

Сопротивление, Ом

Kу

Токи короткого замыкания, КА

S(3)к, мВА

R?

X?

Z?

I(3)к

I(2)к

I(1)к

iуд

К1

К2

К3

К4

10,5

10,5

10,5

10,5

-

1,74

1,52

5,09

1,09

3,4

3,16

6,47

1,09

3,82

3,51

8,23

1,5

1,2

1,22

1,08

5,568

1,731

1,589

0,737

4,844

1,506

1,383

0,671

-

-

-

-

15,702

2,979

2,690

1,127

101,15

31,44

28,87

13,39

К5

К6

К7

К8

10,5

10,5

10,5

10,5

12,88

17,58

36,5

25,6

31,67

47,4

38,7

44,1

34,19

50,56

53,20

50,99

1,28

1,31

1,05

1,16

4,66

3,151

2,995

3,124

4,054

2,742

2,606

2,718

-

1,773

1,081

0,875

8,403

5,830

4,441

5,117

3,22

2,18

2,07

2,16

энергосбережение ветроэнергетический трансформатор электроснабжение

9. ВЫБОР И СОГЛАСОВАНИЕ ЗАЩИТЫ НА ВЛ 0,38кВ И НА 10кВ

Выбор оборудования подстанции ТП 2854

Выбор разъединителя

1)Uр.ном.? Uсети ном.10 кВ =10 кВ

2) Iр.ном? Iр.max.

200А ? 107,8 А

Предлагается разъединитель типа РЛНД-10/200 В с приводом типа ПРН-10м. Проверяется разъединитель на термическую и динамическую стойкость:

(9.1)

(9.2)

где Uр.ном, Iр.ном - номинальное напряжение и ток разъединителя; It, t - ток и время термической стойкости разъединителя, равные 5 кА и 10 с; tэкв - эквивалентное время примерно равное времени протекания тока Iк(3), может быть принято 2 с; iд - ток динамической стойкости разъединителя, равный 20 кА.

Условия выполняются, разъединитель удовлетворяет требованиям.

Выбор рубильника на напряжение 400 В:

1)Uр.ном.=500 В > Uсети ном.=380 В

2) Iр.ном.=250 А > Iр.max.=140 А

Предлагается рубильник типа Р-32 с номинальным током Iн=250 А.

В проекте необходимо выбрать, рассчитать, проверить на чувствительность и согласовать между собой защиты следующих элементов электрической сети: линий 0,38 кВ, трансформатора 10/0,4 кВ (ТП 2854) и линий 10 кВ.

Линии 0,38 кВ защищаются, как правило, автоматическими выключателями (QF), у которых тепловой расцепитель выполняет роль максимальной токовой защиты с выдержкой времени отключения (МТЗ), электромагнитный расцепитель-защиты без выдержки времени отключения, т.е. токовой отсечки (ТО).

Силовой трансформатор защищается предохранителем типа ПКТ-10, устанавливаемом со стороны 10 кВ, воздушная линия 10 кВ защищается МТЗ и ТО, действующими на отключение выключателя в начале линии.

На линиях 0,38 кВ, питающих трехфазные потребители, устанавливается автоматические выключатели непосредственно у потребителя (QF1), и на подстанции (QF2). Наиболее распространенным потребительским выключателем является автоматический выключатель серии ВА, а подстанционным - автоматические выключатели серий АЗ700, АЕ2000.

Если тепловой расцепитель автоматического выключателя, установленного на подстанции, оказывается нечувствителен к токам короткого замыкания, то он заменяется более чувствительной защитой, в качестве которой в последнее время применяется защита ЗТ-0,4(или ЗТИ), в виде приставки к QF2.

Если нечувствительным оказывается электромагнитный расцепитель, то он не устанавливается и линия 0,38 кВ защищается только тепловым расцепителем QF2.

Чувствительность защиты оценивается по выражению:
(9.3)

где:

I(1)к.max-минимальный ток однофазного короткого замыкания (ток в конце линии);

Iт.-ток срабатывания теплового (полупроводникового) расцепителя.

Чувствительность защиты с электромагнитным расцепителем QF2 оценивается по выражению:

(9.4)

где:

I(3)к.max-ток трехфазного короткого замыкания на шинах подстанции;

Iэл.р. -ток срабатывания электромагнитного расцепителя.

Защита линии 0,38 кВ (Л-1)

Выбор автоматического выключателя на потребителе (QF1)

Рабочий ток линии 231 А

Для установки у потребителя выбираем два автоматических выключателя, тогда рабочий ток 115,5А . ВА 57-31-34 с параметрами:

Uном.QF1=660 В ? Uсети ном.=380 В

Iном.QF1=250 А ? Iр.max.=115,5 А

Iт.р.QF1=160 А ? 1,1ЧIр.max.=137,5А

Выбор автоматического выключателя, установленного на подстанции в Л1 (QF2).

Выбираем выключатель серии А 3736Б по параметрам сети:

Uном.QF2=660 В ? Uсети ном.=380 В

Iном.QF2=250 А ? Iр.max.=231А

По условию селективности:

Iт.р.QF2=400?(1,1…1,3) Iр.max=300,3А

Iт.р.QF2=400 А > Iт.р.QF1=160 А

I(3)Чкн=3151Ч1,25<Iэл.р.QF2=4000 А > Iэл.р.QF1=400 А

Оценка чувствительности защиты Л1.

Ток однофазного К.З. в конце линии 0,38 кВ равен 1173,6 А

Ток трехфазного К.З. на шинах 0,4 кВ ТП 2854 равен 4660 А

По чувствительности тепловой расцепитель QF2 не проходит, поэтому применяем приставку к автоматическому выключателю ЗТ-0,4.

Расчет защиты наЗТ-0,4.

Приставка ЗТ-0,4 действует на независимый расцепитель QF2 и имеет защиту от междуфазного тока КЗ и защиту от однофазного тока КЗ.

Защита от междуфазного тока КЗ отстраивается от тока нагрузки Л1, т.е. ток срабатывания защиты I(2)ср находится:

(9.5)

где Кн - коэффициент надежности, равный 1,2; Кз, - коэффициент самозапуска, учитывающий увеличение нагрузочного тока от пусковых токов, после отключения тока КЗ другими защитами (например QF1). Для производственных нагрузок Кз =1,25.

Уставка тока срабатывания I(2)уст устройства ЗТ-0,4 имеет три значения: 100, 160, 250 А.

А

Тогда I(2)уст = 250А > I(2)ср =173,2 А

Оценка чувствительности защиты определяется по минимальному двухфазному току КЗ:

(9.6)

Защита чувствительна к междуфазным токам КЗ.

Расчет защиты ЗТ-0,4 от однофазного тока КЗ начинается с определения тока несимметрии (I нес).

