Топливо в структуре энергетических ресурсов

Классификация и виды топлив. Происхождение, способы добычи и применение различных видов топлив. Основные современные виды и характеристика топлив. Ядерное и ракетное топливо. Твердое и жидкое топливо. Уровень мирового потребления различных видов топлива.

Рубрика Физика и энергетика
Вид курсовая работа
Язык русский
Дата добавления 16.05.2011
Размер файла 66,1 K

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

2.2 Жидкие топлива

Просты в транспортировке, но при этом велики потери при испарении, разливах и утечках.

2.2.1 Нефть

Состав В зависимости от месторождения нефть имеет различный качественный и количественный состав. Представляет собой маслянистую жидкость, более легкую, чем вода, почти нерастворимая в ней и по элементарному составу содержащая преимущественно углеводороды с подмесью небольшого количества кислородных, сернистых, азотистых и минеральных соединений, что видно не только по элементарному составу, но и по всем свойствам углеводородов.

Общие характеристики

Бывает иногда почти черного цвета, хотя иногда встречается и слабо окрашенная в желто-зеленый цвет и даже бесцветная нефть, имеет специфический запах, распространена в осадочной оболочке Земли. Средняя молекулярная масса 220…300 г/моль (редко 450…470). Плотность 0,65…1,05 (обычно 0,82…0,95) г/смі; нефть, плотность которой ниже 0,83, называется легкой, 0,831…0,860 -- средней, выше 0,860 -- тяжелой. Плотность нефти, как и других углеводородов, сильно зависит от температуры и давления. Она содержит большое число разных органических веществ и поэтому характеризуется не температурой кипения, а температурой начала кипения жидких углеводородов (обычно > 28 °C, реже ? 100 °C в случае тяжелых немфтей) и фракционным составом -- выходом отдельных фракций, перегоняющихся сначала при атмосферном давлении, а затем под вакуумом в определенных температурных пределах, как правило до 450…500 °С (выкипает ~ 80 % объема пробы), реже 560…580 °С (90…95 %). Температура кристаллизации от ?60 до + 30 °C; зависит преимущественно от содержания в нефти парафина (чем его больше, тем температура кристаллизации выше) и легких фракций (чем их больше, тем эта температура ниже). Вязкость изменяется в широких пределах (от 1,98 до 265,90 ммІ/с для различных немфтей, добываемых в России), определяется фракционным составом нефти и ее температурой (чем она выше и больше количество легких фракций, тем ниже вязкость), а также содержанием смолисто-асфальтеновых веществ (чем их больше, тем вязкость выше). Удельная теплоемкость 1,7…2,1 кДж/(кг•К); удельная теплота сгорания (низшая) 43,7…46,2 МДж/кг; диэлектрическая проницаемость 2,0…2,5; электрическая проводимость от 2•10-10 до 0,3•10?18 Ом?1•см

Происхождение

Выдвинуто много теорий, объясняющих происхождение нефти, из них основные - органическая (биогенная) и неорганическая (абиогенная). Большинство ученых в России и за рубежом являются сторонниками концепции биогенного образования нефти.

Согласно органической теории, нефть - жидкая гидрофобная фаза продуктов фоссилизации (захоронения) органические вещества (керогена) в водно-осадочных отложениях. Нефтеобразование представляет собой многостадийный, весьма продолжительный (обычно много млн. лет) процесс, начинающийся еще в живом веществе. Обязательное его требование - существование крупных областей погружения земной коры (осадочных бассейнов), в ходе развития которых породы, содержащие органическое вещество, могли достичь зоны с благоприятными термобарическими условиями для образования нефти. Основное исходное вещество нефти - планктон, обеспечивающий наибольшую биопродукцию в водоемах и накопление в осадках органические вещества сапропелевого типа, характеризуемого высоким содержанием водорода. Генерирует нефть также гумусовое вещество, образующееся главным образом из растительных остатков.

К неорганическим теориям происхождения нефти относятся минеральная, или карбидная (Д.И.Менделеев, 1877), космическая (В. Д. Соколов, 1889), вулканическая (Ю. Кост, 1905). Общее для этих и менее распространенных неорганических теорий - синтез углеводородов путем взаимодействия карбидов металлов с водой и компанентами (идея Менделеева), а также по схеме Фишера-Тропша из водорода и оксидов углерода.

Применение

Сырая нефть непосредственно почти не применяется. Для получения из нее технически ценных продуктов, главным образом моторных топлив, растворителей, сырья для химической промышленности, ее подвергают переработке. Нефть занимает ведущее место в мировом топливно-энергетическом балансе: доля ее в общем потреблении энергоресурсов составляет 48 %. В перспективе эта доля будет уменьшаться вследствие возрастания применения атомной и иных видов энергии, а также увеличения стоимости и уменьшения добычи.

В связи с быстрым развитием в мире химической и нефтехимической промышленности, потребность в нефти увеличивается не только с целью повышения выработки топлив и масел, но и как источника ценного сырья для производства синтетических каучуков и волокон, пластмасс, моющих средств, пластификаторов, присадок, красителей и др. (более 8 % от объема мировой добычи). Среди получаемых из нефти исходных веществ для этих производств наибольшее применение нашли: парафиновые углеводороды -- метан, этан, пропан, бутаны, пентаны, гексаны, а также высокомолекулярные (10…20 атомов углерода в молекуле); нафтеновые; ароматические углеводороды -- бензол, толуол, ксилолы, этилбензол; олефиновые и диолефиновые -- этилен, пропилен, бутадиен; ацетилен. Нефть уникальна именно комбинацией качеств: высокая плотность энергии (на тридцать процентов выше, чем у самых качественных углей), нефть легко транспортировать (по сравнению с газом или углем, например), наконец, из нефти легко получить массу вышеупомянутых продуктов. Истощение ресурсов нефти, рост цен на нее и др. причины вызвали интенсивный поиск заменителей жидких топлив.

Способы добычи

Породы с крупными порами, в которых собирается нефть, называются резервуарными или коллекторами. Поры между частицами заполняются смесью нефти, газа и воды; эта смесь в процессе уплотнения выжимается и тем самым принуждается к миграции из пор пород.

