Современные методы диагностики тяговых трансформаторов железных дорог и построение экспертной системы для обработки результатов тепловизионной диагностики тяговых трансформаторов ВСЖД

Методы диагностики технического состояния силовых трансформаторов тяговых подстанций. Разработка программного продукта "Экспертная система для обработки результатов тепловизионной диагностики тяговых трансформаторов в среде Exsys". Оценка его стоимости.

Рубрика Физика и энергетика
Вид дипломная работа
Язык русский
Дата добавления 12.06.2011
Размер файла 13,0 M

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

Семантические сети, используемые для описания естественных языков, используют дуги типа агент, объект, реципиент.

Однако события, представленные в виде транзитивных формул, сложно представить с помощью семантической сети. Кроме того, семантические сети считаются малопригодными для построения формальных моделей реального мира или его частей.

4.2.4 Представление знаний с использованием правил

На языке ЭС термин правило имеет более узкое значение, чем в обычном словоупотреблении. Он относится к наиболее популярному способу представления знаний [19, 20, 21, 22]. Правила выражаются в виде утверждений типа ЕСЛИ-ТО:

ЕСЛИ условие ТО действие

Под условием подразумеваются обстоятельства, при которых должно использоваться правило, а под действием - то, что должно происходить, когда левая часть правила соответствует логическому значению истина.

Действие может быть любым, но обычно речь идет о выводе заключения как части аргументации или доказательства. Пример правила, по которому экспертная система mycin (ЭС медицинской диагностики) выдает заключение:

ЕСЛИ реакция микроорганизма положительная и форма микроорганизма - кокк

ТО с вероятностью 0.7 этот микроорганизм является стрептококком.

Иногда в правиле ЕСЛИ a ТО b a называют антецедентом или посылкой правила, b - консеквентном, следствием или заключением.

Важное место в продукционных моделях (основанных на правилах) занимают стратегии вывода, то есть перехода от одного правила к другому. Различают прямую и обратную стратегии вывода (или цепочки рассуждений).

Прямой вывод (прямая цепочка рассуждений) предполагает использование существующих фактов и правил для дедукции (логического вывода) новых фактов (предположений), а также фактов, которые неявно существовали и раньше, но могут быть сделаны явными посредством применения правил (набор известных фактов обычно называется базой данных).

Этот метод называется прямой цепочкой рассуждений, поскольку поиск новой информации происходит в направлении стрелок, разделяющих левые и правые части правил. В нашем примере (Рисунок 31) было выведено, что существуют ситуации X,Y и Z.

Прямую цепочку используют, например, xcon (ЭС, помогающая фирме Digital Equipment Corporation (dec) подбирать для клиентов конфигурацию компьютеров vax), dendral (знаменитая система химического анализа) и другие системы.

Обратный вывод (обратная цепочка рассуждений) начинаем с заключения, которое представляет для нас интерес и не является явным (истинным фактом). Оно не находится среди хранимых фактов, когда мы запускаем систему. Мы хотим выяснить, обусловлен (подразумевается) ли данный факт другими, известными нам фактами и правилами, существует ли некий образец рассуждений, который может установить истинность этого факта? В этом случае мы должны идти в обратном направлении и попытаться определить достоверность всех посылок в тех правилах, которые могут применяться для установления истинности

На шаге 1 (Рисунок 32) системе говорится, чтобы она установила (если сможет), что ситуация Z существует. Сначала она проверит базу данных в поисках Z и установит отсутствие факта Z. конечного вывода (заключения). Перемещение на несколько уровней назад в древовидной структуре даст нам факты, которые являются истинными (явными).

На шаге 2 система будет искать среди правил то, которое приводит к установлению факта Z, то есть правило, у которого Z стоит справа от стрелки (Z - заключение правила). Она находит правило D&Y=>Z и решает, что должна установить факт Y, чтобы вывести Z (факт D в базе данных имеется).

На шаге 3 система пытается установить факт Y, сначала проверяя базу данных, а затем найдя правило, в правой части которого стоит Y. Из этого правила (C&X=>Y) система решает, что должна установить существование факта X для получения заключения Y (факт С в базе данных имеется).

Рисунок 31 - Пример прямой цепочки рассуждений

На шаге 4 система пытается установить факт Х, сначала проверяя базу данных, а затем найдя правило, в правой части которого стоит Х. Из этого правила (А&В=>Х) система решает, что должна установить существование фактов А и В для получения заключения Х (факты А и В в базе данных имеются).

На шагах 5-7 система выполняет первое правило, чтобы установить Х, затем выполняет второе правило, чтобы установить Y, и, наконец, выполняет третье правило, чтобы установить основную цель - факт существования Z.

Цепочка выводов, созданная здесь, идентична той, что была создана в результате прямой цепочки рассуждений. Отличие этих подходов заключается в способе поиска правил и данных.

Наиболее известными ЭС с обратным выводом являются mycin, системы, сделанные на его основе, prospector (ЭС, помогающая определить месторождение полезных ископаемых) и другие.

Возможно и совместное использование прямого и обратного выводов путем их чередования.

Рисунок 32 - Пример обратной цепочки рассуждений

4.3 Концепция экспертной системы для обработки результатов ТВО трансформаторов

Процедуры оценки состояния силовых трансформаторов (СТ) и, в частности, тяговых и районных понизительных (РПТ) достаточно хорошо методически проработаны и описаны в нормативных и руководящих документах, хотя методика оценки состояния изношенных СТ находится на пути становления.

В дистанциях электроснабжения филиалов ОАО «РЖД» имеется современная вычислительная техника, которая может обеспечить соответствующую информационную поддержку персоналу, связанному с процессом функционирования тяговых трансформаторов (ТТ) и РПТ. Для обработки большого объема сложной, неопределенной, неоднозначной, противоречивой и эвристической информации необходимы специальные информационные системы (ИС), оказывающие пользователям поддержку в принятии решений [77]. Достаточно эффективная ИС должна включать реляционную базу данных, продукционную базу знаний (БЗ) и экспертную систему (ЭС).

Реляционная БД должна включать:

1) паспортные данные тяговых трансформаторов;

2) карты осмотра;

3) журналы дежурного персонала;

4) данные периодических испытаний ТТ;

5) предельно допустимые нормы и испытательные критерии;

6) технологические карты ремонта и ревизии ТТ;

7) учетно-контрольные карты;

8) статистические данные о выявляемых дефектах и повреждениях;

9) нормативные материалы и руководящие документы;

10) ГОСТ;

11) инструкции заводов-изготовителей;

12) местные инструкции и технические регламенты.

Продукционная БЗ состоит в основном из экспертных правил. ЭС, играющая роль надстройки в БД, использует существующую БЗ, компонент извлечения знаний и компонент объяснения.