(9.7)

где Кнес - коэффициент несимметрии, который колеблется в пределах от 0,1 до 0,5. Принимаем Кнес =0,3.

А

Затем определяется ток срабатывания защиты I(1)ср от однофазного тока КЗ:

(9.8)

где Кн - коэффициент надежности, равный 1,2.

А

Установка тока срабатывания I (1)ср от однофазного тока КЗ выбирается из трех значений: 40, 80 и 120 А. Выбираем I (1)ср=80 А. Определяем чувствительность этой защиты:

(9.3)

Защиты чувствительны к любым видам токов КЗ и принимаются к исполнению.

Окончательно принимаем автоматический выключатель А3732Б К1 с Iном=400А, IЭл.р.=4000 А, снабженного приставкой ЗТ-0,4, имеющей

I(2)уст =250 А, I(1)уст =80 А .

Защита линии 0,38 кВ (Л-2)

Расчет защиты линии Л2 аналогичен с расчетом защиты Л1. В линии Л2 установлен крупный асинхронный двигатель АИР132М4, с параметрами

Рпотр=10 кВт; Рдвиг=11кВт; КПД=0,885; сosц=0,85; Iн.= 22,2 А; Кi=7,5

Выбор автоматического выключателя на потребителе (QF3)

Для Для установки у потребителя выбираем автоматический выключатель ВА 57-31-34 с параметрами:

Uном.QF3=660 В ? Uсети ном.=380 В

Iном.QF3=100 А ? Iр.потр2.=37 А

Iт.р.QF3=63 А ? 1,1ЧIр.потр2.=40,7 А

Iэл.р.QF3=400>Iп.эл.д.= 1,25Ч7,5Ч22,2=208 А

Выбор автоматического выключателя, установленного на подстанции в Л2 (QF4).

Выбираем выключатель серии А 3794С по параметрам сети:

Uном.QF4=660 В ? Uсети ном.=380 В

Iном.QF4=160 А ? Iр.max.=37 А

По условию селективности:

1,3ЧIр.max.=48,1 А < Iт.р.QF4=80 А > Iт.р.QF3=63 А

I(3)Чкн=2995Ч1,25<Iэл.р.QF4=1600 А > Iэл.р.QF3=400 А

Токовая отсечка не обеспечивает требуемую селективность. Поэтому предлагаем селективный автоматический выключатель серии А3794С с отсечкой времени tср=0,04с < tу=0,1с

Оценка чувствительности защиты Л2

Ток однофазного К.З. в конце линии 0,38 кВ равен 1081 А

Ток трехфазного К.З. на шинах 0,4 кВ ТП 2854 равен 4660 А

Защита чувствительна к любым видам токов КЗ и принимаются к исполнению.

Защита линии 0,38 кВ (Л3)

Расчет защиты линии Л3 аналогичен с расчетом защиты Л1и Л2. В линии Л3 установлен крупный асинхронный двигатель, с параметрами

Таблица 9.1 Выбор двигателя

Рпотр

кВт

Рдвиг

кВт

Двигатель

n,

об/мин

КПД

cosц

Iн,

А

mтрог

mпуск

кi

30

30

4АР180М4У3

1500

0,9

0,87

58,2

1

2

7,5

Выбор автоматического выключателя на потребителе (QF5).

Для защиты принимаем QF5 серии ВА 57-31-34 с параметрами:

Uном.QF5=660 В ? Uсети ном.=380 В

Iном.QF5=100 А ? Iр.потр6.=95 А

Iт.р.QF5=125 А ? 1,1ЧIр.потр6.=104,5 А

Iэл.р.QF5=800 А>1,25ЧIп.эл.д.=1,25 Ч7,5Ч58,2=545,6 А

Выбор автоматического выключателя, установленного на подстанции в Л3 (QF6).

Выбираем выключатель серии А 3794С по параметрам сети:

Uном.QF6=660 В ? Uсети ном.=380 В

Iном.QF6=250 А ? Iр.max.=163 А

По условию селективности:

1,3ЧIр.max.=123,5 А < Iт.р.QF6=160 А > Iт.р.QF5=104,5 А

I(3)Чкн=3124*1,25<Iэл.р.QF6=1600 А > Iэл.р.QF5=800 А

Токовая отсечка не обеспечивает требуемую селективность. Поэтому предлагаем селективный автоматический выключатель серии А3794С с отсечкой времени tср=0,04с < tу=0,1с.

Оценка чувствительности защиты Л3

Ток однофазного К.З. в конце линии 0,38 кВ равен 874,5 А

Ток трехфазного К.З. на шинах 0,4 кВ ТП 2854 равен 4660 А

Защита чувствительна к любым видам токов КЗ и принимаются к исполнению.

9.2 Защита трансформатора 10/0,4 кВ

Трансформаторы защищаются плавкими предохранителями типа ПКТ-10.

Основные условия выбора плавких предохранителей:

Uпред ?Uном сети

Iном откл ? Iк max (9.2.1)

Iном пл.вст ? 2 Iном тр

Рекомендуется значения токов плавких вставок, Iном пл.вст выбирать в зависимости от мощности трансформатора по [1].

На стойкость в режиме короткого замыкания силовой трансформатор, защищенный предохранителем, не проверяется [7].

Защита ТП 2854

Uпред ?Uном сети; 10кВ=10кВ

Iном откл ? Iк max; 15 кА>4660 кА

Iном пл.вст >Iраб макс; 20 А>12,3

где

Предварительно выбираем плавкую вставку на 10 А.

Окончательно значения плавких вставок будут выбраны после согласования защит.

9.3 Защита линии 10 кВ

Линии напряжением 10 кВ защищаются от токов КЗ с помощью максимальной токовой защиты (МТЗ) и токовой отсечки (ТО) с действием на отключение. Выполняются защиты на реле типа РТВ и РТМ (см. рис. 13.1) или РТ-85.

9.3.1 Расчет МТЗ на РТВ

Ток срабатывания защиты определяется по двум условиям:

Первое, при отстройке от рабочего максимального тока

I/с.з.расч= Кн Кз

Iр max = 1,31,1 145,8= 342,8 А , (9.3.1)

Кв 0,65

где Кн, Кз, Кв - коэффициенты надежности, самозапуска и возврата: где Кн=1,3 и Кв=0,65 для реле РТВ; Кн=1,2 и Кв=0,8 для реле РТ-85; Кз=1,1 для всех видов реле;

Второе, по условию селективности с более удаленной от источника питания защитой I//с.з.расч, значение которого рекомендуется выбирать по данным табл. 8.1.по самому мощному трансформатору ТМ-10/0,4 кВ, подключенному к линии (в примере 630 кВА).

I//с.з.расч=420 А . (9.3.2)

Большее значение принимается за расчетное.