Существуют три, самых распространённых, способа добычи нефти:

? фонтанный - он же самый простой способ добычи. После того как скважина пробурена и освоена необходимо начать добывать из нее нефть. Хотя нужно отметить, что не из всех даже эксплуатационных скважин добывается нефть. Существуют так называемые нагнетательные скважины. В них наоборот закачивается только не нефть, а вода. Это необходимо для эксплуатации месторождения в целом и об этом мы поговорим попозже. Как правило, фонтанируют скважины только в начале своего жизненного цикла, т.е. сразу после бурения. Через некоторое время давление в пласте снижается и фонтан иссякает. Конечно, если бы на этом прекращалась эксплуатация скважины, то под землей оставалось бы более 80 % нефти. В процессе освоения скважины в нее опускается колонна насосно-компрессорных труб (НКТ). Если скважина эксплуатируется фонтанным способом, то на поверхности устанавливают специальное оборудование - фонтанную арматуру. После того, когда давление в скважине уменьшится, и скважина начнет давать совсем мало нефти, как посчитают специалисты, ее переведут на другой способ эксплуатации.

? газлифтный - специфичный способ добычи. После прекращения фонтанирования из-за нехватки пластовой энергии переходят на механизированный способ эксплуатации скважин, при котором вводят дополнительную энергию извне (с поверхности). Одним из таких способов, при котором вводят энергию в виде сжатого газа, является газлифт. Газлифт (эрлифт) -- система, состоящая из эксплуатационной (обсадной) колонны труб и опущенных в нее НКТ, в которой подъем жидкости осуществляется с помощью сжатого газа (воздуха). Иногда эту систему называют газовый (воздушный) подъемник. Способ эксплуатации скважин при этом называется газлифтным. По схеме подачи от вида источника рабочего агента -- газа (воздуха) различают компрессорный и бескомпрессорный газлифт, а по схеме действия -- непрерывный и периодический газ лифт. В затрубное пространство нагнетают газ высокого давления, в результате чего уровень жидкости в нем будет понижаться, а в НКТ -- повышаться. Когда уровень жидкости понизится до нижнего конца НКТ, сжатый газ начнет поступать в НКТ и перемешиваться с жидкостью. В результате плотность такой газожидкостной смеси становится ниже плотности жидкости, поступающей из пласта, а уровень в НКТ будет повышаться. Чем больше будет введено газа, тем меньше будет плотность смеси и тем на большую высоту она поднимется. При непрерывной подаче газа в скважину жидкость (смесь) поднимается до устья и изливается на поверхность, а из пласта постоянно поступает в скважину новая порция жидкости.

? насосный - часто применяемый способ добычи. При помощи него добывается около 85 % всей добываемой на нашей планете нефти. Глубина нефтяных скважин может варьироваться от нескольких десятков (очень редко) и сотен метров до нескольких километров. Ширина скважин может достигать величины от 10 см до 1метра. На территории России залежи нефти находятся на очень больших глубинах - от 1000 до 5000 метров. Важные нефтегазоносные области окружают Мексиканский залив и продолжаются в его подводную часть. Они включают богатые месторождения Техаса и Луизианы, Мексики, о.Тринидад, побережья и внутренних районов Венесуэлы. Крупные нефтегазоносные области располагаются в обрамлении Черного, Каспийского и Красного морей и Персидского залива. Эти районы включают богатые месторождения Саудовской Аравии, Ирана, Ирака, Кувейта, Катара и Объединенных Арабских Эмиратов, а также Баку, Туркмении и западного Казахстана. Нефтяные месторождения островов Борнео, Суматра и Ява составляют основные зоны полезных ископаемых Индонезии. Открытие в 1947 нефтяных месторождений в Западной Канаде и в 1951 в Северной Дакоте положило начало новым важным нефтегазоносным провинциям Северной Америки. В 1968 были открыты крупнейшие месторождения у северного побережья Аляски. В начале 1970-х годов крупные нефтяные месторождения были обнаружены в Северном море у берегов Шотландии, Нидерландов и Норвегии. Небольшие нефтяные месторождения имеются на побережьях большинства морей и в отложениях древних озер. Конечно же сейчас нефть не добывают, просто дожидаясь когда же она заполнит природный колодец или выжимая известковые породы, пропитанные углеводородами. В реальных условиях способ доступа к нефтяным месторождениям мало чем изменился по отношению к чуть более чем вековой давности.

2.2.2 Масло

Общие характеристики Cобирательное название ряда химических веществ или смесей веществ, не растворяющихся в воде. Основных групп "масел" три: некоторые "масла" являются жирами, другие -- продуктами переработки нефти, выделяется также важная группа -- эфирные масла. Все масла в той или иной степени гидрофобны (или, что то же -- липофильны). Многие масла находятся в жидкой фазе при нормальных условиях (кроме кокосового, сливочного). Эмульгаторы позволяют создавать смеси масел с водой.

Применение

-Съедобные растительные и животные масла широко используются в приготовлении пищи.

-Применяются как растворители витаминов и ароматических веществ

-Топливо

-Смазочные материалы, составляющие смазочно-охлаждающих технических средств (СОТС/СОЖ) в металлообработке

-Рабочие жидкости гидропривода

-теплоносители в тепловом оборудовании (теплотехнике)

-Электроизоляция трансформаторов, реакторного оборудования, масляных выключателей (а в последних - также в качестве дугогасящей среды)

-Материалы в изобразительном искусстве (Живопись масляными красками)

топливо ядерный ракетный добыча

2.2.3 Спиртым

Состав Органические соединения, содержащие одну или несколько гидроксильных групп (гидроксил, OH), непосредственно связанных с насыщенным атомом углерода, находящемся в состоянии sp3 гибридизации. Спирты можно рассматривать как производные воды H2O, в которых один атом водорода замещен на органическую функциональную группу: R-OH.

Общие характеристики

Классификация спиртов разнообразна и зависит от того, какой признак строения взят за основу.

1. В зависимости от количества гидроксильных групп в молекуле спирты делят на:

а) одноатомные (одержат одну гидроксильную ОН-группу), например, метанол СН3ОН, этанол С2Н5ОН, пропанол С3Н7ОН

б) многоатомные (две и более гидроксильных групп), например, этиленгликоль HO-СH2-CH2-OH, глицерин HO-СH2-СН(ОН)-CH2-OH, пентаэритрит С(СН2ОН)4.

