Передача электроэнергии на расстояния

Характеристика электрического тока от его получения до поставки потребителю. Новые виды генераторов и трансформаторов. Анализ физико-механических процессов производства стали в электропечах. Генерирование электрической энергии. Линии электропередачи.

Рубрика Физика и энергетика
Вид реферат
Язык русский
Дата добавления 22.12.2012
Размер файла 2,6 M

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

Бадья представляет собой стальной цилиндр, диаметр которого меньше диаметра рабочего пространства печи. Снизу цилиндра имеются подвижные гибкие сектора, концы которых стягиваются через кольца тросом. Взвешивание и загрузка шихты производятся на шихтовом дворе электросталеплавильного цеха. Бадья на тележке подается в цех, поднимается краном и опускается в печь.

При помощи вспомогательного подъема крана трос выдергивают из проушин секторов и при подъеме бадьи сектора раскрываются, и шихта вываливается в печь в том порядке, в каком она была уложена в бадье. При использовании в качестве шихты металлизованных окатышей загрузка может производиться непрерывно по трубопроводу, который проходит в отверстие в своде печи. Во время плавления электроды прорезают в шихте три колодца, на дне которых накапливается жидкий металл. Для ускорения расплавления печи оборудуются поворотным устройством, которое поворачивает корпус в одну и другую сторону на угол в 80°. При этом электроды прорезают в шихте уже девять колодцев. Для поворота корпуса приподнимают свод, поднимают электроды выше уровня шихты и поворачивают корпус при помощи зубчатого венца, прикрепленного к корпусу, и шестерен. Корпус печи опирается на ролики.

Очистка отходящих газов.

Современные крупные сталеплавильные дуговые печи во время работы выделяют в атмосферу большое количество запыленных газов. Применение кислорода и порошкообразных материалов еще более способствует этому.

Содержание пыли в газах электродуговых печей достигает 10 г/м^3 и значительно превышает норму. Для улавливания пыли производят отсос газов из рабочего пространства печей мощным вентилятором. Для этого в своде печи делают четвертое отверстие с патрубком для газоотсоса. Патрубок через зазор, позволяющий наклонять или вращать печь, подходит к стационарному трубопроводу. По пути газы разбавляются воздухом, необходимым для дожигания СО. Затем газы охлаждаются водяными форсунками в теплообменнике и направляются в систему труб Вентури, в которых пыль задерживается в результате увлажнения. Применяют также тканевые фильтры, дезинтеграторы и электрофильтры. Используют системы газоочистки, включающие полностью весь электросталеплавильный цех, с установкой зонтов дымоотсоса под крышей цеха над электропечами.

Футеровка печей.

Большинство дуговых печей имеет основную футеровку, состоящую из материалов на основе MgO. Футеровка печи создает ванну для металла и играет роль теплоизолирующего слоя, уменьшающего потери тепла. Основные части футеровки - подина печи, стены, свод. Температура в зоне электрических дуг достигает нескольких тысяч градусов. Хотя футеровка электропечи отделена от дуг, она все же должна выдерживать нагрев до температуры 1700°С. В связи с этим применяемые для футеровки материалы должны обладать высокой огнеупорностью, механической прочностью, термо- и химической устойчивостью. Подину сталеплавильной печи набирают в следующем порядке. На стальной кожух укладывают листовой асбест, на асбест--слой шамотного порошка, два слоя шамотного кирпича и основной слой из магнезитового кирпича. На магнезитовой кирпичной подине набивают рабочий слой из магнезитового порошка со смолой и пеком -- продуктом нефтепереработки. Толщина набивного слоя составляет 200 мм. Общая толщина подины равна примерно глубине ванны и может достигать 1 м для крупных печей. Стены печи выкладывают после соответствующей прокладки асбеста и шамотного кирпича из крупноразмерного безобжигового магнезитохромитового кирпича длиной до 430 мм. Кладка стен может выполняться из кирпичей в железных кассетах, которые обеспечивают сваривание кирпичей в один монолитный блок. Стойкость стен достигает 100--150 плавок. Стойкость подины составляет один-два года. В трудных условиях работает футеровка свода печи. Она выдерживает большие тепловые нагрузки от горящих дуг и тепла, отражаемого шлаком. Своды крупных печей набирают из магнезитохромитового кирпича. При наборе свода используют нормальный и фасонный кирпич. В поперечном сечении свод имеет форму арки, что обеспечивает плотное сцепление кирпичей между собой. Стойкость свода составляет 50 - 100 плавок. Она зависит от электрического режима плавки, от длительности пребывания в печи жидкого металла, состава выплавляемых стали, шлака. В настоящее время широкое распространение получают водоохлаждаемые своды и стеновые панели. Эти элементы облегчают службу футеровки.