9.3.1.2 Ток срабатывания реле

Iср= Ксх Iс.з.расч=1

420=14 А , (9.3.3)

К1 30

где Ксх - коэффициент схемы соединения трансформаторов тока и реле, для схем с неполной звездой, в основном применяемых для защиты линий 10 кВ; Ксх =1;

КI - коэффициент трансформации ТТ, КI=30;

9.3.1.3 Установка тока на реле

Iу?Iср=15 А, [1]. (9.3.4)

9.3.1.4 Действительный (принятый) ток срабатывания защиты

Iс.з.д= Кz Iу= 30 15=450 А . (9.3.5)

Кcх 1

9.3.1.5 Проверяется чувствительность защиты

Кч расч= Iк min = I(2)к (ч) = 671 =1,5>Кч.доп=1,5 (9.3.6)

Iс з д Iс з д 450

9.3.2 Расчет токовой отсечки на реле РТМ

9.3.2.1 Ток срабатывания ТО выбирается по двум условиям

при отстройке от максимального тока КЗ у ближайшей потребительской подстанции

I/со расч= Кн I(3)к2=1,5 1579=2368 А . (9.3.7)

где Кн=1,5 для реле РТМ;

при отстройке от броска тока намагничивания трансформаторов 10/0,4 кВ, подключенных к линии, при их включении под напряжение.

I//со расч =5 ? Sт ном =5 3263 =942 А . (9.3.7)

Ѓг3 Uном Ѓг3 10

Большее значение принимается за расчетное.

9.3.2.2 Ток срабатывания реле отсечки

Iс.р.о= Ксх Iсо расч= 1 2368=79 А . (9.3.8)

КI 30

9.3.2.3 Установка тока на реле

Iу0?Iс р о . (9.3.9)

Iс р о =100 А [1].

9.3.2.4 Действительный ток срабатывания отсечки

Iс о д= КI Iуо= 30 100=3000 А . (9.3.10)

Кcх 1

9.3.2.5 Чувствительность защиты

Кч расч= I(3)к1 = 5568 =1,86>Кч.доп?1,2 . (9.3.11)

9.4 Согласование защит

Действие максимальных токовых защит должно быть согласовано по времени, чтобы поврежденный элемент электропередачи отключался ближайшей к нему защитой (рис.3).

Согласование защит обычно выполняется на графике (карте селективности), на котором токовременные характеристики защит строятся при одном напряжении

(в примере 0,38 кВ) в пределах от тока срабатывания защиты до тока КЗ в месте установки защиты. Для построения графика рекомендуется использовать времятоковые характеристики автоматических выключателей, приставок ЗТ-0,4, предохранителей на напряжение 10кВ, МТЗ и ТО

Рис. 9.4.1 Защита от токов КЗ, установленная в электропередаче.

На графике (рис. 9.4.2.) строятся характеристики защит линий 0,38 кВ, затем трансформатора 10/0,4 кВ и ВЛ 10 кВ. Оси координат берем в логарифмическом масштабе.

Вначале показывается схема электропередачи с указанием всех защит и их параметров, токов КЗ, необходимых при согласовании (см. рис. 9.4.1).

Последовательность согласования следующая.

Строится токовременная характеристика защиты линии Л1.

Защита выполнена на автоматическом выключателе А3721Б К1 с приставкой ЗТ-0,4 и электромагнитным расцепителем. Токовременная характеристика [8] заносится в табл.13.3 I(2)у=250А

Таблица 9.4.1-Вспомогательная таблица.

I, А

250

300

400

500

600

4000

4660

t,c

12

4

1,5

1

0,6

0,04

0,04

Строится токовременная характеристика защиты линии Л2.

Защита выполнена на автоматическом выключателе А3721Б К1 с приставкой ЗТ-0,4 и электромагнитным расцепителем. Токовременная характеристика [8] заносится в табл.13.3 I(2)у=100А

Таблица 9.4.2 -Вспомогательная таблица.

I, А

100

150

200

230

250

4000

4660

t,c

12

4

1,5

1

0,6

0,04

0,04

Строится токовременная характеристика защиты линии Л2.

Защита выполнена на автоматическом выключателе А3721Б К1 с приставкой ЗТ-0,4 и электромагнитным расцепителем. Токовременная характеристика [8] заносится в табл.13.3 I(2)у=160А

Строится токовременная характеристике защиты трансформатора №2854, Iпв=20А.

Строится токовременная характеристика защиты ВЛ-10 кВ. МТЗ и ТО выполнены на встроенных в привод реле РТВ и РТМ.

Таблица 9.4.4-Токовременная характеристика РТВ иРТМ

К=I/Iс з д

1

1,2

1,5

1,7

2,0

2,5

3,0

3,5

-

-

I, А

450

540

675

765

900

1125

1350

1575

3000

5568

t,с

10

5

3,5

3

2,3

1,5

1,2

1,0

0,1

0,1

11250

13500

16875

19125

22500

28125

33750

39375

75000

139200

После построения характеристики необходимо убедиться в том, что в зоне совместного действия МТЗ линии 10 кВ и плавкой вставки предохранителя ПК-10-20 соблюдалось условие селективности.

Рисунок 9.4.2-График согласования защит

10 PАЗРАБОТКА ВЕТРОУСТАНОВКИ ДЛЯ ГОРЯЧЕГО ВОДОСНАБЖЕНИЯ СЕЗОННОГО ПОТРЕБИТЕЛЯ

10.1 Общие сведения по использования энергии ветра

Энергия ветра уже тысячелетиями используется как на суше, так и на море. Первые сведения о древних египетских парусных судах уходят к третьему тысячелетию до н.э., а расцвет парусного мореходства приходится на середину прошлого века. На суше ветряные двигатели впервые появились в Персии, где за счет энергии ветра приводились в действие водяные насосы для полива. В этих устройствах использовались полотняные паруса на вертикальной оси.

В нескольких районах Европы, сначала во Франции, в XII веке появились ветряные мельницы для размола зерна, у которых ветроколесо устанавливалось на горизонтальной оси. Первая мельница была построена в 1393 году в Германии, откуда пошло распространение в другие страны. В XIV в. голландцы широко использовали ветряные мельницы для осушения болот и озер. В этот же период появились усовершенствованные конструкции мельниц, применение которых продолжалось до середины прошлого столетия. Так, в Дании суммарная мощность этих установок с общим числом более 30 тысяч составляла примерно 200 МВт.