2. По типу атома углерода, с которым связана группа ОН, спирты делят на:

а) первичные, у которых ОН-группа связана с первичным атомом углерода. Первичным называют атом углерода (выделен красным цветом), связанный всего с одним углеродным атомом. Примеры первичных спиртов - этанол СH3-CH2-OH, пропанол СH3-CH2-CH2-OH.

б) вторичные, у которых ОН-группа связана с вторичным атомом углерода. Вторичный атом углерода (выделен синим цветом) связан одновременно с двумя атомами углерода, например, вторичный пропанол, вторичный бутанол.

в) третичные, у которых ОН-группа связана с третичным атомом углерода. Третичный углеродный атом (выделен зеленым цветом) связан одновременно с тремя соседними атомами углерода, например, третичный бутанол и пентанол.

3. По строению органических групп, связанных ОН-группой, спирты подразделяют на предельные (метанол, этанол, пропанол), непредельные, например, аллиловый спирт СН2=СН-СН2-ОН, ароматические (например, бензиловый спирт С6Н5СН2ОН), содержащие в составе группы R ароматическую группу.

Непредельные спирты, у которых ОН-группа "примыкает" к двойной связи, т.е. связана с атомом углерода, участвующим одновременно в образовании двойной связи (например, виниловый спирт СН2=СН-ОН), крайне нестабильны и сразу же изомеризуются в альдегиды или кетоны:

Получение спиртов

Химический способ

Занимая одну из центральных позиций в органической химии, спирты могут быть получены из множества других соединений. На практике в качестве исходных веществ для синтеза спиртов наиболее часто используют алкилгалогениды -- щелочной гидролиз или реакция с супероксидом калия; алкены -- кислотная гидратация, реакция гидроксимеркурирования - демеркурирования или гидроборирование с последующим окислением, а также промышленные методы оксо-синтеза; карбонильные соединения -- восстановление или взаимодействие с реактивами Гриньяра.

Применение спиртов

Способность спиртов участвовать в разнообразных химических реакциях позволяет их использовать для получения всевозможных органических соединений: альдегидов, кетонов, карбоновых кислот простых и сложных эфиров, применяемых в качестве органических растворителей, при производстве полимеров, красителей и лекарственных препаратов.

Метанол СН3ОН используют как растворитель, а также в производстве формальдегида, применяемого для получения фенолформальдегидных смол, в последнее время метанол рассматривают как перспективное моторное топливо. Большие объемы метанола используют при добыче и транспорте природного газа. Метанол - наиболее токсичное соединение среди всех спиртов, смертельная доза при приеме внутрь - 100 мл.

Этанол С2Н5ОН - исходное соединение для получения ацетальдегида, уксусной кислоты, а также для производства сложных эфиров карбоновых кислот, используемых в качестве растворителей. Кроме того, этанол - основной компонент всех спиртных напитков, его широко применяют и в медицине как дезинфицирующее средство.

Бутанол используют как растворитель жиров и смол, кроме того, он служит сырьем для получения душистых веществ (бутилацетата, бутилсалицилата). В шампунях он используется как компонент, повышающий прозрачность растворов.

Бензиловый спирт С6Н5-CH2-OH в свободном состоянии (и в виде сложных эфиров) содержится в эфирных маслах жасмина и гиацинта. Он обладает антисептическими (обеззараживающими) свойствами, в косметике он используется как консервант кремов, лосьонов, зубных эликсиров, а в парфюмерии - как душистое вещество.

Фенетиловый спирт С6Н5-CH2-CH2-OH обладает запахом розы, содержится в розовом масле, его используют в парфюмерии.

Этиленгликоль HOCH2-CH2OH используют в производстве пластмасс и как антифриз (добавка, снижающая температуру замерзания водных растворов), кроме того, при изготовлении текстильных и типографских красок.

Диэтиленгликоль HOCH2-CH2OCH2-CH2OH используют для заполнения тормозных гидравлических приспособлений, а также в текстильной промышленности при отделке и крашении тканей.

Глицерин HOCH2-CH(OH)-CH2OH применяют для получения полиэфирных глифталевых смол, кроме того, он является компонентом многих косметических препаратов. Нитроглицерин - основной компонент динамита, применяемого в горном деле и железнодорожном строительстве в качестве взрывчатого вещества.

Пентаэритрит (HOCH2)4С применяют для получения полиэфиров (пентафталевые смолы), в качестве отвердителя синтетических смол, как пластификатор поливинилхлорида, а также в производстве взрывчатого вещества тетранитропентаэритрита.

Многоатомные спирты ксилит НОСН2-(СНОH)3-CН2ОН и сорбит НОСН2- (СНОН)4-СН2OН имеют сладкий вкус, их используют вместо сахара в производстве кондитерских изделий для больных диабетом и людей страдающих от ожирения. Сорбит содержится в ягодах рябины и вишни.

2.3 Газообразные топлива

Еще более транспортабельны, при этом еще большие потери, а также при нормальных условиях ниже энергетическая плотность.

2.3.1 Пропамн

Состав C3H8 -- органическое вещество класса алканов.

Обшие харастеристики

Бесцветный газ без запаха; tпл. -187,69 °С, температура кипения -42,07 °С; 1,3378; tкрит 96,84 °С, pкрит 4,24 МПа, dкрит 220,5 кг/м3; h (жидкости, мПа·с) 1,02 (140 °С), 0,204 (-40°С), g 0,0072 Н/м (20 °С); давление пара (кПа); 0,027 (-140 °С), 13,01 (-80 °С), 472(0°С), 3775 (90 °С); 1,654 кДж/(кг·К); 18,83 кДж/моль, -- 2202,0 кДж/моль, -104,6кДж/моль; - 24,267 кДж/моль; 6,133 кДж/(кг·К); теплопроводность жидкости [Вт(м·К)] 0,1947 (-140°С), 0,01159 (40 °С), 0,02024 (48,9 °С); растворяется в диэтиловом эфире, бензоле, хлороформе, растворимость в воде 6,5 мл газа в 100 мл воды (18 °C). Дает бинарные азеотропы (т. кип., % пропана по массе): с аммиаком (-44 °С, 5…10 %), ацетонитрилом (55°С при 1,9 МПа, 2,2 %) и др., с водой образует кристаллогидрат (предельная температура существования 5,5 °С при 0,48 МПа).