Информация в БД хранится в виде реляционных таблиц, связанных различными видами отношений. Исходные данные вводятся как вручную, так и автоматически. Вводимая информация является прямой, косвенной первичной и косвенной вторичной. Прямая информация содержит сведения о номинальных параметрах ЕЕ, конструктивных особенностях, режимах работы и методах эксплуатации. Данные измерений параметров ТТ позволяют в результате последующей обработки получить новую существенную информацию. Предельные значения параметров, критерии, экспертные знания дают возможность с помощью ЭС получить сведения о состоянии ТТ на базе первичной информации и экспертных правил. Косвенная информация не может быть абсолютно точной, но представляет интерес как определенная полезная информация -- поддержка подсказкой, советом в принятии решения. Знания структурированы по узким зонам предметной области: ресурс, опыт эксплуатации, конструктивные дефекты.

Опыт показывает, что оценку состояния электрооборудования целесообразно проводить на трех уровнях: внешнее исследование, ресурсная и специализированная диагностика.

Первый инспекционный уровень (внешнее исследование) должен обеспечить оценку общего состояния ТТ. Цель его - предварительная оценка состояния ИЭ для разработки плана достаточно эффективных методов дальнейших испытаний или мероприятий по поддержке функционирования ИЭ. Характер работ - контрольно-исследовательский, экспертный. На этом уровне требуется осуществить первичную оценку ресурсных возможностей эксплуатируемого ЭО и взять пробы масла для последующего углубленного анализа. При проведении внешнего исследования ИЭ следует руководствоваться положениями следующей нормативной документации: правил технической эксплуатации, устройства электроустановок, норм, нормативов и соответствующих ГОСТ, а также необходимыми инструкциями. С помощью ИС перед проведением исследовательских работ разрабатывается специальный бланк внешнего исследования, учитывающий множество необходимых факторов. Для разработки бланка -- специальной формы (по информационной терминологии - способ структурирования входной и выходной информации) -- организуются запросы в БД (способы выделения нужной информации), используются фильтры (режимы работы СУБД по минимизации просмотра большого массива записей в таблицах БД). С целью повышения эффективности подготовительной работы предлагается воспользоваться поддержкой ЭС. обрабатывающей знания специалистов-экспертов и необходимые данные из БД.

4.3.1 Интегрированная инструментальная среда exsys

Разработанная фирмой exsys, Inc. система является современным и мощным инструментальным средством. Она предназначена для создания прикладных экспертных систем в области диагностики, классификации, моделирования и проектирования. Exsys оснащена встроенной процедурой проверки непротиворечивости вводимых знаний. Она достаточно эффективна и гибка для профессионалов-разработчиков, однако может использоваться и начинающими исследователями.

В exsys используется как фреймовая, так и продукционная модель представления знаний. В последнем случае базу знаний системы составляют правила вида «ЕСЛИ-ТО» с применением обратной цепочки вывода и различными стратегиями вывода: «сверху вниз», «снизу вверх» и «сначала лучший». В системе имеется возможность моделирования нечетких и неточных рассуждений. Подсистема объяснений дает ответы на вопросы «Как ?» и «Почему ?», предоставляет по запросу справочную информацию. В правилах допускается использовать математические функции и числовые переменные.

Exsys можно вызвать из внешней программы. Изнутри системы можно вызывать программы, написанные на других языках. Кроме того, имеется большой выбор выражений на языке Си.

Правила, относящиеся к решению некоторой общей задачи, образуют базу знаний или набор правил. В этот набор, кроме собственно правил, включаются две процедуры: инициализация и завершение, которые должны выполняться до и после выполнения правил. В набор правил включаются также описания переменных, участвующих в правилах.

4.3.2 Написание набора правил в инструментальной среде exsys

Сформируем цель, то есть то, что должна определить ЭС. В нашем случае - это конкретный неисправный узел трансформатора, а также техническая рекомендация по устранению неисправности.

Для создания ЭС в среде exsys после входа в систему через пункт меню file необходимо выбрать подпункт new (при работе с уже созданной ЭС используется подпункт open) и задать имя создаваемой ЭС (в имени ЭС не должно быть пунктуационного знака «.»). После этого открывается титульный лист ЭС, в окна которого нужно занести объект ЭС (полное название или функцию ЭС) и фамилия имя отчество автора. Далее устанавливается диапазон значений логических переменных: двоичная логика (ДА или НЕТ) или вероятностные оценки (шкала от 0 до 10 или шкала от -100 до +100). В титульном листе также задается стратегия отыскания целей: All Possible (все возможные), First Successful (первая успешно найденная) или Non Redundancy (неопределенная). Далее в окно Starting text вносится информация, которой предваряется начало работы ЭС, а в окно Ending text - сообщение, за которым непосредственно последует ответ (рекомендация) ЭС. В дальнейшем при редактировании титульного листа уже написанной ЭС в него попадают через пункт главного меню RULES, подпункт Parameters.

Замечание: при написании новой ЭС вначале обязательно нужно задать хотя бы одну конечную цель-диагноз в подпункте Choice list, иначе файл данных не сохранится в общей базе exsys.

Рисунок 33 - Титульный лист ЭС

В подпункте Qualifier list вносятся вопросы, задаваемые ЭС пользователю, и варианты ответов, из которых ЭС должна почерпнуть необходимые сведения для своей успешной работы ( Замечание: часть ответов на вопросы из данного подпункта может заноситься непосредственно пользователем ЭС, а часть ответов ЭС может выводить сама, используя вложенные в нее знания и правила).

Рисунок 34 - Вид меню Qualifier list

Рисунок 35 - Вид меню Choice list

После внесения всех сведений в подпункты Choice list и Qualifier list можно переходить к заполнению базы знаний ЭС - написанию правил. Происходит это в том же пункте главного меню rules, где для написания нового правила выбирается подпункт Added Rule. После входа в данный подпункт через кнопку Qualifiers выбирается необходимый вопрос и вносится в верхнюю часть правила ( переключатель if/then должен быть в положении if, а переключатель типа логической связки правой части правила and/or в требуемом положении). После внесения всех вопросов переходят к формированию нижней части правила (переключатель if/then теперь должен стоять в положении then). Для заполнения этой части может использоваться Qualifiers list (формирование промежуточного вывода) или Choice list (формирование окончательного вывода). Если работа ЭС после нахождения окончательного результата (диагноза неисправности) должна закончится, то после него в правиле следует поставить команду Stop Rules exe (кнопка command открывает соответствующее меню выбора команд).

Рисунок 36 - Вид листа запросов ЭС.