Ток в плавильное пространство печи подается через электроды, собранные из секций, каждая из которых представляет собой круглую заготовку диаметром от 100 до 610 мм и длиной до 1500 мм. В малых электропечах используют угольные электроды, в крупных - графитированные. Графитированные электроды изготавливают из малозольных углеродистых материалов: нефтяного кокса, смолы, пека. Электродную массу смешивают и прессуют, после чего сырая заготовка обжигается в газовых печах при 1300 градусах и подвергается дополнительному графитирующему обжигу при температуре 2600 - 2800 градусах в электрических печах сопротивления. В процессе эксплуатации в результате окисления печными газами и распыления при горении дуги электроды сгорают.

По мере укорачивания электрод опускают в печь. При этом электрододержатель приближается к своду. Наступает момент, когда электрод становится настолько коротким, что не может поддерживать дугу, и его необходимо наращивать. Для наращивания электродов в концах секций сделаны отверстия с резьбой, куда ввинчивается переходник-ниппель, при помощи которого соединяются отдельные секции. Расход электродов составляет 5--9 кг на тонну выплавляемой стали.

Электрическая дуга--один из видов электрического разряда, при котором ток проходит через ионизированные газы, пары металлов. При кратковременном сближении электродов с шихтой или друг с другом возникает короткое замыкание.

Идет ток большой силы. Концы электродов раскаляются добела. При раздвигании электродов между ними возникает электрическая дуга. С раскаленного катода происходит термоэлектронная эмиссия электронов, которые, направляясь к аноду, сталкиваются с нейтральными молекулами газа и ионизируют их. Отрицательные ионы направляются к аноду, положительные к катоду. Пространство между анодом и катодом становится ионизированным, токопроводящим. Бомбардировка анода электронами и ионами вызывает сильный его разогрев. Температура анода может достигать 4000 градусов. Дуга может гореть на постоянном и на переменном токе. Электродуговые печи работают на переменном токе. В последнее время в ФРГ построена электродуговая печь на постоянном токе.

В первую половину периода, когда катодом является электрод, дуга горит. При перемене полярности, когда катодом становится шихта -- металл, дуга гаснет, так как в начальный период плавки металл еще не нагрет и его температура недостаточна для эмиссии электронов. Поэтому в начальный период плавки дуга горит неспокойно, прерывисто. После того как ванна покрывается слоем шлака, дуга стабилизируется и горит более ровно.

Электрооборудование.

Электроды служат для подвода тока в рабочее пространство печи и образования электрической дуги. Электроды могут быть угольные и графитированные. В электросталеплавильном производстве применяют главным образом графи-тированные электроды. Угольные электроды обычно используются на малых печах.

Электрооборудование дуговых печей включает в себя оборудование цепи главного тока, контрольно-измерительную, защитную и сигнальную аппаратуру, а также автоматический регулятор механизма перемещения электродов, электрические приводы механизмов печи и установку электромагнитного перемешивания металла.

Рабочее напряжение электродуговых печей составляет 100 - 800 В, а сила тока измеряется десятками тысяч ампер. Мощность отдельной установки может достигать 50 - 140 МВ*А. К подстанции электросталеплавильного цеха подают ток напряжением до 110 кВ. Высоким напряжением питаются первичные обмотки печных трансформаторов. В электрическое оборудование дуговой печи входят следующие приборы:

1. Воздушный разъединитель, предназначен для отключения всей электропечной установки от линии высокого напряжения во время плавки. Разъединитель не предназначен для включений и отключений тока, поэтому пользование им возможно только при поднятых электродах и отсутствии дуг. Конструктивно разъединитель представляет собой трёхфазный выключатель рубящего типа.

2. Главный автоматический выключатель, служит для отключения под нагрузкой электрической цепи, по которой протекает ток высокого напряжения. При неплотной укладке шихты в печи в начале плавки, когда шихта еще холодная, дуги горят неустойчиво, происходят обвалы шихты и возникают короткие замыкания между электродами. При этом сила тока резко возрастает. Это приводит к большим перегрузкам трансформатора, который может выйти из строя. Когда сила тока превысит установленный предел, выключатель автоматически отключает установку, для чего имеется реле максимальной силы тока.