При термическом крекинге (750…820 °С) разлагается с образованием метана, этана, этилена и пропилена; преобладает реакция образования этилена: С3Н8 : СН4 + С2Н4. Каталитическое дегидрирование на Сr2О3 при 575 °С приводит к пропилену 95 %-ной чистоты. Пиролиз смеси пропана и этана с рециклом фракции С3 при 775…900 °С и давлении 0,1 МПа используют для получения низших олефинов. При окислении пропана (250…500 °С, 0,1…10,0 МПа) образуются низшие спирты и альдегиды, ацетон, муравьиная и пропионовая кислоты; при нитровании (390…480 °С, 0,1 МПа) - смесь нитропарафинов: нитрометан - 9 %, нитроэтан - 26 %, 1 - нитропропан - 32 %, 2 - нитропропан - 33 %; последние используют как растворители и сырье в тонком органическом синтезе. Термическое хлорирование пропана (250…350 °С) приводит к трудноразделяемой смеси моно- и дихлорпропанов, при повышении температуры до 400…500 °С образуются хлорпропены; исчерпывающее хлорирование в избытке хлора при 550…600 °С - один из промышленных методов получения перхлорэтилена и СС14.

Вредно влияет на центр. нервную систему, при попадании на кожу жидкий пропан может вызвать обморожение.

Происхождение

Пропан содержится в природе газе (0,1…11,0 % по массе); в попутных газах нефтедобычи и нефтепереработки, например в газах каталитического крекинга (16…20%), в газообразных продуктах гидрогенизации бурых, каменных углей и каменноугольной смолы (до 80 %); образуется при синтезе углеводородов по методу Фишера - Тропша.

Способы добычи

Из промышленных газов пропан выделяют ректификацией под давлением, адсорбцией на активированный угле или масляной адсорбцией; выход пропана достигает 98 %. Основной промышленный метод получения пропана (наряду с низшими олефинами) - пиролиз углеводородов в трубчатых печах с добавкой водяного пара.

Применение

Применяют пропан в качестве растворителя для депарафинизации при выделении твердых парафинов из нефти, при производстве сажи из газообразных парафиновых углеводородов, в промышленных холодильниках как хладагент. Широко используется как бытовой и топливный газ и бездымное моторное топливо для автомобилей. Благодаря высокой температуре пламени (1980 °С в воздухе) применяется для некоторых видов газопламенной обработки металлов. Пропан - сырье в производстве этилена и пропилена, нитрометана.

2.3.2 Бутамн

Состав C4H10 -- органическое соединение класса алканов.

В химии название используется в основном для обозначения н-бутана. Такое же название имеет смесь н-бутана и его изомера изобутана CH(CH3)3. Название происходит от корня бут- (английское название масляной кислоты -- butyric acid) и суффикса -ан (принадлежность к алканам).

Общие характеристики

Бесцветный горючий газ, без запаха, легко сжижаемый (ниже 0 °С и нормальном давлении или при повышенном давлении и обычной температуре -- легколетучая жидкость). Растворимость в воде -- 6,1 мг в 100 мл воды (для н-бутана, при 20 °C, значительно лучше растворяется в органических растворителях). Может образовывать азеотропное соединение с водой при температуре около 100 °C и давлении 10 атм

Происхождение

Бутаны - типичные насыщенные алифатичные углеводороды. Содержатся в газовом конденсате и нефтяных газах в количествах (в зависимости от месторождения, % по массе): н-бутан - 0,12…6,54 и 0,16..12,1, изо-бутан - 0,56…0,72 и 0,27…6,01 соответственно.

Способы добычи

В промышленности бутаны выделяют из указанных природных источников и из продуктов каталитического крекинга и гидрокрекинга нефтяных фракций с последней ректификацией. В промышленности изо-бутан получают также из н-бутана; основной способ - каталитическая изомеризация: н-бутан изо-бутан [k1 1,27 (400 К) и 0,84 (500 К)]. Реакцию осуществляют в газовой фазе (150..200 °С, 1,4…2,8 МПа; кат. - Pt на носителе; выход 58…60 % по объему за проход) или в жидкой фазе (50…130 °С, 2,1 МПа; кат. - А1С13; выход 60 %). В наиболее распространенном процессе из бутановой фракции выделяют изо-бутан, а н-бутан смешивают с Н2, нагревают и подвергают изомеризации в газовой фазе. Из продуктов реакции извлекают изо-бутан после охлаждения и отделения фракции, содержащей Н2, которрую возвращают в реактор. В отечественном процессе изомеризацию н-бутана осуществляют в жидкой фазе при 180…220 °С, давлении 3,5…4,0 МПа, мольном соотношении Н2: н-бутан = 1:1; выход изо-бутана за проход 49 % (по массе). На производство 1 т изо-бутана расходуется 1,109 т бутановой фракции, 0,0105 т Н2.

Применение

При свободнорадикальном хлорировании образует смесь 1-хлор- и 2-хлорбутана. Их соотношение хорошо объясняется разницей в прочности С-Н связей в позиции 1 и 2 (425 и 411 кДж/моль). При полном сгорании на воздухе образует углекислый газ и воду. Бутан применяется в смеси с пропаном в зажигалках, в газовых баллонах в сжиженном состоянии, где он имеет запах, так как содержит специально добавленные одоранты. При этом используются "зимние" и "летние" смеси с различным составом. Теплота сгорания 1 кг -- 45,7 МДж (12,72 кВт·ч).

Бутан высокой чистоты и особенно изобутан может быть использован в качестве хладагента в холодильных установках. Производительность таких систем немного ниже, чем фреоновых. Бутан безопасен для окружающей среды, в отличие от фреоновых хладагентов. В пищевой промышленности бутан зарегистрирован в качестве пищевой добавки E943a, а изобутан -- E943b, как пропеллент, например, в дезодорантах. Также применяется в рекреационных целях, так как вызывает галлюцинации.

3. Нетипичные топлива

3.1 Ямдерное томпливо

Bещество, которое используется в ядерных реакторах для осуществления цепной ядерной реакции деления.