В конце XIX века в России действовало около 250 тыс. ветряных мельниц общей мощностью примерно 600 МВт. В 1889 г. на ярмарке в Нижнем Новгороде демонстрировались два ветроагрегата мощностью 36,8 кВт каждый. В XX столетии в связи с широким внедрением электричества растет интерес к ветроэлектрическим агрегатам. В период 1890-1908 гг. профессор Лякур разработал более эффективный и быстроходный ветроагрегат для производства электрической энергии. В Асхове ветроколесо диаметром 22,85 м с четырьмя лопастями было установлено на стальной мачте высотой 24,38 м. Установка стала первым примером преобразования энергии ветра в электрическую энергию.

В США в 1920-1930-е годы активно разрабатывались ветроэлектрические агрегаты. Так, компания «Джекобс винд электрик» ввела в конструкцию своих ветроагрегатов два важных усовершенствования: трехлопастный винт, который позволил устранить вибрации, возникающие у двухлопастных винтов, и центробежный шариковый регулятор угла поворота лопастей, обеспечивающий переход их во флюгерное положение при больших скоростях ветра.

В Великобритании в 1920-е годы появился интерес к ветроэлектрическим установкам небольшой мощности. Были опубликованы результаты испытаний ветроагрегатов мощностью от 250 Вт до 10 кВт.

В СССР в 1931 г. был построен самый крупный в мире ветроагре-гат для получения электроэнергии. Установка мощностью 100 кВт использовалась как дополнительный источник энергии и была включена в сеть тепловой электростанции Севастополя. Ветроагрегат имел трехлопастное ветроколесо диаметром 30 м. Установка проработала 10 лет, подавая электроэнергию в Крымскую энергосистему, была разрушена во время войны в 1942 году.

Первый этап развития ветроэнергетики в нашей стране характеризуется в основном теоретическими исследованиями. Крупнейший русский ученый Н.Е.Жуковский и его ученики В.П.Ветчинкин, Г.Х.Сабинин, Г.Ф.Проскура и др. создали теоретические основы расчета ветродвигателей, положившие начало научному развитию ветротехники. В 1930-е годы созданы аэродинамические профили высокого качества для лопастей ветроколес, проводились испытания различных конструкций ветроагрегатов и установок, совершенствовались методы их расчета и проектирования.

В 1950-е годы с развитием электроэнергетики и в первую очередь сельской электрификации темпы развития ветроэнергетики замедлились. Однако с 1975 г. количество эксплуатируемых ветроустановок во многих странах вновь стало расти. Серийно начали выпускаться электрические ветроагрегаты в Великобритании, Германии, Дании, Канаде, СССР, США, Франции и других странах. На сегодняшний день в основном решены технические проблемы преобразования ветровой энергии и доказана возможность развития ветротехники как источника энергии.

В настоящее время более активно решаются проблемы ветроиспользования, определения энергоэкономических показателей ветроустановок, их проектирования и применения.

10.2 Основы теории использования энергии ветра

Воздушный поток, как и всякое движущееся тело, обладает кинетической энергией. Одним из видов использования кинетической энергии является превращение ее в механическую работу.

Кинетическая энергия Ев воздушного потока, имеющего скорость v, определяется по выражению

(10.1)

где m - масса движущегося воздушного потока;

(10.2)

где V - объем массы воздуха, протекающего за секунду через сечение F со скоростью v.

Количество энергии ветра, протекающего за 1 с через поперечное сечение:

(10.3)

Энергия ветра изменяется пропорционально кубу его скорости и поперечного сечения.

Отличительным свойством ветра является его повсеместность. Однако техническое использование энергии ветра во многих случаях крайне затруднено из-за низкой плотности воздуха (она в 800 раз меньше плотности воды). Для получения значительной мощности необходимо ветроколесо очень больших размеров, т.к. ветроагрегат может преобразовать только часть потенциальной энергии, определяемой коэффициентом использования энергии ветра x. При этом частота вращения ветроколеса должна регулироваться из-за непостоянства скорости ветра во времени и вырабатываемая мощность, изменяясь пропорционально третьей степени скорости ветра, будет иметь большую амплитуду колебаний.

Мощность, развиваемая ветроколесом

Мощность эта определяется как кинетическая энергия ветра, действующая в единицу времени, с учетом коэффициента ее использования:

, Вт (10.4)

где - коэффициент использования энергии ветра.

Поверхность, ометаемая крыльями ветроколеса:

,

где D - диаметр ветроколеса.

При плотности воздуха r=1,23 кг/м3 мощность, развиваемую ветроколесом, можно определить по выражению

, кВт (10.5)

мощность, развиваемая с единицы ометаемой площади:

, кВт/м2. (10.6)

Таким образом, мощность, развиваемая ветроколесом, определяется ометаемой площадью ветроколеса, скоростью ветра и величиной коэффициента использования энергии ветра.

10.3 Коэффициент использования энергии ветра

Ветроколесо преобразует в механическую энергию только часть полной энергии потока. Воздушный поток при прохождении через поперечное сечение, ометаемое ветроколесом

Скорость воздушного потока снижается по мере приближения его к ветроколесу и на некотором расстоянии за ним. По классической теории, полные потери скорости воздушного потока за ветроколесом в два раза больше, чем потери в плоскости вращения ветроколеса. Вместе с тем давление воздуха по мере приближения к ветроколесу повышается, а за ним оно резко падает, вследствие чего за колесом образуется некоторое разрежение. Энергия, затраченная на вращение ветроколеса, равна разности кинетической энергии ветра перед ветроколесом и за ним:

(10.7)

где v2 - скорость воздушного потока за ветроколесом.

С другой стороны, воспринятую ветроколесом энергию можно выразить как произведение силы давления ветра G на скорость потока в плоскости ветроколеса:

. (10.8)

Отношение энергии, воспринятой ветроколесом, к полной энергии, которой обладает воздушный поток, называется коэффициентом использования энергии ветра:

вкв. (10.9)

Коэффициент использования энергии ветра зависит от величины потери скорости ветра при прохождении его через плоскость ветроколеса. Согласно классической теории ветроколеса

(10.10)

Н.Е. Жуковский для идеального ветроколеса установил максимальную величину коэффициента использования энергии ветра x = 0,59 Этот предел может быть получен при условии:

,

т.е. идеальное ветроколесо должно работать так, чтобы потери скорости ветра в плоскости его вращения составляли 1/3 от поступающей величины.

В действительности max значительно меньше, и согласно теории реального ветроколеса, разработанной Г.Х.Сабининым, у лучших быстроходных ветроколес максимальная величина коэффициента max= 0,45…0,48, у тихоходных - 0,35…0,38. Данный коэффициент в основном зависит от аэродинамических характеристик ветроколеса.

10.4 Классификация ветроустановок

Ветроэнергетические установки классифицируются по двум основным признакам - геометрии ветроколеса и его положению относительно направления ветра.