Для запуска или отладки написанной ЭС (подпункт Open пункта file) из списка файлов с расширением «.rul» выбирается файл, соответствующий имени ЭС и нажимается кнопка ok. На дисплее должна появиться часть титульного листа ЭС с ее именем и фамилией именем отчеством автора. Далее в пункте меню options выберите подпункт Run, при этом на дисплее появится стартовый текст ЭС. Для продолжения работы ЭС нажмите кнопку continue, после чего возникнет первый запрос ЭС с вариантами ответов. Выбрав нужный ответ и нажав кнопку ok, перейдете к следующему запросу ЭС и так до тех пор, пока ЭС не завершит логический вывод.

Для получения консультации следует записанный набор правил с именем экспертной системы и расширением «.rul» выбрать из нужной директории (как правило, exsys new) и запустить на выполнение.

Текст демонстрационного прототипа экспертной системы для обработки результатов диагностирования силовых трансформаторов, записанный для инструментальной среды exsys, приведен в приложении А.

5. Расчёт стоимости программного продукта

В данном разделе рассчитана стоимость разработки программного продукта «Экспертная система для обработки результатов тепловизионной диагностики тяговых трансформаторов в среде EXSYS». Основными статьями расходов приняты:

1) Основная зарплата;

2) Единый социальный налог;

3) Накладные расходы;

4) Расходы на персональный компьютер и лицензионные базовые программные средства.

Разработка программы включает анализ проблем и необходимости создания продукта, сбор и обработку теоретической базы, написание, корректирование по желанию заказчика, в данном случае кафедра ЭЖТ, тестирование и отладку продукта.

Основная заработная плата (ОЗП) оценивает труд инженера-программиста по созданию программного продукта и определяется исходя из количества разработчиков, времени выполнения разработки (часов), а также заработной платы в расчете на один час. Описанный в проекте программный продукт разработан одним программистом в период с 31.01.05 по 29.04.05, что составляет 63 дня или 13 рабочих недель. Затраты рабочего времени приняты 40 часов в неделю. Таким образом, затрачено рабочего времени 1*13*40=520 чел/часов.

Почасовая ставка квалифицированного инженера-программиста принята 40 руб/час из расчёта, что месячный оклад составляет 6400 руб.

Основная заработная плата составит:

(1)

где:

- затраты труда в чел/часах,

- почасовая ставка,

- коэффициент квалификации программиста, принят 0.75

ОЗП = 520 * 40 * 0.75 = 15600 руб.

Отчисления на социальные нужды устанавливаются в процентах от суммы заработной платы:

(2)

= 15600 * 36,3% / 100% = 5662,8 руб.

Накладные расходы определяются также в процентном отношении к основной заработной плате. Этот коэффициент может отличаться на различных предприятиях. Для лабораторий ПГУПС и НИИ ОАО РЖД рекомендуется принять как 25% от основной заработной платы.

(3)

(15600 + 5662,8) * 25% / 100% = 5315,7 руб.

Эксплуатационные расходы на персональный компьютер определяются в течение срока разработки программного средства в зависимости стоимости компьютера. В эксплуатационные расходы входят:

а) расходы на электроэнергию;

б) стоимость расходных материалов;

в) расходы на ремонт;

г) заработная плата ремонтника;

д) дополнительные расходы - уборка помещения, охрана, аренда, коммунальные услуги;

е) амортизационные затраты на персональный компьютер и программное обеспечение.

Расходы на электроэнергию (Сэл) составляют:

(4)

где:

Р - мощность компьютера и вспомогательных потребителей электрической энергии, принято 0,3 Квт/ч;

СТ - стоимость 1 Квт/ч в Иркутской области на 1.05.05, равна 0.32 руб.;

Тразр- время работы с ЭВМ, принято равным рабочему времени;

Сэл = 0,3 * 0,32 * 520 = 49,92 руб.

Затраты на расходные материалы (Срм) в течение всего срока эксплуатации примерно 10% от стоимости компьютера. Стоимость персонального компьютера принята 30000 рублей, срок эксплуатации - 3 года. Следовательно, можно определить подобные расходы за период создания программного средства равны, руб.:

, (5)

где:

стоимость персонального компьютера,

количество дней разработки программного продукта,

срок эксплуатации персонального компьютера

По статистике расходы на комплектующие изделия (Ском) для ремонта персонального компьютера составляют 10% от его стоимости за срок его эксплуатации, т.е. равны затратам на расходные материалы.

Заработная плата ремонтника (Срем) определена следующим образом: на ремонт 50 компьютеров требуется один инженер системотехник. Его среднемесячная заработная плата Срем' принята 6000 руб. Тогда в пересчете на один компьютер его заработная плата составит

Срем = Срем'/50 = 6000/50 =120 руб.

Амортизационные отчисления на персональный компьютер (АПК) определены из положения, что амортизационный период в настоящее время равен сроку морального старения вычислительной техники и составляет 3 года. Следовательно, за 3 года амортизационные отчисления на персональный компьютер равны стоимости компьютера. За период проектирования амортизационные отчисления составят:

АПК= (6)

руб.

Амортизационные отчисления на программное обеспечение (АПО) зависят от его цикла замены. Если принять срок морального старения такой же, как у персонального компьютера, то амортизационные отчисления на программное обеспечение за 3 года равны его стоимости. Для функционирования персонального компьютера использовалась операционная система WindowsXP, для написания Экспертной системы оболочка программы EXSYS Professional 5.0.8 - w. Расчёт амортизационных отчислений на программному обеспечению сведён в таблицу 8.

Таблица 8 - Используемое программное обеспечение

Наименование программного обеспечения

Стоимость

программного обеспечения, руб.

Источник приобретения

Амортизационные отчисления, руб.

EXSYS Professional 5.0.8 - w

13200

Компания EXSYS LTD., официальный дилер EXSYS

759

WindowsXP, вместе с компьютером

3500

OOO

«V - Tree»

201

Итого:

960

Дополнительные расходы (Сдоп): уборка помещения, охрана, аренда, коммунальные услуги трудно оценить точно и приняты равными половине заработной платы инженера-системотехника, то есть 3000 руб.

Суммарные эксплуатационные расходы на один персональный компьютер составят:

Сэксп = Сэл + Срм + Ском + Срем + АПК + АПО + Сдоп, (7)

где:

Сэл - расходы на электроэнергию,

Срм - затраты на расходные материалы,

Ском - расходы на комплектующие изделия,

Срем - заработная плата ремонтника,

АПК - амортизационные отчисления на персональный компьютер,

АПО - амортизационные отчисления на программное обеспечение,

Сдоп - дополнительные расходы

Сэксп = 49,92 + 172,6 + 172,6 + 120 + 1726,02 + 960 + 3000 = 6201,14 руб.

Результаты расчетов сводятся в таблицу 9.

Таблица 9 - Эксплуатационные расходы на персональный компьютер

и программное обеспечение в течение срока создания программного средства

Статьи расхода

Затраты, руб.