3. Печной трансформатор необходим для преобразования высокого напряжения в низкое (с 6--10 кВ до 100--800 В). Обмотки высокого и низкого напряжения и магнитопроводы, на которых они помещены, располагаются в баке с маслом, служащим для охлаждения обмоток. Охлаждение создается принудительным перекачиванием масла из трансформаторного кожуха в бак теплообменника, в котором масло охлаждается водой. Трансформатор устанавливают рядом с электропечью в специальном помещении. Он имеет устройство, позволяющее переключать обмотки по ступеням и таким образом ступенчато регулировать подаваемое в печь напряжение. Так, например, трансформатор для 200-т отечественной печи мощностью 65 МВ*А имеет 23 ступени напряжения, которые переключаются под нагрузкой, без отключения печи.

Участок электрической сети от трансформатора до электродов называется короткой сетью. Выходящие из стены трансформаторной подстанции фидеры при помощи гибких, водоохлаждаемых кабелей подают напряжение на электрододержатель. Длина гибкого участка должна позволять производить нужный наклон печи и отворачивать свод для загрузки. Гибкие кабели соединяются с медными водоохлаждаемыми шинами, установленными на рукавах электрододержателей. Трубошины непосредственно присоединены к головке электрододержателя, зажимающей электрод. Помимо указанных основных узлов электрической сети в нее входит различная измерительная аппаратура, подсоединяемая к линиям тока через трансформаторы тока или напряжения, а также приборы автоматического регулирования процесса плавки.

Автоматическое регулирование.

По ходу плавки в электродуговую печь требуется подавать различное количество энергии. Менять подачу мощности можно изменением напряжения или силы тока дуги. Регулирование напряжения производится переключением обмоток трансформатора. Регулирование силы тока осуществляется изменением расстояния между электродом и шихтой путем подъема или опускания электродов. При этом напряжение дуги не изменяется. Опускание или подъем электродов производятся автоматически при помощи автоматических регуляторов, установленных на каждой фазе печи. В современных печах заданная программа электрического режима может быть установлена на весь период плавки.

Устройство для электромагнитного перемешивания металла.

Для перемешивания металла в крупных дуговых печах, для ускорения и облегчения проведения технологических операций скачивания шлака под днищем печи в коробке устанавливается электрическая обмотка, которая охлаждается водой или сжатым воздухом. Обмотки статора питаются от двухфазного генератора током низкой частоты, что создает бегущее магнитное поле, которое захватывает ванну жидкого металла и вызывает движение нижних слоев металла вдоль подины печи в направлении движения поля. Верхние слои металла вместе с прилегающим к нему шлаком движутся в обратную сторону. Таким образом можно направить движение либо в сторону рабочего окна, что будет облегчать выход шлака из печи, либо в сторону сливного отверстия, что будет благоприятствовать равномерному распределению легирующих и раскислителей и усреднению состава металла и его температуры. Этот метод в последнее время имеет ограниченное применение, так как в сверхмощных печах металл активно перемешивается дугами. Плавка стали в основной дуговой электропечи.

Сырые материалы.

Основным материалом для электроплавки является стальной лом. Лом не должен быть сильно окисленным, так как наличие большого количества ржавчины вносит в сталь значительное количество водорода. В зависимости от химического состава лом необходимо рассортировать на соответствующие группы. Основное количество лома, предназначенное для плавки в электропечах, должно быть компактным и тяжеловесным. При малой насыпной массе лома вся порция для плавки не помещается в печь. Приходится прерывать процесс плавки и подгружать шихту. Это увеличивает продолжительность плавки, приводит к повышенному расходу электроэнергии, снижает производительность электропечей. В последнее время в электропечах используют металлизованные окатыши, полученные методом прямого восстановления. Достоинством этого вида сырья, содержащего 85-93 % железа, является то, что оно не загрязнено медью и другими примесями. Окатыши целесообразно применять для выплавки высокопрочных конструкционных легированных сталей, электротехнических, шарикоподшипниковых сталей.

Легированные отходы образуются в электросталеплавильном цехе в виде недолитых слитков, литников; в обдирочном отделении в виде стружки, в прокатных цехах в виде обрези и брака и т, д.; кроме того, много легированного лома поступает от машиностроительных заводов. Использование легированных металлоотходов позволяет экономить ценные легирующие, повышает экономическую эффективность электроплавок. Мягкое железо специально выплавляют в мартеновских печах и конвертерах и применяют для регулирования содержания углерода в процессе электроплавки.