Общая характеристика

Цепная ядерная реакция представляет собой деление ядра на две части, называемые осколками деления, с одновременным выделением нескольких (2…3) нейтронов, которые, в свою очередь, могут вызвать деление следующих ядер. Такое деление происходит при попадании нейтрона в ядро атома исходного вещества. Образующиеся при делении ядра осколки деления обладают большой кинетической энергией. Торможение осколков деления в веществе сопровождается выделением большого количества тепла. Осколки деления -- это ядра, образовавшиеся непосредственно в результате деления. Осколки деления и продукты их радиоактивного распада обычно называют продуктами деления. Ядра, делящиеся нейтронами любых энергий, называют ядерным горючим (как правило, это вещества с нечетным атомным числом). Существуют ядра, которые делятся только нейтронами с энергией выше некоторого порогового значения (как правило, это элементы с четным атомным числом). Такие ядра называют сырьевым материалом, так как при захвате нейтрона пороговым ядром образуются ядра ядерного горючего. Комбинация ядерного горючего и сырьевого материала называется ядерным топливом.

Получение

Урановое топливо

Урановое ядерное топливо получают переработкой руд. Процесс происходит в несколько этапов:

Для бедных месторождений: В современной промышленности в силу отсутствия богатых урановых руд (исключения составляют канадские месторождения несогласия, где концентрация урана доходит до 3 % и австралийских с содержанием урана до 3 %) используется способ подземного выщелачивания руд. Это исключает дорогостоящую добычу руды. Предварительная подготовка идет непосредственно под землей. Через закачные трубы под землю над месторождением закачивается серная кислота, иногда с добавлением солей трехвалентного железа (для окисления урана U(IV) до U(VI)), хотя руды часто содержат железо и пиролюзит, которые облегчают окисление. Через откачные трубы специальными насосами раствор серной кислоты с ураном поднимается на поверхность. Далее он непосредственно поступает на сорбционное, гидрометаллургическое извлечение и одновременное концентрирование урана.

Для рудных месторождений: используют обогащение руды и радиометрическое обогащение руды.

Гидрометаллургическая переработка -- дробление, выщелачивание, сорбционное или экстракционное извлечение урана с получением очищенной закиси-окиси урана U3O8 или диураната натрия Na2U2O7, или диураната аммония.

Перевод урана из оксида в тетрафторид UF4, или из оксидов непосредственно для получения гексафторида UF6, который используется для обогащения урана по изотопу 235.

Обогащение методами газовой термодиффузии или центрифугированием:

UF6, обогащенный по 235 изотопу переводят в двуокись UO2, из которой изготавливают "таблетки" ТВЭЛов или получают другие соединения урана с этой же целью.

Ториевое топливо

Торий в настоящее время в качестве сырья для производства ядерного топлива не применяется в силу следующих причин:

· запасы урана достаточно велики;

· извлечение тория сложнее и дороже из-за отсутствия богатых месторождений;

· образование 232U, который, в свою очередь, образует г-активные ядра 212Bi, 208Te, затрудняющие производство ТВЭЛов;

· переработка облучённых ториевых ТВЭЛов сложнее и дороже переработки урановых.

Плутониевое топливо

Плутониевое ядерное топливо в настоящее время также не применяется, что связано с его крайне сложной химией. За многолетнюю историю атомной промышленности неоднократно предпринимались попытки использования плутония как в виде чистых соединений, так и в смеси с соединениями урана, однако успехом они не увенчались. Топливо для АЭС, содержащее плутоний, называется MOX-топливо. Применение его в реакторах ВВЭР нецелесообразно из-за уменьшения примерно в 2 раза периода разгона, на что не рассчитаны штатные системы управления реактором.

Применение

Ядерное топливо используется в ядерных реакторах, где оно обычно располагается в герметично закрытых тепловыделяющих элементах в виде таблеток размером в несколько сантиметров. К ядерному топливу применяются высокие требования по химической совместимости с оболочками, у него должна быть достаточная температура плавления и испарения, хорошая теплопроводность, небольшое увеличение объема при нейтронном облучении, технологичность производства.

Металлический уран сравнительно редко используют как ядерное топливо. Его максимальная температура ограничена 660 °C. При этой температуре происходит фазовый переход, в котором изменяется кристаллическая структура урана. Фазовый переход сопровождается увеличением объёма урана, что может привести к разрушению оболочки. При длительном облучении в температурном интервале 200…500 °С уран подвержен радиационному росту. Это явление заключается в том, что облучённый урановый стержень удлиняется. Экспериментально наблюдалось увеличение длины уранового стержня в полтора раза.

Использование металлического урана, особенно при температуре больше 500 °C, затруднено из-за его распухания. После деления ядра образуются два осколка деления, суммарный объём которых больше объёма атома урана (плутония). Часть атомов - осколков деления являются атомами газов (криптона, ксенона). Атомы газов накапливаются в помрах урана и создают внутреннее давление, которое увеличивается с повышением температуры. За счёт изменения объёма атомов в процессе деления и повышения внутреннего давления газов уран и другие ядерные топлива начинают распухать. Под распуханием понимают относительное изменение объема ядерного топлива, связанное с делением ядер.

Распухание зависит от выгорания и температуры. Количество осколков деления возрастает с увеличением выгорания, а внутреннее давление газа - с увеличением выгорания и температуры. Распухание ядерного топлива может привести к разрушению оболочки. Ядерное топливо менее подвержено распуханию, если оно обладает высокими механическими свойствами. Металлический уран как раз не относится к таким материалам. Поэтому применение металлического урана в качестве ядерного топлива ограничивает выгорание, которое является одной из главных оценок экономики атомной энергетики.

3.2 Ракетное топливо

Вещество, используемое в ракетных двигателях различных конструкций для получения тяги и ускорения ракеты. Само понятие ракетного топлива имеет довольно широкое толкование, так как в связи с развитием ракетной техники и развитием новых видов ракетных двигателей появились и новые способы ускорения ракет, например ядерный ракетный двигатель, или ионный и.т.д. Поэтому понятие ракетного топлива как некой горючей жидкости и окислителя не будет отражать весь диапазон ракетных топлив, от химических одно- и двухкомпонентных, до ядерных и термоядерных и использования антивещества. Ракетное топливо подразделяется на различные группы, типы и виды; такое же подразделение имеет место при рассмотрении отдельных видов ракетных топлив.