Расходы на электроэнергию

49,92

Продолжение таблицы 9

Стоимость расходных материалов

172,60

Расходы на ремонт

172,60

Заработная плата инженера-системотехника

120

Амортизация персонального компьютера

1726,02

Амортизация программного обеспечения

960

Дополнительные расходы

3000

Итого эксплуатационные расходы:

6201,14

Таким образом, расходы на создание программного средства составляют:

(8)

15600 + 5662,8 + 5315,7 +6201,14 = 32779,64 руб.

Расчёт расходов сведен в итоговую смету (Таблица 10)

Таблица 10 - Смета затрат на разработку программного средства

Статьи расходов

Затраты (руб.)

Основная зарплата

15600

Единый социальный налог

5662,8

Накладные расходы

5315,7

Эксплуатационные расходы

6201,14

Итого себестоимость разработки

32779,64

6. Охрана труда и безопасность жизнедеятельности проекта. Эргономические и санитарно-гигиенические нормы при организации работы вычислительного центра

6.1 Необходимость разработки и соблюдения норм

В настоящее время в отрасли электроснабжения повсеместно решаются сложные комплексные задачи, такие как проектирование электрических сетей, организация бесперебойного электроснабжения потребителей, учет электроэнергии и т.д. Решение их часто требует значительных вычислительных мощностей, т.е. организации вычислительных центров. Как производственный цех, вычислительный центр имеет ряд характерных особенностей, в том числе использование видеодисплейных терминалов и персональных электронно-вычислительных машин (в том числе персональный компьютер), поэтому требует разработки специфических правил охраны труда. В данном разделе собраны и приведены основные эргономические и санитарно-гигиенические нормы, предназначены для предотвращения неблагоприятного воздействия на человека вредных факторов, сопровождающих работы в вычислительном центре.

6.2 Общие положения и область применения

Эргономические и санитарно-гигиенические правила и нормы (далее - Санитарные правила) определяют требования к:

а) проектированию, изготовлению и эксплуатации отечественных ПЭВМ, используемых на производстве, в обучении, в быту, в игровых автоматах на базе ПЭВМ;

б) эксплуатации импортных ПЭВМ, используемых на производстве, в обучении, в быту и в игровых комплексах (автоматах) на базе ПЭВМ;

в) проектированию, строительству и реконструкции помещений, предназначенных для эксплуатации всех типов ПЭВМ, производственного оборудования и игровых комплексов (автоматов) на базе ПЭВМ;

г) обеспечению безопасных условий труда пользователей видеодисплейных терминалов и ПЭВМ.

Настоящие Санитарные правила и нормы не распространяются на проектирование, изготовление и эксплуатацию:

1) ПЭВМ транспортных средств;

2) ПЭВМ, перемещающихся в процессе работы;

3) бытовых телевизоров и телевизионных игровых приставок;

4) средств индивидуального отображения информации микроконтроллеров, встроенных в технологическое оборудование.

Ответственность за выполнение настоящих санитарных правил возлагается на юридических лиц и индивидуальных предпринимателей, осуществляющих:

1) разработку, производство, эксплуатацию ПЭВМ, производственное оборудование и игровые комплексы на базе ПЭВМ;

2) проектирование, строительство и реконструкцию помещений, предназначенных для эксплуатации ПЭВМ, в административных, общественных и промышленных зданиях, а также в образовательных и культурно - развлекательных учреждениях.

Индивидуальными предпринимателями и юридическими лицами в процессе производства и эксплуатации ПЭВМ должен осуществляться производственный контроль за соблюдением настоящих Санитарных правил.

Рабочие места с использованием ПЭВМ должны соответствовать требованиям настоящих Санитарных правил.

6.3 Требования к ПЭВМ

ПЭВМ должны соответствовать требованиям настоящих санитарных правил и каждый их тип подлежат санитарно-эпидемиологической экспертизе с оценкой в испытательных лабораториях, аккредитованных в установленном порядке.

Перечень продукции и контролируемых гигиенических параметров вредных и опасных факторов представлены в таблице 11.

Таблица 11 - Перечень продукции и контролируемые гигиенические параметры

Вид продукции

Код ОКП

Контролируемые гигиенические параметры

Машины вычислительные электронные цифровые, машины вычислительные электронные цифровые персональные (включая портативные ЭВМ)

401300

Уровни электромагнитных полей (ЭМП), акустического шума, концентрация вредных веществ в воздухе, визуальных показатели ВДТ, мягкое рентгеновское излучение*

401350

401370

Устройства периферийные: принтеры, сканеры, модемы, сетевые устройства, блоки бесперебойного питания и т. д.

403000

Уровни ЭМП, акустического шума, концентрация вредных веществ в воздухе

Устройства отображения информации (видеодисплейные терминалы)

403200

Уровни ЭМП, визуальные показатели, концентрация вредных веществ в воздухе, мягкое рентгеновское излучение

Автоматы игровые с использованием ПЭВМ

968575

Уровни ЭМП, акустического шума, концентрация вредных веществ в воздухе, визуальные показатели

Допустимые уровни звукового давления и уровней звука, создаваемого ПЭВМ, не должны превышать значений, представленных в таблице 12.

Таблица 12 - Допустимые значения уровней звукового давления в октавных по лосах частот и уровня звука, создаваемого ПЭВМ

Уровни звукового давления в октавных полосах со среднегеометрическими частотами

Уровни звука, дБА

31,5 Гц

63 Гц

125Гц

250Гц

500Гц

1000Гц

2000Гц

4000 Гц

8000Гц

86 дБ

71 дБ

61 дБ

54 дБ

49 дБ

45 дБ

42 дБ

40 дБ

38 дБ

50

Временные допустимые уровни электромагнитных полей (ЭМП), создаваемых ПЭВМ, не должны превышать значений, представленных в таблице 13.

Таблица 13 - Временные допустимые уровни ЭМП, создаваемых ПЭВМ

Наименование параметров

ВДУ ЭМП

Напряженность электрического поля

в диапазоне частот 5 Гц - 2 кГц

25 В/м

в диапазоне частот 2 кГц - 400 кГц

2,5 В/м

Плотность магнитного потока

в диапазоне частот 5 Гц - 2 кГц

250 нТл

в диапазоне частот 2 кГц - 400 кГц

25 нТл

Электростатический потенциал экрана видеомонитора

500В

Измерение уровня звука и уровней звукового давления проводится на расстоянии 50 см от поверхности оборудования и на высоте расположения источника звука.

Допустимые визуальные параметры устройств отображения информации представлены в таблице 14.