В зависимости от геометрии ветроколеса ветроустановки бывают тихоходные и быстроходные. Геометрическое заполнение ветроколеса определяется числом лопастей. Тихоходные (многолопастные) ВЭУ с большим геометрическим заполнением ветроколеса развивают значительную мощность при слабом ветре и небольших оборотах. Быстроходные ВЭУ с малым заполнением ветроколеса развивают максимальную мощность при больших оборотах ветроколеса.

По направлению оси вращения ветроколеса относительно воздушного потока ВЭУ подразделяется на горизонтально-осевые и вертикально-осевые.

Ветроустановки с горизонтальной осью, как правило, крыльчатого или пропеллерного типа (рис. 7а). При этом плоскость вращения ветроколеса перпендикулярна направлению воздушного потока, а ось параллельна потоку. Основной вращающей силой является подъемная сила. Ветроколесо может располагаться перед опорной башней или за ней.

В ветроэлектрических установках обычно используется 2- или 3-лопастные ветроколеса, последние отличаются плавным ходом. Электрогенератор расположен обычно на верху опорной башни в поворотной головке. Многолопастные ветроколеса, развивающие большой крутящий момент при слабом ветре, используются для агрегатирования рабочих машин, не требующих высокой частоты вращения.

Ветроустановки с вертикальной осью вращения вследствие своей геометрии при любом направлении ветра находятся в рабочем положении, ось вращения ветроколеса перпендикулярна воздушному потоку. Вращающей силой является сила сопротивления, и линейная скорость ветроколеса меньше скорости ветра. В такой ветроэнергетической установке за счет удлинения вала генератор можно расположить внизу башни.

Принципиальными недостатками ветроустановок с вертикальной осью являются следующие:

а) коэффициент использования энергии ветра примерно в три раза меньше, чем у установок пропеллерного типа с горизонтальной осью. Наибольший коэффициент max = 0,192;

б) большая подверженность усталостным разрушениям из-за часто возникающих в них автоколебательных процессов;

в) пульсация крутящего момента, приводящая к нежелательным изменениям выходных параметров генератора.

Ветроагрегаты с горизонтальной осью более быстроходны, имеют меньшую относительную массу, снабжены устройствами, автоматически регулирующими развиваемую мощность, частоту вращения и ориентирующими ось вращения ветроколеса по направлению вектора скорости потока.

Ветроэнергетические установки в основном выполняются по горизонтально-осевой схеме и в дальнейшем будем рассматривать только данный вид устройства. По своему назначению и комплектации оборудования ветроустановки бывают специализированные, универсальные и ветроэлектрические.

Специализированные ветроустановки в свою очередь бывают водоподъемными, зарядными и др. Они пришли на смену ветроустановкам универсального назначения, т.е. с механическим приводом различных рабочих машин. При создании как механических (водоподъемные и т.п.), так и электрических ветроэнергетических агрегатов реализованы новые подходы и принципы. Для повышения быстроходности ветроколес разработаны системы автоматического регулирования частоты вращения и ограничения мощности.

10.5 Конструкции ветроустановок

Ветроагрегат с горизонтальной осью состоит из ветроколеса, головки, хвоста, башни и регулировочного механизма. Принципиальная схема ветроагрегата приведена на рисунке 10.1.

1 - редуктор; 2 - генератор; 3 - вертикальный вал

Рис. 10.1- Принципиальная схема ветроустановки универсального типа с горизонтальной осью вращения:

Ветроколесо преобразует энергию ветра в механическую работу и может иметь одну или несколько лопастей, устанавливаемых под некоторым углом к плоскости вращения. Крыло ветроколеса состоит из лопасти и маха, закрепленного на валу ветроколеса, как правило, перпендикулярно к оси вала.

Головка представляет собой опору, на которой монтируют вал ветроколеса и передаточный механизм. Форма головки зависит от системы передаточного механизма, сама головка может свободно поворачиваться вокруг вертикальной оси в опорах башни.

Хвост, закрепляемый позади головки, предназначен для установки ветроколеса на ветер и работает подобно флюгеру.

Башня служит для поднятия ветроколеса на высоту, на которой мало сказывается влияние препятствий, нарушающих прямолинейное движение воздушного потока. Высоту башни принимают в зависимости от диаметра ветроколеса и рельефа местности

Механизм регулирования служит для ограничения числа оборотов и крутящего момента ветроколеса, а также для остановки его при сильном ветре. Ветер постоянно изменяет свое направление, поэтому головка ветроагрегата должна поворачиваться так, чтобы ветроколесо все время стояло против ветра, т.е. плоскость вращения была перпендикулярна направлению ветра. Известно несколько способов автоматической установки ветроколеса.

Установка ветроколеса на ветер хвостом наиболее распространена для агрегатов малой мощности. Существенным недостатком является большая угловая скорость поворота головки относительно вертикальной оси.

Наименьшая угловая скорость получается при установки ветроколеса на ветер виндрозами. Виндрозами называют многолопастные ветряные колеса, устанавливаемые позади головки. Плоскость их вращения перпендикулярна плоскости вращения ветроколеса. Ветер набегает на виндрозы под некоторым углом и приводит их во вращение. От виндроз через специальные шестеренки вращение передается головке, которая, поворачиваясь, устанавливает ветроколесо на ветер. При этом виндрозы выходят из-под ветра и останавливаются.

Изменение скорости ветра приводит к изменению мощности, развиваемой ветроагрегатом. Так, при увеличении скорости ветра в три раза энергия потока возрастает в 27 раз и соответственно увеличивается мощность.

Для предохранения от перегрузок и ограничения в заданных пределах частоты вращения ветроколеса применяют систему автоматического регулирования. При скорости ветра выше расчетной ограничивают частоту вращения генератора и мощность ветроустановки. Независимо от способа основной принцип регулирования сводится к изменению подъемной силы на лопастях и момента аэродинамических сил на ветроколесе. Применяются два основных способа регулирования: изменение положения в потоке всего ветроколеса (выводом из-под ветра) - для тихоходных агрегатов и поворот лопастей на соответствующие углы атаки - для быстроходных. При этом используются силы: центробежные, аэродинамические или одновременно те и другие.

Для улучшения пусковых характеристик агрегата лопасти на период пуска и разгона автоматически поворачиваются на оптимальные углы, а при росте скорости ветра уменьшается угол атаки и соответственно подъемная сила.

10.6 Режимы работы и мощность ветроэлектрической установки

Ветроустановки в силу конструктивных особенностей не полностью используют потенциальную энергию ветра. Часть энергии теряется за счет инерции покоя ветроколеса, часть - за счет режима регулирования и часть - за счет вывода ветроколеса из-под ветра.

Утилизируемая энергия ветра зависит от трех основных параметров, называемых базовыми скоростями ветра. Первый параметр - минимальная скорость ветра (vmin), при которой ветроколесо начинает вращаться. Второй - расчетная скорость (vp), при которой ветроустановка выходит на расчетный режим и развивает номинальную мощность. Третий - максимальная скорость ветра (vmax), скорость выше максимальной становится критической для ветроустановки.