Общие характеристики

В зависимости от назначения и типа ракетных двигателей обычно различают жидкие, гелеобразные, твердые и гибридные ракетные топлива. Энергетические показатели и эффективность ракетных топлив характеризуется удельным единичным импульсом, который определяется т. наз. теплопроизводительностью топлива и термической кпд двигателя ht.

Жидкие ракетные топлива (ЖРТ) подразделяют на одно- и двухкомпонентные. Однокомпонентные топлива, не нуждающиеся при сгорании в подаче окислителя извне соединения типа гидразина N2H4, этиленоксид, Н2О2 (при нагревании в камере РД распадаются с выделением большого количествава теплоты и газообразных продуктов), органические нитраты (типа метилнитрата, нитроглицерина), низшие нитропарафины - обладают относительно низкими энергетическими свойствами (напрмер, 100%-ный Н2О2 имеет H = 2,9 МДж/кг и Руд = 145 с); применяют как вспомогательное топлива для систем управления и ориентации летательных аппаратов, приводов турбонасосов РД.

Двухкомпонентные топлива состоят из горючего и окислителя. Горючим служат: лигроино-керосиновые и керосино-газойлевые нефтяные фракции (пределы выкипания 150…315 °С), жидкий Н2, СН4, С3Н8, спирты (например, этиловый, фурфуриловый); N2H4 и его производные (1,1-диме-тил- и фенилгидразины и др.); жидкий NH3, анилин, метил-, диметил- и триметиламины; бороводороды типа ВnHn+4-дека- и дибораны, дигидробораны ВnHn+6 типа пентаборана; металлсодержащие соед. (гомог. системы) - триэтил-алюминий, гидриды МеН2, борогидриды Ме(ВН4)n, где Ме-А1, Li, Be; гетерогенные суспензии металлов в N2H4 и углеводородах. В качестве окислителя, напр., применяют: жидкий О2, Н2О2; конц. HNO3, NO, N2O4, тетранитрометан; жидкие F2 и С12, OF2, C1F3, NO3F. При подаче в камеру сгорания РД эти топлива могут самовоспламеняться (концентрированная HNO3 с анилином, N2O4 с N2H4); иногда самовоспламенение не происходит (напр., смесь О22). При использовании суспензий металлов в горючем, например, Be в жидком Н2, удается повысить Руд; макс. импульс имеют ЖРТ: H2-F2, H2-OF2, Н22.

Гелеобразные ракетные топлива (ГРТ) - обычно загущенное солями высокомолекулярное органическое к-т или спецециальными добавками горючее, например N2H4 либо углеводороды, реже - входящие в состав ЖРТ окислители. Повышение Руд достигается добавлением порошков металлов (N2H4-Be-O2).

Твердые ракетные топлива (ТРТ), подразделяемые на баллиститные (прессованные - нитроглицериновые пороха)и смесевые (литые), применяют в виде канальных шашек, горящих по внешней либо внутренней поверхности зарядов. Смесевые топлива гетерогенной смеси окислителя (как правило, NH4C1O4, 60 70 %), горючего связующего, пластификатора (5…10 %), металла (порошки Al, Be, Mg и их гидридов, 10…20 %), отвердителя (0,5…2,0 %) и катализатора горения (0,1…1,0 %); Руд = 200 с. Основные преимущества применения перед ЖРТ: отсутствие необходимости предварительной заправки им РД перед стартом и постоянная готовность к нему; относительно простота конструкции и эксплуатации двигателя.

Гибридные ракетные топлива - системы, содержащие горючее в твердом состоянии (в камере сгорания), а окислитель в жидкой фазе (в отдельной емкости) или наоборот. Например, горючими могут служить: отвердевшие нефтепродукты, N2H4, полимеры и их смеси с порошками - Al, Be, BeH2, LiH2 или окислителями-HNO3, N2O4, H2O2, FC1O3, C1F3, О2, F2, OF2. Макс. Руд имеют топлива: BeH2-F2, ВеН22О2, ВеН22.

Применение

Используют как источник энергии и рабочее тело для создания движущей силы в ракетных двигателях, которые применяются в космической, авиационной, военной и других областях техники.

4. Уровень мирового потребления различных видов топлива

В зарубежной литературе в связи с развитием мировой энергетики много внимания уделяется проблеме теологических запасов минерального топлива. Эта проблема рассматривается не только с национальной, но и с общемировой точки зрения, в основном с целью определения периода времени, на который человечество обеспечено классическими видами топлива - нефтью, природным газом, каменным и бурым углем. Интерес к проблеме запасов минерального топлива обусловливается следующим. Сто лет назад - в 1860 г. на земном шаре насчитывалось 1270 млн. человек и потреблялось примерно 555 млн. т топлива в год (в условном исчислении), или 0,44 т на одного человека. В I960 г. население земного шара составляло 2983 млн. человек, добывалось несколько более 5,230 млн. т топлива в год (без дров и суррогатов -4600 млн. т), или 1,75 т па одного человека. Таким образом, за прошедшие 100 лет население земного шара увеличилось в 2,5 раза, а потребление топлива на душу населения - в 4 раза. Но дело заключается не только в приведенных цифрах, том, что более половины добытого на 1 января 1960 г. угля было получено после 1930 т., половина нефти - после 1949 г. и половина природного таза - после 1952 г. За последние десять лет мировая добыча нефти возросла в два раза (в 1953 г. добыто 655 млн. т, а в 1963 г.- 1304 млн. т). Следовательно, в последние годы наблюдается стремительный рост потребления топлива и процесс этот далеко не закончен.

Многие экономисты сходятся на том, что в 2000 г. население земного шара составит 5 млрд. человек, будет добываться 25 млрд. т условного топлива, или 5,0 т на человека.