Таблица 14 - Допустимые визуальные параметры устройств отображения информации

Параметры

Допустимые значения

Яркость белого поля

Не менее 35 кд/

Неравномерность яркости рабочего поля

Не более 20%

Контрастность (для монохромного режима)

Не менее 3:1

Временная нестабильность изображения (непреднамеренное изменение во времени яркости изображения на экране дисплея)

Не должна фиксироваться

Пространственная нестабильность изображения (непреднамеренные изменения положения фрагментов изображения на экране)

Не более , где L-проектное расстояние наблюдения, мм

Концентрации вредных веществ, выделяемых ПЭВМ в воздух помещений, не должны превышать предельно допустимых концентраций (ПДК), установленных для атмосферного воздуха.

Мощность экспозиционной дозы мягкого рентгеновского излучения в любой точке на расстоянии 0,05 м от экрана и корпуса ВДТ (на электронно-лучевой трубке) при любых положениях регулировочных устройств не должна превышать 1 мк3/час (100 мкР/ч).

Конструкция ПЭВМ должна обеспечивать возможность поворота корпуса в горизонтальной и вертикальной плоскости с фиксацией в заданном положении для обеспечения фронтального наблюдения экрана ВДТ. Дизайн ПЭВМ должен предусматривать окраску корпуса в спокойные мягкие тона с диффузным рассеиванием света. Корпус ПЭВМ, клавиатура и другие блоки и устройства ПЭВМ должны иметь матовую поверхность с коэффициентом отражения 0,4 -- 0,6 и не иметь блестящих деталей, способных создавать блики.

Конструкция ВДТ должна предусматривать регулирование яркости и контрастности.

Документация на проектирование, изготовление и эксплуатацию ПЭВМ не должна противоречить требованиям настоящих Санитарных правил.

6.4 Требования к помещениям для работы с ПЭВМ

Помещения для эксплуатации ПЭВМ должны иметь естественное и искусственное освещение. Эксплуатация ПЭВМ в помещениях без естественного освещения допускается только при соответствующем обосновании и наличии положительного санитарно-эпидемиологического заключения, выданного в установленном порядке.

Естественное и искусственное освещение должно соответствовать требованиям действующей нормативной документации. Окна в помещениях, где эксплуатируется вычислительная техника, преимущественно должны быть ориентированы на север и северо-восток.

Оконные проемы должны быть оборудованы регулируемыми устройствами типа: жалюзи, занавесей, внешних козырьков и др.

Не допускается размещение мест пользователей ПЭВМ во всех образовательных и культурно-развлекательных учреждениях для детей и подростков в цокольных и подвальных помещениях.

Площадь на одно рабочее место пользователей ПЭВМ с ВДТ на базе электроннолучевой трубки (ЭЛТ) должна составлять не менее 6 м2, в помещениях культурно-развлекательных учреждений и с ВДТ на базе плоских дискретных экранов (жидкокристаллические, плазменные) -- 4,5 м2.

При использовании ПВЭМ с ВДТ на базе ЭЛТ (без вспомогательных устройств -- принтер, сканер и др.), отвечающих требованиям международных стандартов безопасности компьютеров, с продолжительностью работы менее 4 ч в день допускается минимальная площадь 4,5 м2 на одно рабочее место пользователя (взрослого и учащегося высшего профессионального образования).

Для внутренней отделки интерьера помещений, где расположены ПЭВМ, должны использоваться диффузно-отражающие материалы с коэффициентом отражения для потолка -- 0,7--0,8; для стен -- 0,5 -- 0,6; для пола -- 0,3--0,5.

Полимерные материалы используются для внутренней отделки интерьера помещений с ПЭВМ при наличии санитарно-эпидемиологического заключения.

Помещения, где размещаются рабочие места с ПЭВМ, должны быть оборудованы защитным заземлением (занулением) в соответствии с техническими требованиями по эксплуатации.

Не следует размещать рабочие места с ПЭВМ вблизи силовых кабелей и вводов, высоковольтных трансформаторов, технологического оборудования, создающего помехи в работе ПЭВМ.

6.5 Требования к микроклимату, содержанию аэроионов и вредных химических веществ в воздухе на рабочих местах, оборудованных ПЭВМ

В производственных помещениях, в которых работа с использованием ПЭВМ является вспомогательной, температура, относительная влажность и скорость движения воздуха на рабочих местах должны соответствовать действующим санитарным нормам микроклимата производственных помещений.

В производственных помещениях, в которых работа с использованием ПЭВМ является основной (диспетчерские, операторские, расчетные, кабины и посты управления, залы вычислительной техники и др.) и связана с нервноэмоциональным напряжением, должны обеспечиваться оптимальные параметры микроклимата для категории работ 1а и 1б в соответствии с действующими санитарно-эпидемиологическими нормативами микроклимата производственных помещений. На других рабочих местах следует поддерживать параметры микроклимата на допустимом уровне, соответствующем требованиям указанных выше нормативов.

В помещениях всех типов образовательных и культурно-развлекательных учреждений для детей и подростков, где расположены ПЭВМ, должны обеспечиваться оптимальные параметры микроклимата (таблица 15).

Таблица 15 - Оптимальные параметры микроклимата во всех типах учебных и дошкольных помещений с использованием ПЭВМ

Температура, С

Относительная влажность, %

Абсолютная влажность, г/м

Скорость движения воздуха, м/с

19

62

10

<0,1

20

58

10

<0,1

21

55

10

<0,1

В помещениях, оборудованных ПЭВМ, проводится ежедневная влажная уборка и систематическое проветривание после каждого часа работы на ПЭВМ.

Уровни положительных и отрицательных аэроионов в воздухе помещений, где расположены ПЭВМ, должны соответствовать действующим санитарно-эпидемиологическим нормативам.

Содержание вредных химических веществ в воздухе производственных помещений, в которых работа с использованием ПЭВМ является вспомогательной, не должно превышать предельно допустимых концентраций вредных веществ в воздухе рабочей зоны в соответствии с действующими гигиеническими нормативами.

Содержание вредных химических веществ в производственных помещениях, в которых работа с использованием ПЭВМ является основной (диспетчерские, операторские, расчетные, кабины и посты управления, залы вычислительной техники и др.), не должно превышать предельно допустимых концентраций загрязняющих веществ в атмосферном воздухе населенных мест в соответствии с действующими гигиеническими нормативами.

Содержание вредных химических веществ в воздухе помещений, предназначенных для использования ПЭВМ во всех типах образовательных учреждений, не должно превышать предельно допустимых среднесуточных концентраций для атмосферного воздуха в соответствии с действующими санитарно-эпидемиологическими нормативами.

6.6 Требования к уровням шума и вибрации на рабочих местах, оборудованных ПЭВМ

В производственных помещениях при выполнении основных или вспомогательных работ с использованием ПЭВМ уровни шума на рабочих местах не должны превышать предельно допустимых, значений, установленных для данных видов работ в соответствии с действующими санитарно-эпидемиологическими нормативами.