4.2 Характерные приёмники электрической энергии

К этой группе приемников относятся компрессоры, вентиляторы, насосы и подъемно-транспортные устройства. Двигатели компрессоров, вентиляторов и насосов работают примерно в одинаковом режиме и в зависимости от мощности снабжаются электрической энергией па напряжении от 0,22 до 10 кВ. Мощность таких установок изменяется в очень широком диапазоне от долей единицы до тысяч киловатт. Питание двигателей производится током промышленной частоты 50 Гц. Характер нагрузки, как правило, ровный, особенно для мощных установок. Перерыв в электроснабжении чаще всего недопустим и может повлечь за собой опасность для жизни людей, серьезное нарушение технологического процесса или повреждение оборудования. Например, прекращение подачи сжатого воздуха на машиностроительном заводе, где режущий инструмент крепится при помощи пневматических устройств, может вызвать ранения обслуживающего персонала. Прекращение электроснабжения насосной станции на металлургическом заводе может вывести из строя такую ответственную установку, как доменная печь, и причинить крупные убытки. Последствия отключения насосных установок во время пожара не нуждаются в пояснениях. В ряде цехов прекращение питания двигателей вентиляторов может вызвать массовые отравления работающего персонала. Таких примеров можно привести большое количество. В указанных случаях установки следует относить к потребителям 1-й категории.

Потребители рассматриваемой группы создают нагрузку равномерную и симметричную по всем трем фазам. Толчки нагрузки имеют место только при пуске. Коэффициент мощности достаточно стабилен и обычно имеет значение 0,8-0,85. Для электропривода крупных насосов, компрессоров и вентиляторов чаще всего применяют синхронные двигатели, работающие с опережающим коэффициентом мощности.

Подъемно-транспортные устройства работают в повторно-кратковременном режиме. Для этих устройств характерны частые толчки нагрузки. в связи с резкими изменениями нагрузки коэффициент мощности также изменяется в значительных пределах, в среднем от 0,3 до 0,8. По бесперебойности питания эти устройства должны быть отнесены (в зависимости от места работы и установки) к потребителям 1-й и 2-й категорий. В подъемно-транспортных устройствах применяется как переменный (50 Гц), так и постоянный ток. В большинстве случаев нагрузку от подъемно-транспортных устройств на стороне переменного тока следует считать симметричной по всем трем фазам.

Электрические осветительные установки

Электрические светильники представляют собой однофазную нагрузку, однако благодаря незначительной мощности приемника (обычно не более 2 кВт) в электрической сети при правильной группировке осветительных приборов можно достичь достаточно равномерной нагрузки по фазам (с не симметрией не более 5-10%).

Характер нагрузки равномерный, без толчков, но ее значение изменяется в зависимости от времени суток, года и географического положения. Частота тока общепромышленная, равная 50 Гц. Коэффициент мощности для ламп накаливания равен 1, для газоразрядных ламп 0,6. Следует иметь в виду, что в проводах, особенно нулевых, при применении газоразрядных ламп появляются высшие гармоники тока.

Кратковременные (несколько секунд) аварийные перерывы в питании осветительных установок допустимы. Продолжительные перерывы (минуты и часы) в питании для некоторых видов производства недопустимы. В таких случаях применяется резервирование питания от второго источника тока (в некоторых случаях даже от независимого источника постоянного тока). В тех производствах, где отключение освещения угрожает безопасности людей, применяются специальные системы аварийного освещения. Для осветительных установок промышленных предприятий применяются напряжения от 6 до 220 В.

Преобразовательные установки

Для преобразования трехфазного тока в постоянный или трехфазного тока промышленной частоты 50 Гц в трехфазный или однофазный ток пониженной, повышенной или высокой частоты на территории промышленного предприятия сооружаются преобразовательные остановки.

В зависимости от типа преобразователей тока преобразовательные остановки делятся на:

1) полупроводниковые преобразовательные установки;

2) преобразовательные установки с ртутными выпрямителями;

3) преобразовательные установки с двигателями-генераторами,

4) преобразовательные остановки с механическими выпрямителями.

По своему назначению преобразовательные установки сложат для питания

1) двигателей ряда машин и механизмов;

2) электролизных ванн;

3) внутризаводского электрического транспорта;

4) электрофильтров;

5) сварочных установок постоянного тока и др.

Преобразовательные установки для целей электролиза широко применяются в цветной металлургии для получения электролитических алюминия, свинца, меди и пр. В таких установках ток промышленной частоты напряжением 6-35 кВ, как правило, при помощи кремниевых выпрямителей преобразуется в постоянный ток необходимого по технологическим условиям напряжения (до 825 В).