Таким образом, предполагается, что за 40 лет население мира увеличится в 1,7 раза, а расход топлива на одного человека - в 2,8 раза. По подсчетам французского специалиста за истекшие 100 лет а земном шаре было израсходовано следующее количество энергии:

(Здесь принято, что 1 т каменного угля равна 1,0 т условного топлива, 1 т бурого угля - 0,4 т; 1 т нефти - 1,4 т, 1000 ж газа - 1,3 т условного топлива). За это же время произошли коренные структурные изменения в мировом потреблении топлива и отходов сельского хозяйства, используемых как топливо. Следующие данные характеризуют это положение (в процентах к итогу)

Вероятно, вызывает удивление, что в топливном балансе большое удельное значение составляют отходы сельского хозяйства. Но мы должны вспомнить, что только B одной Индии общее производство кизяка в пересчете на условное топливо достигает добычи каменного и бурого угля в ФРГ, а в Турции, например, сжигаются почти все растительные остатки с полей для отопления деревенских жилищ и для приготовления опресноков (хлеба).

Природный газ

Доказанные запасы природного газа на 1 января 1962 г. оценивались в 7,58трилл.ж. Прогнозные запасы газа составляют 34 трилл., из которых за неопределенно длинный промежуток времени может быть извлечено 27…28 трилл..

Уголь. Запасы угля, по подсчетам Геологического управления Министерства внутренних дел США, на 1 января l960 г. составляли 800 млрд. т условного топлива при коэффициенте извлечения 50 %. При существующих ценах на уголь и методах его извлечения промышленные запасы угля составляют около 20 млрд. т

условного топлива. В 1980 г. в США предполагается израсходовать (в пересчете на условное топливо) 0,8 млрд. т угля, 0,77 млрд. т нефти и 570 млрд. м3 природного газа. Запасов угля по этому уровню потребления хватит на 1000 лет, нефти на 70 лет и газа на 49 лет.

В мировых прогнозных извлекаемых запасах топлива уголь занимает почти 83 %, нефть свыше 10 %, природный газ около 5 %, торф до 11 %. Можно считать среднюю обеспеченность человечества достоверными Запасами топлива по уровню потребления 1980 г. на 300…320 лет и по уровню потребления 2000 г. - на 140…150 лет. Естественно, не следует забывать условности этих цифр.

В зарубежной литературе приводится оценка возможного использования энергии ветра, (морского прибоя, тепловой энергии морей и геотермической энергии. Большинство авторов сходится на том, что эти виды энергии могут удовлетворить только 15 % общей потребности. Таким образом, в ближайшем будущем основой обеспечения человеческого общества продолжает оставаться развитие добычи классических видов топлива.

Можно сделать такие выводы.

1. Каменный и бурый угли являются наиболее распространенными видами топлива, обеспечивающими надежное развитие энергетики.

2. Ограниченные запасы нефти, вероятно, приведут к тому, что через 20…30 лет расходование этого ценного топлива сократится и оно будет переключено только на транспортную энергетику и химию.

3. Вскоре, вероятно, будет признано (целесообразным пользоваться природным газом в основном для химии, технологической и бытовой энергетики.

4. Радиоактивные вещества могут занять существенное место в обеспечении энергетики в связи с научными и техническими достижениями, которые имеются и будут достигнуты в этой области.

Задачи науки в совершенствовании топливной промышленности

В заключение рассмотрим задачи науки в связи с развитием топливных отраслей промышленности и составлением оптимальных топливно-энергетических балансов.

Важнейшая задача геологической науки - обеспечить научным прогнозом, новыми методами поисков и разведки быстрейшее освоение новых нефтяных и газовых месторождений, особенно на Востоке страны. Стоимость геологоразведочных работ на нефть и газ еще очень велика и составляет почти 50 % всех затрат на разведку полезных ископаемых по стране. Геологическая наука должна разработать способы поисков и разведки, которые бы при достаточной достоверности данных о запасах позволили снизить объемы разведочного бурения скважин. Огромные масштабы добычи нефти и газа ставят перед геологической наукой поистине грандиозные задачи.

Научным учреждениям горного профиля, связанным с разработкой нефтяных, газовых, угольных месторождений, предстоит поработать над разрешением ряда больших проблем улучшения техники и технологии производства, дальнейшего роста производительности труда и снижения себестоимости всех видов топлива. К числу важнейших относится прежде всего проблема более эффективного использования нефтяных месторождений путем повышения коэффициента нефтеотдачи. Как указывалось выше, коэффициент нефтеотдачи невелик - в проектах он принимается не более 0,5…0,6. Повышение его может резко снизить стоимость геологоразведочных работ и поможет более экономно расходовать природные ресурсы. Наряду с широким внедрением уже известных прогрессивных способов интенсификации разработки месторождений и увеличения нефтеотдачи должны изыскиваться новые эффективные способы добычи нефти. В ближайшие годы должна быть решена задача воздействия на нефтяные пласты поверхностно активными веществами с целью повышения коэффициента нефтеотдачи и интенсификации разработки. Серьезные задачи стоят в области бурения, совершенствования буровой техники. Должна быть создана надежная техника для бурения скважин глубиной 7...10 км.

Заключение

История развития человечества теснейшим образом связана с получением и использованием энергии. Уже в древнем мире люди использовали тепловую энергию для обогрева жилища, приготовления еды, изготовления из меди, бронзы, железа и других металлов предметов быта, инструментов и т.д.С древнейших времен известны уголь и нефть - вещества, дающие при сжигании большое количество теплоты. Сейчас формулировка "топливо" включает все вещества, которые дают при сжигании большое количество теплоты, широко распространены в природе и (или) добываются промышленным способом. К топливу относятся нефть и нефтепродукты (керосин, бензин, мазут, дизельное топливо), уголь, природный горючий газ, древесина и растительные отходы (солома, лузга и т.п.), торф, горючие сланцы, а в настоящее время и вещества, используемые в ядерных реакторах на АЭС и ракетных двигателях. Таким образом, классификацию топлива можно провести, например по его агрегатному состоянию: твердое (уголь, торф, древесина, сланцы), жидкое (нефть и нефтепродукты) и газообразное (природный газ). Также можно разделить виды топлива и по его происхождению: растительное, минеральное и продукты промышленной переработки. Свойства топлива зависят главным образом от его химического состава. Основным элементом любого топлива природного происхождения является углерод (его содержание составляет от 30 до 85 % массы). В состав топлива также входят H, O, N, S, зола, вода. Практическая ценность топлива определяется количеством теплоты, выделяющейся при его полном сгорании. Так, при сжигании 1 кг древесины выделяется теплота, равная 10,2 МДж, каменного угля - 22 МДж, бензина - 44 МДж. Эта величина прямо зависит от содержания в топливе углерода и водорода и обратно - от содержания кислорода и азота. Другая важнейшая характеристика топлива - его жаропроизводительность, оцениваемая значением максимальной температуры, какую теоретически можно получить при полном сгорании топлива в воздухе. При сгорании дров, например, максимальная температура не превышает 1600 С, каменного угля - 2050 С, бензина - 2100 С. Доля топлива в общей структуре энергоресурсов, потребляемых человечеством, преобладает примерно с начала нашей эры. До 1970-х гг. на первом месте был уголь, сейчас это положение заняла нефть. По-видимому, в обозримом будущем ведущая роль останется за природным топливом.