В помещениях всех образовательных и культурно-развлекательных учреждений для детей и подростков, где расположены ПЭВМ, уровни шума не должны превышать допустимых значений, установленных для жилых и общественных зданий.

При выполнении работ с использованием ПЭВМ в производственных помещениях уровень вибрации не должен превышать допустимых значений вибрации для рабочих мест (категория 3, тип "Б") в соответствии с действующими санитарно-эпидемиологическими нормативами.

В помещениях всех типов образовательных и культурно-развлекательных учреждений, в которых эксплуатируются ПЭВМ, уровень вибрации не должен превышать допустимых значений для жилых и общественных зданий в соответствии с действующими санитарно-эпидемиологическими нормативами.

Шумящее оборудование (печатающие устройства, серверы и т. п.),уровни шума которого превышают нормативные, должно размещаться вне помещений с ПЭВМ.

6.7 Требования к освещению на рабочих местах, оборудованных ПЭВМ

Рабочие столы следует размещать таким образом, чтобы видеодисплейные терминалы были ориентированы боковой стороной к световым проемам, чтобы естественный свет падал преимущественно слева.

Искусственное освещение в помещениях для эксплуатации ПЭВМ должно осуществляться системой общего равномерного освещения. В производственных и административно-общественных помещениях, в случаях преимущественной работы с документами, следует применять системы комбинированного освещения (к общему освещению дополнительно устанавливаются светильники местного освещения, предназначенные для освещения зоны расположения документов).

Освещенность на поверхности стола в зоне размещения рабочего документа должна быть 300 -- 500 лк. Освещение не должно создавать бликов на поверхности экрана. Освещенность поверхности экрана не должна быть более 300 лк.

Следует ограничивать прямую блесткость от источников освещения, при этом яркость светящихся поверхностей (окна, светильники и др.), находящихся в поле зрения, должна быть не более 200 кд/м2.

Следует ограничивать отраженную блесткость на рабочих поверхностях (экран, стол, клавиатура и др.) за счет правильного выбора типов светильников и расположения рабочих мест по отношению к источникам естественного и искусственного освещения, при этом яркость бликов на экране ПЭВМ не должна превышать 40 кд/м2 и яркость потолка не должна превышать 200 кд/м2.

Показатель ослепленности для источников общего искусственного освещения в производственных помещениях должен быть не более 20. Показатель дискомфорта в административно-общественных помещениях -- не более 40, в дошкольных и учебных помещениях -- не более 15.

Яркость светильников общего освещения в зоне углов излучения от 50 до 90 градусов с вертикалью в продольной и поперечной плоскостях должна составлять не более 200 кд/м2, защитный угол светильников должен быть не менее 40 градусов.

Светильники местного освещения должны иметь не просвечивающий отражатель с защитным углом не менее 40 градусов.

Следует ограничивать неравномерность распределения яркости в поле зрения пользователя ПЭВМ, при этом соотношение яркости между рабочими поверхностями не должно превышать 3:1 -- 5:1, а между рабочими поверхностями и поверхностями стен и оборудования 10:1.

В качестве источников света при искусственном освещении следует применять преимущественно люминесцентные лампы типа ЛБ и компактные люминесцентные лампы (КЛЛ). При устройстве отраженного освещения в производственных и административно-общественных помещениях допускается применение металлогалогенных ламп. В светильниках местного освещения допускается применение ламп накаливания, в том числе галогенные.

Для освещения помещений с ПЭВМ следует применять светильники с зеркальными параболическими решетками, укомплектованными электронными пуско-регулирующими аппаратами (ЭПРА). Допускается использование многоламповых светильников с электромагнитными пуско-регулирующими аппаратами (ЭПРА), состоящими из равного числа опережающих и отстающих ветвей.

Применение светильников без рассеивателей и экранирующих решеток не допускается.

При отсутствии светильников с ЭПРА лампы многоламповых светильников или рядом расположенные светильники общего освещения следует включать на разные фазы трехфазной сети.

Общее освещение при использовании люминесцентных светильников следует выполнять в виде сплошных или прерывистых линий светильников, расположенных сбоку от рабочих мест, параллельно линии зрения пользователя при рядном расположении видеодисплейных терминалов. При периметральном расположении компьютеров линии светильников должны располагаться локализовано над рабочим столом ближе к его переднему краю, обращенному к оператору.

Коэффициент запаса (Кз) для осветительных установок общего освещения должен приниматься равным 1,4.

Коэффициент пульсации не должен превышать 5%.

Для обеспечения нормируемых значений освещенности в помещениях для использования ПЭВМ следует проводить чистку стекол оконных рам и светильников не реже двух раз в год и проводить своевременную замену перегоревших ламп.

6.8 Требования к уровням электромагнитных полей на рабочих местах, оборудованных ПЭВМ

Временные допустимые уровни ЭМП, создаваемых ПЭВМ на рабочих местах пользователей, а также в помещениях образовательных, дошкольных и культурно-развлекательных учреждений, представлены в таблице 16.

Таблица 16 - Временные допустимые уровни ЭМП, создаваемых ПЭВМ на рабочих местах

Наименование параметров

ВДУ

Напряженность электрического поля

в диапазоне частот 5 Гц - 2 кГц

25 В/М

в диапазоне частот 2 кГц - 400 кГц

2,5 В/м

Плотность магнитного потока

в диапазоне частот 5Гц - 2 кГц

250 нТл

в диапазоне частот 2 кГц - 400 кГц

25 нТл

Напряженность электростатического поля

15 кВ/м

6.9 Требования к визуальным параметрам ВДТ, контролируемым на рабочих местах

Предельно допустимые значения визуальных параметров ВДТ, контролируемые на рабочих местах, представлены в таблице 17.

Таблица 17 - Визуальные параметры ВДТ, контролируемые на рабочих местах

Параметры

Допустимые значения

Яркость белого поля

Не менее 35 кд/м

Неравномерность яркости рабочего поля

Не более +20%

Контрастность (для монохромного режима)

Не менее 3:1

Временная нестабильность изображения (мелькания)

Не должна фиксироваться

Пространственная нестабильность изображения (дрожание)

Не более 2*10, где L - проектное расстояние наблюдения, мм

6.10 Общие требования к организации рабочих мест пользователей ПЭВМ

При размещении рабочих мест с ПЭВМ расстояние между рабочими столами с видеомониторами (в направлении тыла поверхности одного видеомонитора и экрана другого видеомонитора), должно быть не менее 2,0 м, а расстояние между боковыми поверхностями видеомониторов -- не менее 1,2м.

Рабочие места с ПЭВМ в помещениях с источниками вредных производственных факторов должны размещаться в изолированных кабинах с организованным воздухообменом.