Перерыв в питании электролизных установок не приводит к тяжелым авариям с повреждением основного оборудования и может быть допущен на несколько минут, а в некоторых случаях на несколько часов Здесь перерыв питания связан в основном с недовыпуском продукции. Однако вследствие обратной э.д.с. электролизных ванн в некоторых случаях могут иметь место перемещения выделившихся металлов обратно в раствор ванны и, следовательно, дополнительная затрата электроэнергии на новое выделение этого же металла Электролизные установки должны снабжаться электрической энергией, как приемники 1-й категории, но допускающие кратковременные перерывы в питании Режим работы электролизных установок дает достаточно равномерный и симметричный по фазам график нагрузки Коэффициент мощности электролизных установок равен примерно 0,85-0,9 Особенностью электролизного процесса является необходимость поддержания постоянства выпрямленною тока, и в связи с этим возникает необходимость регулирования напряжения со стороны переменного тока.

Преобразовательные установки для внутрипромышленного электрического транспорта (откатка, подъем, различные виды перемещения грузов и т.п. ) по мощности относительно невелики (от сотен до 2000-3000 кВт). Коэффициент мощности таких установок колеблется в пределах 0,7-0,8. Нагрузка на стороне переменного тока симметрична по фазам, но резко изменяется за счет пиков тока при работе тяговых электродвигателей Перерыв в питании приемников этой группы может повлечь за собой порчу продукции и даже оборудования (особенно на металлургических заводах). Прекращение работы транспорта вообще вызывает серьезные осложнения в работе предприятия, и поэтому эта группа потребителей должна снабжаться электроэнергией, как приемники 1-й или 2-й категории, допускающие кратковременный перерыв в питании Питание этих установок производится переменным током промышленной частоты напряжением 0,4-35 кВ.

Преобразовательные установки для питания электрофильтров (с механическими выпрямителями) до 100-200 кВт имеют широкое применение для очистки газов Питаются эти установки переменные током промышленной частоты от специальных трансформаторов, имеющих на первичной обмотке напряжение 6-10 кВ, а на вторичной до 110 кВ Коэффициент мощности этих установок равен 0,7-0,8. Нагрузка на стороне высокого напряжения симметрична и равномерна Перерывы в питании допустимы, длительность их зависит от технологического процесса производства В таких производствах, как химические заводы, эти установки могут быть отнесены к приемникам 1-й и 2-й категорий.

Электродвигатели производственных механизмов

Этот вид приемников встречается на всех промышленных предприятиях Для электропривода современных станков применяются все виды двигателей. Мощность двигателей чрезвычайно разнообразна л изменяется от долей до сотен киловатт и больше В станках, где требуются высокие частоты вращения и регулирование ее, применяются двигатели постоянного тока, питающиеся от выпрямительных установок. Напряжение сети 660-380/220 В с частотой 50 Гц Коэффициент мощности колеблется в широких пределах в зависимости от технологического процесса По надежности электроснабжения эта группа приемников относится, как правило, ко 2-й категории Однако имеется ряд станков, где перерыв в питании недопустим по условиям техники безопасности (возможны травмы обслуживающего персонала) и по причине возможной порчи изделий, особенно при обработке крупных дорогостоящих деталей.

Электрические печи и электротермические установки

По способу превращения электрической энергии в тепловую можно разделить на:

1) печи сопротивления;

2) индукционные печи и установки;

3) дуговые электрические печи;

4) печи со смешанным нагревом.

Печи сопротивления по способу нагрева подразделяются на печи косвенного действия и печи прямого действия. Нагрев материала в печах косвенного действия происходит за счет тепла, выделяемого нагревательными элементами при прохождении по ним электрического тока. Печи косвенного нагрева являются установками напряжением до 1000 В и питаются в большинстве случаев от сетей 380 В промышленной частоты 50 Гц. Печи выпускаются одно- и трехфазными мощностью от единиц до нескольких тысяч киловатт. Коэффициент мощности в большинстве случаев равен 1.

В печах прямого действия нагрев осуществляется теплом, выделяемым в нагреваемом изделии при прохождении по нему электрического тока. Печи выполняются одно- и трехфазными мощностью до 3000 кВт; питание осуществляется током промышленной частоты 50 Гц от сетей 380/220 В или через понижающие трансформаторы от сетей более высокого напряжения. Коэффициент мощности лежит в интервале от 0,7 до 0,9 Большинство печей сопротивления в отношении бесперебойности электроснабжения относится к приемникам электрической энергии 2-й категории.

Печи и установки индукционного и диэлектрического нагрева подразделяются на плавильные печи и установки для закалки и сквозного нагрева диэлектриков

Расплавление металла в инерционных печах осуществляется теплом, возникающим в нем при прохождении индукционного тока.