Для сопоставления запасов различных видов топлива и уровня его использования применяют так называемое условное топливо, удельная теплота сгорания которого равна 7000 ккал/кг (29,3 МДж/кг). По существу все добываемое топливо сжигается, лишь около 10 % нефти и газа перерабатываются химической промышленностью. Наибольшее количество топлива расходуется на тепловых электростанциях (ТЭС), в различного рода тепловых двигателях, на технологические нужды (Например, при выплавке металла, для нагрева заготовок в кузнечных и прокатных цехах), а также на отопление жилых, общественных и производственных помещений. Основной недостаток природного топлива - его крайне медленная восполняемость. Существующие ныне запасы были образованы десятки и сотни миллионов лет назад. В то же время добыча топлива непрерывно увеличивается, что в будущем может привести к серьезному глобальному энергетическому кризису. С 1970-х гг. в мире произошел переход к другим принципам потребления ресурсов вообще и топлива в частности. Человечество должно переориентироваться на другие энергоресурсы, прежде всего на огромные гидроресурсы Земли. Все процессы добычи, переработки и транспортировки топлива охватывает топливная промышленность, которая является составной частью топливно-энергетического комплекса (ТЭК). Все отрасли ТЭК взаимосвязаны. Чтобы учитывать пропорции в добыче различных видов топлива, его распределении и использовании в стране, применяют топливные балансы - таблицы, выражающие соотношения добычи различных видов топлива и их использованием в хозяйстве. Топливные балансы составляются, как правило, на основе единицы условного топлива. В топливном балансе СССР до 1990 г. лидировала нефть, с 1990 г. на первое место вышел газ. Эта ситуация сохраняется до сих пор, а газ является основным экспортным продуктом России. Топливная промышленность нашей страны имеет редкую возможность опираться исключительно на собственные запасы.

Список литературы

1. Федоров М.П. Вторичные ресурсы // Известия РАН. Энергетика. 2002. №6. С 7-11

2. Шамонина А.В, Макаров В.В. Спирты как добавки к бензинам // Автомобильная промышленность. 2005. №8. С 11-12.

3. Гуреев А.А., Серегин Е.П., Азев B.C. Квалификационные методы испытаний нефтяных топлив. М, Химия, 1984.- 200 с.; ил.

Размещено на Allbest.ru


Подобные документы

  • Органическое и ядерное топливо, виды, классификация по агрегатному состоянию. Состав газообразного топлива. Добыча органического топлива, проблемы правового и экологического характера. Современная ситуация на мировом газовом рынке, роль сланцевого газа.

    реферат [20,3 K], добавлен 27.01.2012

  • Сущность топлива, его разновидности и применение. Основные процессы горения жидких, твердых и газообразных топлив. Содержание летучих веществ в ископаемом твердом топливе. Время протекания физических процессов. Температура кипения жидких топлив.

    реферат [64,9 K], добавлен 04.12.2014

  • Марки реактивных топлив США и России. Различные марки реактивных топлив для реактивных двигателей самолетов. Основные требования к физико-химическим свойствам реактивных топлив, присадкам. Получение и перспективы производства реактивных топлив в России.

    реферат [1,7 M], добавлен 21.03.2013

  • История развития процессов получения и использования энергии. Существующие виды топлива. Технологические свойства жидкого топлива. Применение газообразного топлива в различных отраслях народного хозяйства. Тепловое действие электрического тока.

    реферат [27,1 K], добавлен 02.08.2012

  • Значительный прирост хладоресурса. Экспериментальные установки для изучения закономерностей образования отложений в условиях жидкофазного окисления углеводородных топлив. Теплообмен при нагреве углеводородных топлив в условиях реализации хладоресурса.

    автореферат [700,4 K], добавлен 30.01.2003

  • Устройство и конструктивные особенности топки с шурующей планкой, предназначенной для сжигания многозольных бурых и неспекающихся каменных углей. Широкое применение данного вида топочного оборудования, начиная от утилизации мусора до теплоснабжения.

    реферат [3,6 M], добавлен 02.08.2012

  • Использование энергии биомассы для получения альтернативных видов моторных топлив для двигателей внутреннего сгорания, их преимущество; технология производства биогазов, биоэтанола и биодизеля из сельскохозяйственных и бытовых отходов; зарубежный опыт.

    контрольная работа [479,8 K], добавлен 16.01.2011

  • Стадии производства энергии. Виды газообразного топлива. Нефть как природная маслянистая горючая жидкость, состоящая из сложной смеси углеводородов и некоторых других органических соединений. Ископаемое, растительное и искусственное твердое топливо.

    курсовая работа [26,6 K], добавлен 24.09.2012

  • Кинетика горения. Влияние влажности на горение капли углеводородных топлив. Критическое условие воспламенения капли и его зависимость. Метод Зельдовича. Гистерезис горения. Срыв пламени. Горение в потоке воздуха. Естественная и вынужденная конвекция.

    курсовая работа [2,5 M], добавлен 28.03.2008

  • Использование на производстве синтетического и дизельного топлива, эталона и бутилового спирта. Особенности применения на автотранспорте биодизеля, диметилового эфира. Альтернативные виды топлива. Изучение положительных и отрицательных свойств метанола.

    презентация [775,1 K], добавлен 16.12.2014

Работы в архивах красиво оформлены согласно требованиям ВУЗов и содержат рисунки, диаграммы, формулы и т.д.
PPT, PPTX и PDF-файлы представлены только в архивах.
Рекомендуем скачать работу.