Рабочие места с ПЭВМ при выполнении творческой работы, требующей значительного умственного напряжения или высокой концентрации внимания, рекомендуется изолировать друг от друга перегородками высотой 1,5 -- 2,0 м.

Экран видеомонитора должен находиться от глаз пользователя на расстоянии 600 -- 700 мм, но не ближе 500 мм с учетом размеров алфавитно-цифровых знаков и символов.

Конструкция рабочего стола должна обеспечивать оптимальное размещение на рабочей поверхности используемого оборудования с учетом его количества и конструктивных особенностей, характера выполняемой работы. При этом допускается использование рабочих столов различных конструкций, отвечающих современным требованиям эргономики. Поверхность рабочего стола должна иметь коэффициент отражения 0,5 -- 0,7.

Конструкция рабочего стула (кресла) должна обеспечивать поддержание рациональной рабочей позы при работе на ПЭВМ, позволять изменять позу с целью снижения статического напряжения мышц шейно-плечевой области и спины для предупреждения развития утомления. Тип рабочего стула (кресла) следует выбирать с учетом роста пользователя, характера и продолжительности работы с ПЭВМ.

Рабочий стул (кресло) должен быть подъемно-поворотным, регулируемым по высоте и углам наклона сиденья и спинки, а также расстоянию спинки от переднего края сиденья, при этом регулировка каждого параметра должна быть независимой, легко осуществляемой и иметь надежную фиксацию.

Поверхность сиденья, спинки и других элементов стула (кресла) должна быть полумягкой, с нескользящим, слабо электризующимся и воздухопроницаемым покрытием, обеспечивающим легкую очистку от загрязнений.

6.11 Требования к организации и оборудованию рабочих мест с ПЭВМ для взрослых пользователей

Высота рабочей поверхности стола для взрослых пользователей должна регулироваться в пределах 680 -- 800 мм; при отсутствии такой возможности высота рабочей поверхности стола должна составлять 725 мм.

Модульными размерами рабочей поверхности стола для ПЭВМ, на основании которых должны рассчитываться конструктивные размеры, следует считать: ширину 800, 1000, 1200 и 1400 мм, глубину 800 и 1000 мм при нерегулируемой его высоте, равной 725 мм.

Рабочий стол должен иметь пространство для ног высотой не менее 600 мм, шириной -- не менее 500 мм, глубиной на уровне колен -- не менее 450 мм и на уровне вытянутых ног -- не менее 650 мм.

Конструкция рабочего стула должна обеспечивать:

1) ширину и глубину поверхности сиденья не менее 400 мм;

2) поверхность сиденья с закругленным передним краем;

3) регулировку высоты поверхности сиденья в пределах 400 -- 550 мм и углам наклона вперед до 15 град, и назад до 5 град.;

4) высоту опорной поверхности спинки 300 ± 20 мм, ширину -- не менее 380 мм и радиус кривизны горизонтальной плоскости -- 400 мм;

5) угол наклона спинки в вертикальной плоскости в пределах ±30 градусов;

6) регулировку расстояния спинки от переднего края сиденья в пределах 260 - 400 мм;

7) стационарные или съемные подлокотники длиной не менее 250 мм и шириной -- 50 -- 70 мм;

8) регулировку подлокотников по высоте над сиденьем в пределах 230 ± 30 мм и внутреннего расстояния между подлокотниками в пре делах 350 -- 500 мм.

Рабочее место пользователя ПЭВМ следует оборудовать подставкой для ног, имеющей ширину не менее 300 мм, глубину не менее 400 мм, регулировку по высоте в пределах до 150 мм и по углу наклона опорной поверхности подставки до 20°. Поверхность подставки должна быть рифленой и иметь по переднему краю бортик высотой 10 мм.

Клавиатуру следует располагать на поверхности стола на расстоянии 100 -- 300 мм от края, обращенного к пользователю или на специальной, регулируемой по высоте рабочей поверхности, отделенной от основной столешницы.

6.12 Требования к организации и оборудованию рабочих мест с ПЭВМ для обучающихся в общеобразовательных учреждениях и учреждениях начального и высшего профессионального образования

Помещения для занятий оборудуются одноместными столами, предназначенными для работы с ПЭВМ.

Конструкция одноместного стола для работы с ПЭВМ должна предусматривать:

1) две раздельные поверхности: одна горизонтальная для размещения ПЭВМ с плавной регулировкой по высоте в пределах 520 -- 760 мм и вторая -- для клавиатуры с плавной регулировкой по высоте и углу наклона от 0 до 15 градусов с надежной фиксацией в оптимальном рабочем положении (12--15 градусов);

2) ширину поверхностей для ВДТ и клавиатуры не менее 750 мм (ширина обеих поверхностей должна быть одинаковой) и глубину не менее 550 мм;

3) опору поверхностей для ПЭВМ или ВДТ и для клавиатуры на стояк, в котором должны находиться провода электропитания и кабель локальной сети. Основание стояка следует совмещать с подставкой для ног;

4) отсутствие ящиков;

5) увеличение ширины поверхностей до 1200 мм при оснащении рабочего места принтером.

Высота края стола, обращенного к работающему с ПЭВМ, и высота пространства для ног должны соответствовать росту обучающихся в обуви.

При наличии высокого стола и стула, несоответствующего росту обучающихся, следует использовать регулируемую по высоте подставку для ног.

Линия взора должна быть перпендикулярна центру экрана и оптимальное ее отклонение от перпендикуляра, проходящего через центр экрана в вертикальной плоскости, не должно превышать ±5 градусов, допустимое ±10 градусов.

Рабочее место с ПЭВМ оборудуют стулом, основные размеры которого должны соответствовать росту обучающихся в обуви.

Конструкция одноместного стола должна состоять из двух частей или столов, соединенных вместе: на одной поверхности стола располагается ВДТ, на другой -- клавиатура.

Конструкция стола для размещения ПЭВМ должна предусматривать:

1) плавную и легкую регулировку по высоте с надежной фиксацией горизонтальной поверхности для видеомонитора в пределах 460--520 мм при глубине не менее 550 мм и ширине -- не менее 600 мм;

2) возможность плавного и легкого изменения угла наклона поверхности для клавиатуры от 0 до 10 град, с надежной фиксацией;

3) ширина и глубина поверхности под клавиатуру должна быть не менее 600 мм;

4) ровную без углублений поверхность стола для клавиатуры;

5) отсутствие ящиков;

6) пространство для ног под столом над полом не менее 400 мм. Ширина определяется конструкцией стола.

Замена стульев табуретками или скамейками не допускается.

Поверхность сиденья стула должна легко поддаваться дезинфекции.