Плавильные печи изготовляются со стальным сердечником и без него. Печи с сердечником применяются для плавления цветных металлов и их сплавов. Питание печей осуществляется током промышленной частоты 50 Гц напряжением 380 В и выше в зависимости от мощности. Печи с сердечником выпускаются одно-, двух- и трехфазными мощностью до 2000 кВА. Коэффициент мощности колеблется в пределах 0,2-0,8 (печи для плавки алюминия имеют cos(?) = 0,2 - 0,4, для плавки меди 0,6-0,8). Печи без сердечника применяются для выплавки высококачественной стали и реже - цветных металлов. Питание промышленных печей без сердечника может быть осуществлено током промышленной частоты 50 Гц от сетей напряжением 380 В и выше и током повышенной частоты 500-10 000 Гц от тиристорных или электромашинных преобразователей. Приводные двигатели преобразователей питаются током промышленной частоты.

Печи выпускаются мощностью до 4500 кВА, коэффициент мощности их очень низок: от 0,05 то 0,25. Все плавильные печи относятся к приемникам электрической энергии 2-й категории. Установки для закалки и сквозного нагрева в зависимости от назначения питаются при частотах от 50 Гц до сотен килогерц.

Питание установок повышенной и высокой частоты производится соответственно от тиристорных или машинных преобразователей индукторного типа и ламповых генераторов. Эти установки относятся к приемникам электрической энергии 2-й категории.

В установках для нагрева диэлектриков нагреваемый материал помещается в электрическое поле конденсатора и нагрев происходит за счет токов смещения. Эта группа установок широко применяется для клейки и сушки древесины, нагрева пресс порошков, пайки и сварки пластиков, стерилизации продуктов и т. п. Питание осуществляется током с частотой 20-40 МГц и выше. В отношении бесперебойности электроснабжения установки для нагрева диэлектриков относятся к приемникам электрической энергии 2-й категории.

Дуговые электрические печи по способу нагрева разделяются на печи прямого и косвенного действия. В печах прямого действия нагрев и расплавление металла осуществляются теплом, выделяемым электрической дугой, горящей между электродом и расплавляемым металлом. Дуговые печи прямого действия подразделяются на ряд типов, характерными из которых являются сталеплавильные и вакуумные.

Сталеплавильные печи питаются током промышленной частоты напряжением 6-110 В через понижающие трансформаторы. Печи выпускаются трехфазными мощностью до 45000 кВА в единице. Коэффициент мощности 0,85-0,9. В процессе работы в период расплавления шихты в дуговых сталеплавильных печах происходят частые эксплуатационные короткие замыкания (К.З.) Ток эксплуатационного К.З. превышает номинальный в 2,5-3,5 раза. Короткие замыкания вызывают снижение напряжения на шинах подстанции, что отрицательно сказывается на работе других приемников электрической энергии. В связи с этим совместная работа дуговых печей и других потребителей от общей подстанции допустима в том случае, если при питании от мощной энергосистемы суммарная мощность печей не превышает 40% мощности понизительной подстанции, а при питании от маломощной системы 15-20%

Вакуумные дуговые печи выполняются мощностью до 2000 кВт. Питание осуществляется постоянным током напряжением 30-40 В. В качестве источников электрической энергии применяются электромашинные преобразователи и полупроводниковые выпрямители, включаемые в сеть переменного тока 50 Гц.

Нагрев металла в печах косвенного действия осуществляется теплом, выделяемым электрической дугой, горящей между *угольными электродами Дуговые печи косвенного нагрева кашли применение для выплавки меди и ее сплавов. Мощность печей сравнительно невелика (до 500 кВА); питание производится током промышленной частоты 50 Гц от специальных печных трансформаторов. В отношении бесперебойности электроснабжения эти печи относятся к приемникам электрической энергии 1-й категории, допускающим кратковременные перерывы в питании.

Электрические печи со смешанным нагревом можно разделить на рудотермические и печи электрошлакового переплава.

В рудотермических печах материал нагревается теплом, которое выделяется при прохождении электрического тока по шихте и горении дуги. Печи применяются для получения ферросплавов, корунда, выплавки чугуна, свинца, возгонки фосфора, выплавки медного и медно-никелевого штейна. Питание осуществляется током промышленной частоты через понижающие трансформаторы. Мощность некоторых печей очень велика, до 100 МВА (печь для возгонки желтого фосфора). Коэффициент мощности 0,85-0,92. В отношении бесперебойности электроснабжения печи для рудотермических процессов относятся к приемникам электрической энергии 2-й категории.