В диапазоне скоростей от минимальной до рабочей ветроустановка развивает тем большую мощность, чем больше скорость ветра. При скорости ветра vvр с помощью специального регулировочного устройства автоматически устанавливается постоянный режим вращения ветроколеса и вырабатываемой мощности. Если vvmax, ветровой напор на ветроустановку становится критическим и по условию механической прочности происходит ее отключение.

Мощность, вырабатываемая ветроустановкой, отличается от мощности, развиваемой ветроколесом, на величину потерь при преобразовании утилизируемой энергии ветра в полезную:

, кВт (10.11)

или с единицы ометаемой площади ветроустановки:

, кВт/м2 , (10.12)

где п - коэффициент полезного действия ВЭУ, учитывающий потери при передаче мощности от вала ветроколеса до рабочей машины.

Для ветроэлектрической установки

п = р· г,

где р, г - КПД редуктора и генератора соответственно.

Для наиболее совершенных конструкций двух- и трехлопастных ВЭУ можно принять = 0,4, суммарный КПД п = 0,8 и обозначить все постоянные составляющие коэффициентом = 2·10-4.

10.7 Методика выбора ветроэнергетических установок для энергоснабжения сельскохозяйственных потребителей

Для энергоснабжения технологических процессов ветроэнергетические установки выбираются по основным техническим характеристикам: мощности; диаметру ветроколеса; минимальной и расчетной скорости ветра и по наличию преобразующих (выпрямитель, инвертор) и аккумулирующих устройств.

Расчетная мощность ветроагрегата определяется диаметром ветроколеса, коэффициентом использования энергии ветра и расчетной скоростью ветра:

, кВт/м2

Если ветроагрегат работает без дублирующей установки и имеет аккумулирующее устройство, то мощность агрегата должна быть не меньше, чем расчетная нагрузка потребителя, определяемая из графика нагрузки. При этом может потребоваться несколько ветроустановок. При наличии дублирующего источника энергии мощность ветроустановки не должна быть меньше той мощности, которая требуется для обеспечения энергией основных потребителей или технологических процессов. Дублирующая установка по мощности должна обеспечивать питание энергией всей нагрузки в дни безветрия. Ясно, что предлагаемые варианты возможны, когда ветроустановка экономически выгодна.

При использовании ВЭС в составе энергосистемы необходимо обеспечивать работу ветроустановки в режиме постоянной частоты вращения, определяемой частотой сети. Выбор режима работы ветроколеса направлен на получение наибольшей выработки электрической энергии за определенный промежуток времени и соответственно наилучшего использования энергии ветра. По данным ветроустановки можно определить расчетную частоту вращения генератора, обеспечивающую максимальное значение коэффициента :

. (10.13)

с удельной ометаемой площади ветроустановки при расчетной или более высокой скорости ветра определяют по выражению

, (10.14)

где Т - число часов в расчетный период (месяц, сезон, год); t*p - повторяемость скоростей ветра, равных и больших расчетной, в относительных единицах.

Зная диаметр ветроколеса, несложно определить общее количество вырабатываемой энергии. При использовании нескольких однотипных ветроустановок ометаемую площадь увеличивают на количество установок.

ВЭУ можно эффективно применять для таких технологических процессов, которые не требуют постоянной частоты тока. При проектировании ВЭУ для этих целей решают следующие задачи:

1)определить количество вырабатываемой ВЭУ энергии в каждый отдельно взятый месяц при заданных ее параметрах;

2) определить количество ВЭУ, необходимых для удовлетворения потребности данного технологического процесса;

3) по энергоэкономическим показателям выбрать оптимальное количество ВЭУ.

Возможное количество вырабатываемой энергии зависит от ресурса энергии ветра и режима работы ВЭУ. Количество энергии с удельной ометаемой площади ВЭУ можно определить по выражению

, кВтч/м2, (10.15)

где tv - время работы ВЭУ при различных скоростях ветра в течение суток, месяца, сезона или года.

Время работы ВЭУ зависит от режима скорости ветра и определяется через повторяемость той или иной скорости ветра в течение месяца:

, ч , (10.16)

где Тi - число часов в i-м месяце; - относительная повторяемость скорости ветра в рассматриваемом месяце.

При определении количества вырабатываемой энергии необходимо учитывать и энергию, получаемую при скорости ветра, меньшей чем расчетная. Тогда согласно режиму работ ветроустановки количество энергии за месяц с удельной ометаемой площади установки

, МДж/м2 . (10.17)

При заданном диаметре ветроколеса вырабатываемая энергия

, МДж.

Вырабатываемая энергия за сезон или год

, МДж , (10.18)

где n - число месяцев работы ВЭУ.

По графику нагрузки, когда известно необходимое количество энергии, несложно определить потребное количество ВЭУ для каждого месяца. При этом для рассматриваемого сезона или года определенную трудность может составить выбор оптимального количества ВЭУ и потребуются сравнительные расчеты, с оценкой энергетических и экономических показателей каждого рассматриваемого варианта.

10.5 Расчет ветроустановки для горячего водоснабжения

Рассмотрим расчет ветроустановки для горячего водоснабжения сельскохозяйственного потребителя. гелиоустановки. Расчет ведется на примере ветроустановки АВЭУ6-4М, которые эксплуатируются на Южном Урале.

1). Определение количества вырабатываемой энергии

1.1). Выписываем необходимые технические данные ветроустановок: для АВЭУ6-4М

Рн = 4 кВт; D = 6,6 м; vmin = 4 м/с; vp = 9 м/c;

для ВТН8-8:

Рн = 8 кВт; D = 8,45 м; vmin = 4 м/с; vp = 9 м/c

1.2). Из приложения 1 выписываем данные о повторяемости скорости ветра в Кунашакском районе и заносим в табл.3.12. Обычно выписываются повторяемости скорости ветра начиная от v min. В нашем примере начнем с градации 2-3 м/с;

1.3). Определяем количество удельной вырабатываемой энергии для каждого месяца по выражению

Таблица 10.1-Повторяемости скорости ветра

Месяц

Градации скоростей ветра, м/с

4-5

6-7

8-9

Январь

0,27

0,13

0,06

Февраль

0,25

0,11

0,05

Март

0,22

0,08

0,03

Продолжение таблицы 10.1

Апрель

0,29

0,16

0,06

Май

0,27

0,13

0,05

Июнь

0,25

0,1

0,04

Июль

0,21

0,07

0,02

Август

0,2

0,07

0,02

Сентябрь

0,26

0,11

0,03

Октябрь

0,27

0,14

0,04

Ноябрь

0,28

0,12

0,05

Декабрь

0,28

0,13

0,04

,

где Т - число часов в месяце.