6.13 Требования к организации медицинского обслуживания пользователей ПЭВМ

Лица, работающие с ПЭВМ более 50% рабочего времени (профессионально связанные с эксплуатацией ПЭВМ), должны проходить обязательные предварительные при поступлении на работу и периодические медицинские осмотры в установленном порядке.

Женщины со времени установления беременности переводятся на работы, не связанные с использованием ПЭВМ, или для них ограничивается время работы с ПЭВМ (не более 3 ч за рабочую смену) при условии соблюдения гигиенических требований, установленных настоящими санитарными правилами. Трудоустройство беременных женщин следует осуществлять в соответствии с законодательством Российской Федерации.

Медицинское освидетельствование студентов высших учебных заведений, учащихся средних специальных учебных заведений, детей дошкольного и школьного возраста на предмет установления противопоказаний к работе с ЭВМ проводится в установленном порядке.

6.14 Требования к проведению государственного санитарно-эпидемиологического надзора и производственного контроля

Государственный санитарно-эпидемиологический надзор за производством и эксплуатацией ПЭВМ осуществляется в соответствии с настоящими Санитарными правилами.

Не допускается реализация и эксплуатация на территории Российской Федерации типов ПЭВМ, не имеющих санитарно-эпидемиологического заключения.

Инструментальный контроль за соблюдением требований настоящих Санитарных правил осуществляется в соответствии с действующей нормативной документацией.

Производственный контроль за соблюдением санитарных правил осуществляется производителем и поставщиком ПЭВМ, а также предприятиями и организациями, эксплуатирующими ПЭВМ в установленном порядке, в соответствии с действующими санитарными правилами и другими нормативными документами.

6.15 Расчет искусственного освещения аудитории вычислительного центра

Осветительные установки рассчитывают по методу коэффициента использования светового потока. Этот метод основан на связи между световым потоком источников света и средней освещенностью горизонтальной поверхности, при этом учитывается отраженный свет от внутренних поверхностей стен и потолка.

Рассчитаем количество люминесцентных светильников для компьютерной аудитории длинной 12 метров, шириной 6 метров и высотой 3,10 метра.

Определим расчетную высоту подвеса светильника над рабочей поверхностью:

(9)

где:

h - расчетная высота подвеса светильника над рабочей

поверхностью,

H - высота помещения,

hр - высота рабочей поверхности,

hc - свес светильника

Определим количество светильников. Для этого определим расстояние между светильниками:

(10)

где:

оптимальное значение относительного расстояния, принят

равным 1,4

примем 3 метра

Размещаем в комнате 13 люминесцентных светильников. Значения коэффициентов отражения потолка, стен и пола составляют соответственно:

Вычисляем индекс помещения:

(11)

где:

А - длина аудитории,

В - ширина аудитории.

По принятым значениям коэффициентов отражения и индекса помещения i найдем коэффициент светового потока.

Норма освещения на поверхности рабочего стола должна быть 300 - 500 лк.

Определяем расчетный световой поток одной лампы

(12)

где:

расчетный световой поток одной лампы,

нормируемая освещенность, принята равной 400 лк.,

коэффициент запаса, равен 1,4,

освещаемая площадь,

коэффициент, характеризующий неравномерность освещения, равен 1,1,

число светильников,

коэффициент использования излучаемого светильниками светового потока на расчетной плоскости, равен 0,68,

коэффициент затенения, равен 1.

Выбираем люминесцентный светильник с лампой типа ЛБ мощностью 80 ватт, номинальный световой поток которой 5220лм.


Подобные документы

  • Техническое описание системы питания потребителей от тяговых подстанций систем электроснабжения постоянного тока 3,3 кВ и переменного тока 25 кВ их преимущества и недостатки. Схемы электроснабжения устройств автоблокировки и электрических железных дорог.

    контрольная работа [1,0 M], добавлен 13.10.2010

  • Суть схемы внешнего электроснабжения. Составление структурной схемы выбранной тяговой подстанции. Особенность сопротивления линии электропередачи и силовых трансформаторов. Расчет трехфазных токов короткого замыкания на шинах распределительных устройств.

    курсовая работа [1,4 M], добавлен 10.05.2019

  • Определение степени полимеризации маслосодержащей изоляции, с развивающимися дефектами в процессе эксплуатации силовых трансформаторов. Анализ технического состояния изоляции силовых трансформаторов с учетом результатов эксплуатационного мониторинга.

    курсовая работа [227,4 K], добавлен 06.01.2016

  • Характеристика сооружений и устройства электроснабжения электрифицированных железных дорог, которое осуществляется специальной системой, состоящей из тяговых подстанций, контактной сети и соединяющих их линий. Особенности схемы системы тока и напряжения.

    контрольная работа [454,9 K], добавлен 08.07.2010

  • Диагностические характеристики мощных трансформаторов. Виды дефектов мощных силовых трансформаторов. Диагностика механического состояния обмоток методом частотного анализа. Определение влаги в изоляции путем измерения частотной зависимости tg дельта.

    практическая работа [1,2 M], добавлен 10.05.2013

  • Порядок выбора силовых трансформаторов. Ряд вариантов номинальных мощностей трансформаторов. Температурный режим. Технико-экономическое сравнение вариантов трансформаторов. Подсчёт затрат. Издержки, связанные с амортизацией и обслуживанием оборудования.

    курсовая работа [1,1 M], добавлен 30.03.2016

  • Общие сведения о тяговых подстанциях. Разработка принципиальной схемы электрических соединений. Выбор коммутационной и контрольно-измерительной аппаратуры, токоведущих частей, оборудования. Расчет измерительных трансформаторов, их обслуживание, ремонт.

    дипломная работа [2,8 M], добавлен 15.04.2015

  • Назначение, технические характеристики и устройство измерительных трансформаторов напряжения. Описание принципа действия трансформаторов напряжения и способов их технического обслуживания. Техника безопасности при ремонте и обслуживании трансформаторов.

    контрольная работа [258,1 K], добавлен 27.02.2015

  • Расчет размеров движения, расхода электроэнергии, мощности тяговых подстанций. Тип и количество тяговых агрегатов, сечение проводов контактной сети и тип контактной подвески. Проверка сечения контактной подвески по нагреванию. Токи короткого замыкания.

    курсовая работа [333,8 K], добавлен 22.05.2012

  • Термины и определения. Параметры и режимы работы трансформаторов. Задание на расчет необходимой мощности трансформаторов. Зависимости потерь от нагрузки. Расчет КПД трансформатора. Моделирование оптимального режима работы трансформаторов в среде MATHCAD.

    курсовая работа [270,7 K], добавлен 20.02.2009

Работы в архивах красиво оформлены согласно требованиям ВУЗов и содержат рисунки, диаграммы, формулы и т.д.
PPT, PPTX и PDF-файлы представлены только в архивах.
Рекомендуем скачать работу.