В печах электрошлакового переплава нагрев осуществляется за счет тепла, выделяющегося в шлаке при прохождении по нему тока. Расплавление шлака производится теплом электрической дуги. Электрошлаковый переплав применяется для получения высококачественных сталей и специальных сплавов. Питание печей осуществляется током промышленной частоты 50 Гц через понижающие трансформаторы, обычно от сетей 6-10 кВ со вторичным напряжением 45-60 В. Печи выполняются, как правило, однофазными, но могут быть и трехфазными. Коэффициент мощности 0,85-0,95. В отношении надежности электроснабжения печи электрошлакового переплава относятся к приемникам электрической энергии 1-й категории.

При электроснабжении цехов, имеющих вакуумные электрические печи всех типов, необходимо учитывать, что перерыв в питании вакуумных насосов приводит к аварии и браку дорогостоящей продукции. Эти печи следует отнести к приемникам электрической энергии 1-й категории.

Электросварочные установки

Как приемники делятся на установки, работающие на переменном и постоянном токе. Технологически сварка делится на дуговую и контактную, по способу производства работ - на ручную и автоматическую.

Электросварочные агрегаты постоянного тока состоят из двигателя переменного тока и сварочного генератора постоянного тока. При такой системе сварочная нагрузка распределяется по трем фазам в питающей сети переменного тока равномерно, но график ее остается переменным. Коэффициент мощности таких установок при номинальном режиме работы составляет 0,7-0,8; при холостом ходе коэффициент мощности снижается до 0,4. Среди сварочных агрегатов постоянного тока имеются и выпрямительные установки.

Электросварочные установки переменного тока работают на промышленной частоте переменного тока 50 Гц и представляют собой однофазную нагрузку в виде сварочных трансформаторов для дуговой сварки и сварочных аппаратов контактной сварки. Сварка на переменном токе дает однофазную нагрузку с повторно-кратковременным режимом работы, неравномерной нагрузкой фаз и, как правило, низким коэффициентом мощности (0,3-0,35 для дуговой и 0,4-0,7 для контактной сварки). Сварочные установки питаются от сетей напряжением 380-220 В. Сварочные трансформаторы на строительно-монтажных площадках характеризуются частыми перемещениями в питающей сети. Это обстоятельство должно быть учтено при проектировании питающей сети. С точки зрения надежности питания, сварочные установки относятся к приемникам электрической энергии 2-й категории.

Заключение

Успехи автоматики позволили создать проект металлургического завода непрерывного действия, где разрозненные процессы будут соединены в единую поточную систему. Выходит, что центральное место во всем процессе все же занимает доменная печь. А нельзя ли обойтись без домен?

Задача бездоменного производства, или, как его называют, прямого получения железа, решается уже много десятков лет. В этом направлении достигнуты значительные успехи. Есть основания полагать, что в 70-х годах войдут в действие достаточно крупные установки прямого восстановления железа с суточной производительностью 500 т. Но и при этом доменное производство еще не одно десятилетие сохранит свои позиции.

Бездоменный процесс можно представить себе, например, так. Во вращающихся трубчатых печах железная руда превращается в железо. При помощи магнитов крупинки железа отделяются от остальной массы - и чистый продукт готов для дальнейшей обработки. Из железного порошка можно штамповать готовые изделия. Из него можно варить сталь различных сортов, прибавляя необходимые добавки (легирующие элементы).

С вводом в эксплуатацию гигантских электростанций советская металлургия получит много дешевой электроэнергии. Это создаст благоприятные условия для развития электрометаллургического производства и для еще более широкого применения электричества на всех последующих стадиях обработки железных сплавов.

Успехи атомной физики натолкнули на идею так называемой радиационной металлургии. Академик И. П. Бардин (1883-1960) высказал смелую, почти фантастическую идею будущего развития металлургии. "Я думаю, - говорил он, - что на первых порах человек станет "конструировать" с помощью радиоактивного воздействия легированные стали требуемого состава, не вводя в них редких и дорогих легирующих добавок, а создавая их прямо в ковше расплавленной стали. Из атомов железа, может быть, серы, фосфора под влиянием потока лучей в расплавленном металле произойдут целенаправленные ядерные превращения".

Над решением этой и других увлекательных проблем предстоит поработать будущим поколениям исследователей. Черная металлургия ждет новых открывателей.

В этом реферате, по-нашему, мы достигли поставленной цели и рассмотрели передачу электроэнергии на расстояния и использование её как необходимого компонента в электросталеплавильном процессе. А также мы, как нам кажется, выполнили все поставленные нами задачи, а именно: изучили дополнительную литературу, которая помогла нам в написании данной работы; познакомились с новыми видами генераторов и трансформаторов; рассмотрели путь электрического тока от его получения до поставки к потребителю; и, наконец, изучили физико-механические процессы, происходящие в электросталеплавильной печи.