Например, в мае ожидаемая удельная выработка энергии от ветроустановки АВЭУ6-4М:

полная выработка:

.

От ветроустановки BTH8-8:

полная выработка:

.

Расчеты для остальных месяцев проводятся аналогично (табл.10.2).

Таблица 10.2

Месяц

ВЭУ

АВЭУ6-4М

ВТН8-8

Январь

8155

13000

Февраль

21000

33600

Март

6000

9500

Апрель

8800

14000

Май

8000

12900

Июнь

6700

10500

Июль

5500

8400

Август

5100

8120

Сентябрь

5000

8000

Октябрь

7500

12000

Ноябрь

8000

12500

Декабрь

8000

12600

2). Определение количества ветроустановок
для удовлетворения потребности в энергии.

2.1) Потребное количество энергии определяется из норм потребления горячей воды; данные принимаем из предыдущего раздела (табл.2.9).

2.2) Предварительно оценим обеспеченность потребной энергии от одной установки:

, % , (10.13)

где hэл - КПД электрического нагревателя (ТЭНы), принимается равным единице; Qп - потребное количество энергии.

В мае ветроустановка АВЭУ6-4М может обеспечить 63% потребной энергии, установка BTH8-8 -100%:

%

Для полного обеспечения потребителя необходимой энергией в январе можно предложить две установки АВЭУ6-4М или одну BTH8-8. Результаты расчетов для остальных месяцев приведены в табл.3.14.

Анализ полученных результатов показывает, что установка АВЭУ6-4М обеспечивает потребность в энергии в среднем на 65%, и для полного обеспечения в зависимости от месяца их потребуется две или три. Установка ВТН8-8 в среднем обеспечивает потребность в энергии на 100%. Таких установок требуется одна или две.

3) Определение энергетических показателей ВЭУ

Для этого определяются коэффициенты использования ВЭУ и обеспеченности потребителя необходимой энергией.

3.1) Коэффициент использования вырабатываемой энергии определяется для каждого месяца и рассматриваемого варианта. Например, в январе при использовании двух установок АВЭУ6-4М количество энергии WВЭУ = 8155·2 = 16310МДж. При потребной энергии Qп = 3180 МДж полезно используемая энергия согласно принимается равной потребной (Qпол = Qп), так как тепловая энергия получаемая от ВЭУ больше потребной энергии: .

Таблица 10.3-Определение количества ветроустановок

ВЭУ

Месяц

АВЭУ6-М

ВТН8-8

%

Кол-во

%

Кол-во

Январь

65

2

100

1

Февраль

100

1

100

1

Март

48

3

75

2

Апрель

70

2

100

1

Май

63

2

100

1

Июнь

53

2

83

2

Июль

44

3

66

2

Август

40

3

64

2

Сентябрь

39

3

63

2

Октябрь

60

2

95

2

Ноябрь

63

2

99

1

Декабрь

63

2

100

1

,

где -количество ветроустановок

При использовании одной ветроустановки АВЭУ6-М в январе месяце:

Коэффициент использования вырабатываемой энергии

, %

Результаты расчетов сведены в табл.3.14.

3.2) Коэффициент обеспеченности потребителя оцениваем также для каждого месяца в зависимости от вида и количества ВЭУ. Так, в мае при использовании одной и двух ветроустановок типа АВЭУ6-4М соответственно

, % (10.14)

Результаты расчетов для других месяцев заносим в табл.3.15.

Значит, для полного удовлетворения потребности в энергии нужны три ветроустановки типа АВЭУ6-4М или две установки BWC-3. Коэффициент их использования составляет 0,67 и 0,71.

Таблица 10.4-Энергетические показатели

Кол-во

Январь

Февраль

Март

Апрель

Май

Июнь

Кi

Ко

Кi

Ко

Кi

Ко

Кi

Ко

Кi

Ко

Кi

Ко

АВЭУ6-М

1

1

0.65

0.6

1

1

0.48

1

0.7

1

0.63

1

0.53

2

0.77

1

0.3

1

1

0.95

0.7

1

0.8

1

0.95

1

3

0.51

1

0.2

1

0.7

1

0.5

1

0.5

1

0.6

1

ВТН8-8

1

0.96

1

0.4

1

1

0.75

0.9

1

0.78

1

1

0.83

2

0.48

1

0.2

1

0.6

1

0.45

1

0.48

1

0.6

1

Кол-во

Июль

Август

Сентябрь

Октябрь

Ноябрь

Декабрь

Кi

Ко

Кi

Ко

Кi

Ко

Кi

Ко

Кi

Ко

Кi

Ко

АВЭУ6-М

1

1

0,44

1

0,4

1

0.39

1

0,6

1

0.63

1

0.63

2

1

0,9

1

0,8

1

0.78

0.84

1

0,78

1

0.78

1

3

0.76

1

0,8

1

0,85

1

0.56

1

0.5

1

0,5

1

ВТН8-8

1

1

1

0.4

0.64

1

0.63

1

0.95

1

0,99

1

1

2

0,5

1

0,77

1

0.8

1

0.52

1

0.51

1

0.5

1

Согласно режиму повторяемости скорости ветра (см. прилож.1) рабочий режим наступает с соответствующей вероятностью. Обеспеченность рабочей скорости ветра p(v), когда v > vmin, и средняя продолжительность работы ВЭУ (N дней) в течение месяца приведены в табл.10.5.

Таблица 10.5-Показатели за сезон

Количество

Ки

Ко

АВЭУ6-М

1

0,97

0,59

2

0,83

0,95

3

0,58

1

ВТН8-8

1

0,93

0,87

2

0,53

1

Значит, для полного удовлетворения потребности в энергии нужны две ветроустановки типа АВЭУ6-4М или одна установка ВНТ8-8.

4) Определение экономической эффективности ветроустановки

4.1) Рассчитываем количество полезно используемой энергии за сезон и количество сэкономленного топлива:

(10.15)

или

(10.16)

При использовании двух установок АВЭУ6-4М:

Результаты расчетов занесены в табл.10.6.

Таблица 10.6-Экономия топлива

АВЭУ6-М

Кол-во

Полезная энергия

Экономия топлива

1

89355

6,8

2

144000

11

3

262470

20

ВТН8-8

1

133000

10

2

146000

12

4.2) Оцениваем эффективность ветроустановки по энергетическим затратам и определяем срок окупаемости.

Энергозатраты на установку АВЭУ6-4М составляют 89355 МДж, на единицу площади, ометаемой ветроколесом - 1400 Мдж/м2.

Эффективность энергозатрат при использовании двух установок АВЭУ6-4М

;

срок окупаемости

лет

Результаты расчетов занесены в табл.10.7.

Таблица 10.7-Срок окупаемости по энергетическим показателям

Показатели

АВЭУ6-4М

ВТН8-8

1

2

3

1

2

Энергозатраты, МДж

48000

96000

144000

78471

157000

Полезная энергия, МДж

89355

144000

262470

133000

146000

Эффективность энергозатрат

1,7

1,5

1,8

1,7

0,9

Срок окупаемости, лет

0,5

0,6

0,5

0,6

1,1

Таким образом, расчет показывает, что наиболее эффективным является вариант с использованием двух установки типа АВЭУ6-4М. При этом потребитель обеспечивается энергией на 95%.

4.3) Оценка сравнительной эффективности ветроустановки по стоимостным показателям

Для каждого рассматриваемого варианта определяются годовые издержки и экономия органического топлива. Условие эффективного использования ветроустановки:

.

При использовании одной установки BHT8-8 годовые издержки составят 8400 рублей, если Куд=1500руб./м2 и а=0,05; выручка от экономии топлива - 6800 рублей, если Т=4000 руб./т у.т. Выбранная ветроустановка работает эффективно. Результаты расчета сведены в табл.3.19. Полученные данные показывают, что для рассматриваемого потребителя при принятых условиях выгодно отличается установка BWC-3. Сравнительная эффективность ее составляет 300 рублей, другие варианты энергоснабжения являются неэффективными.

Таблица 10.8-Экономический эффект

Варианты

Годовые издержки, руб.

Экономия топлива, руб.

Сравнительная эффективность, руб.

АВЭУ6-М

1

5100

8840

+3740

2

10200

14830

+4630

3

15300

26000

+10700

ВТН8-8

1

8400

6800

-1600

2

16800

15600

-1200

Себестоимость энергии от ветроустановки

СВЭУ = ИВЭУ /Qпол = 10200 /144000 = 0,14 руб./МДж = 0,5 руб./кВт·ч.

При изменении первоначальных условий, т.е. удельных капиталовложений, стоимости топлива следует ожидать изменения сравнительной эффективности и себестоимости вырабатываемой энергии. Однако ясно, что вариант использования ветроустановки BWC-3 предпочтительнее, чем АВЭУ-6-4М.

Оценка экономической эффективности ВЭУ по энергозатратам и стоимостным показателям также говорит в пользу ветроустановки BHT8-8, причем вырабатываемая электроэнергия должна идти только на нагрев воды.

10.6 Выводы по использованию ветроустановки

Использование ветроустановки для нагрева горячей воды на Агрофирме «Гарант» Кунашакского района даёт не только экономический эффект, но и позволяет сохранять окружающею среду, что в настоящее время очень актуально.

Использование ветроустановок это один из наиболее прогрессивных способов экономии энергоресурсов, а в связи с постоянным ростом цен использование неиссякаемых источников энергии становится перспективным направлением в развития не только отдельного предприятия, но и экономики в целом.

11. БЕЗОПАСНОСТЬ ТРУДА

Задачей раздела “Безопасность труда “ в дипломном проекте является разработка организационных и технических решений, которые создают безопасные условия труда на проектируемом объекте. Выполнение норм и правил по безопасности труда обеспечивает необходимую электробезопасность пожаробезопасность и взрывобезопасность электроустановок, комфортную среду на рабочих местах операторов, ведущих производственный процесс и работников, обслуживающих производственные установки.


Подобные документы

  • Принципы построения систем электроснабжения городов. Расчет электрических нагрузок микрорайона, напряжение системы электроснабжения. Выбор схемы, расчет релейной защиты трансформаторов подстанций.Разработка мероприятий по экономии электроэнергии.

    курсовая работа [178,1 K], добавлен 31.05.2019

  • Категория надежности электроснабжения и выбор схемы электроснабжения. Расчет электрических нагрузок и компенсирующего устройства. Выбор числа и мощности трансформаторов. Расчет питающих линий высокого напряжения. Техника безопасности при монтаже проводок.

    курсовая работа [2,0 M], добавлен 27.11.2009

  • Определение электрических нагрузок, выбор цеховых трансформаторов и компенсации реактивной мощности. Выбор условного центра электрических нагрузок предприятия, разработка схемы электроснабжения на напряжение выше 1 кВ. Расчет токов короткого замыкания.

    курсовая работа [304,6 K], добавлен 23.03.2013

  • Определение электрических нагрузок предприятия. Выбор цеховых трансформаторов и расчет компенсации реактивной мощности. Разработка схемы электроснабжения предприятия и расчет распределительной сети напряжением выше 1 кВ. Расчет токов короткого замыкания.

    дипломная работа [2,4 M], добавлен 21.11.2016

  • Технико-экономический расчет схемы электроснабжения металлургического завода. Величина годовых электрических и тепловых нагрузок. Расчет параметров, выбор основного оборудования. Определение режимов работы ТЭЦ и их анализ. Расчет себестоимости энергии.

    курсовая работа [1,3 M], добавлен 03.01.2015

  • Характеристика потребителей и определения категории. Расчет электрических нагрузок. Выбор схемы электроснабжения. Расчет и выбор трансформаторов. Компенсация реактивной мощности. Расчет токов короткого замыкания. Выбор и расчет электрических сетей.

    курсовая работа [537,7 K], добавлен 02.04.2011

  • Краткая характеристика электроснабжения и электрооборудования автоматизированного цеха. Расчет электрических нагрузок. Категория надежности и выбор схемы электроснабжения. Расчёт и выбор компенсирующего устройства. Выбор числа и мощности трансформаторов.

    курсовая работа [177,2 K], добавлен 25.05.2013

  • Разработка принципиальной схемы электроснабжения микрорайона города. Расчет электрических нагрузок. Определение числа, мощности и мест расположения трансформаторов. Расчет токов короткого замыкания и релейной защиты. Выбор коммутационной аппаратуры.

    дипломная работа [1,2 M], добавлен 15.02.2017

  • Расчет электрических нагрузок. Выбор схемы электроснабжения и напряжения. Расчет и выбор мощности трансформаторов. Расчет токов короткого замыкания. Релейная защита силового трансформатора. Расчет защитного заземления. Перенапряжения и молниезащита.

    дипломная работа [458,3 K], добавлен 20.02.2015

  • Расчет электрических нагрузок. Выбор числа и мощности цеховых трансформаторных подстанций. Разработка системы внутризаводского электроснабжения. Расчет электрических нагрузок на головных участках магистралей. Выбор измерительных трансформаторов.

    курсовая работа [1,4 M], добавлен 29.09.2009

Работы в архивах красиво оформлены согласно требованиям ВУЗов и содержат рисунки, диаграммы, формулы и т.д.
PPT, PPTX и PDF-файлы представлены только в архивах.
Рекомендуем скачать работу.