Список литературы

1. Бабич В. К., Лукашкин Н. Д., Морозов А. С. и др./Основы металлургического производства (чёрная металлургия). Учебник для средних профессионально-технических училищ - М.: Металлургия, 1988. 272 с.

2. Барг И. Г., Валк Х. Я., Комаров Д. Т.; Под ред. Барга И. Г./Совершенствование обслуживания энергосетей 0,4-20 кВ в селдьской местности - М.: Энергия, 1980. - 240 с., ил.

3. Борнацкий И. И., Блащук Н. М., Яргин С. А., Строк В. И./Подручный сталевара широкого профиля: Учебник для средних ПТУ - М.: Металлургия, 1986. 456 с.

4. Зубков Б. В., Чумаков С. В./Энциклопедический словарь юного техника - М.: Педагогика, 1980. - 512 с., ил.

5. Мякишев Г. Я., Буховцев Б. Б./Физика: Учеб. для 10 кл. сред. шк. - М.: Просвещение, 1990. - 223 с.: ил.

6. Мякишев Г. Я., Буховцев Б. Б./Физика: Учеб. для 10 кл. сред. шк. - 9-е изд., перераб. - М.: Просвещение, 1987. - 319 с., 4л. ил.: ил.

7. Чиграй И. Д. Подручный сталевара конвертера. М.: Металлургия, 1977. 304 с.

Размещено на Allbest.ru


Подобные документы

  • Энергетический процесс и распределение напряжений в схеме замещения 2-х проводной линии электропередачи при постоянной величине напряжения в начале линии в зависимости от тока, определяемого количеством включенных потребителей электрической энергии.

    лабораторная работа [71,4 K], добавлен 22.11.2010

  • Выбор сечений проводов воздушных линий электропередачи. Зарядная мощность линий. Мощность трансформаторов на подстанциях. Справочные и расчетные параметры выбранных трансформаторов. Определение расчетных нагрузок узлов. Анализ схемы электрической сети.

    курсовая работа [439,9 K], добавлен 16.01.2013

  • Выбор напряжения сети, типа и мощности силовых трансформаторов на подстанции, сечения проводов воздушной линии электропередачи. Схема замещения участка электрической сети и ее параметры. Расчеты установившихся режимов и потерь электроэнергии в линии.

    курсовая работа [688,8 K], добавлен 14.07.2013

  • Общие сведения об электротехнических материалах. Передача электрической энергии на расстояние. Современные линии электропередачи. Электронагревательные элементы и провода. Электрификация основных тепловых производственных процессов в животноводстве.

    контрольная работа [722,6 K], добавлен 19.07.2011

  • Проектирование электропередачи переменного тока сверхвысокого напряжения с одной промежуточной подстанцией для транспорта электрической энергии от удалённой гидроэлектростанции. Технически возможные варианты схемы электропередачи, расчет лучшего варианта.

    курсовая работа [1,2 M], добавлен 21.09.2010

  • Особенности тепловых и атомных электростанций, гидроэлектростанций. Передача и перераспределение электрической энергии, использование ее в промышленности, быту, транспорте. Осуществление повышение и понижение напряжения с помощью трансформаторов.

    презентация [6,3 M], добавлен 12.01.2015

  • Основы энергосбережения, энергетические ресурсы, выработка, преобразование, передача и использование различных видов энергии. Традиционные способы получения тепловой и электрической энергии. Структура производства и потребления электрической энергии.

    реферат [27,7 K], добавлен 16.09.2010

  • Номенклатура силовых трансформаторов. Устройство и принцип действия трансформаторов. Конструкции линий электропередач и их составляющие. Виды и применение счетчиков электроэнергии. Действие электрического тока на организм человека, оказание первой помощи.

    отчет по практике [465,9 K], добавлен 20.11.2013

  • Решение проблемы централизованного производства электроэнергии и ее передачи на большие расстояния. История изобретения, устройство и классификация трансформаторов как электромагных устройств для преобразования переменного тока посредством индукции.

    реферат [2,4 M], добавлен 23.01.2011

  • Выбор генераторов, блочных трансформаторов и автотрансформаторов связи. Расчет токов короткого замыкания для выбора аппаратов. Выбор выключателей, разъединителей, трансформаторов тока, трансформаторов напряжения, сечения отходящих линий, токопроводов.

    курсовая работа [1,4 M], добавлен 12.02.2013

Работы в архивах красиво оформлены согласно требованиям ВУЗов и содержат рисунки, диаграммы, формулы и т.д.
PPT, PPTX и PDF-файлы представлены только в архивах.
Рекомендуем скачать работу.