Ефекти ехо-камери та перспективи їх практичного використання
Електромагнітні імпульси у середовищі, взаємодія електромагнітних хвиль з речовиною. Квантовій опис атомів і резонансна взаємодія з електромагнітним полем, площа імпульсів. Характеристика явища фотонної ехо-камери та його експериментальне спостереження.
Рубрика | Физика и энергетика |
Вид | курсовая работа |
Язык | украинский |
Дата добавления | 13.08.2010 |
Размер файла | 855,2 K |
Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже
Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.
Мал. 4.5 Діаграма трирівненого атому
Вгорі змальована енергетична діаграма трирівневого атома, що збуджується сигнальною хвилею B1 і опорною хвилею B2. Спочатку всі атоми знаходяться в основному стані 1. Внизу показана послідовність імпульсів. Імпульси опорної і сигнальної хвиль (останній затінений) мають прямокутну форму. Тривалість сигнальної хвилі - T. Обоє імпульсу вимикаються одночасно. У момент часу t = 0 включається імпульс опорної хвилі. Імпульс R, що індукується на частоті сигнальної хвилі, показаний затіненим трикутником.
Мал. 4.6. Залежність амплітуди індукованого імпульсу R від часу, відлічуваного з моменту включення опорної хвилі. Тривалість сигнальної хвилі - T = 3. Час t, T і амплітуда R приведені в безрозмірних одиницях. Спектральна ширина неоднорідної лінії а = 10. Верхній графік відповідає випадку B2 / а > 0. Нижній графік показує поведінку індукованого поля для випадку B2 / а = 0.2.
7. Пошуки вирішення проблеми гамма-лазера: пониження порогу генерації за допомогою деструктивної інтерференції каналів резонансного поглинання гамма-квантів.
Досліджено поширення гамма-випромінювання в резонансному середовищі, приготованому за допомогою лазерного поля і гамма-накачування в змозі, яке може підсилювати гамма-випромінювання без інверсії заселеності [14]. Такий стан досягається завдяки двом чинникам. Перший - це пересічення і змішування підрівнів спинів ядер, що знаходяться в основному стані. Таке змішування станів спинів пропонується здійснити за допомогою постійного магнітного поля заданої напруженості, прикладеного уподовж напряму, що становить малий кут з віссю симетрії кристала, в якому знаходяться резонансні для гамма-квантів ядра. Сам кристал повинен володіти некубічною симетрією. Другий чинник - приготування ядер за допомогою лазера в когерентній суперпозиції пересічних станів ядерного спину. Досліджені стаціонарний і імпульсний режими проходження гамма-випромінювання через підсилююче середовище без інверсії заселеності. У стаціонарному режимі знайдена оптимальна довжина області посилення гамма випромінювання. Ця довжина визначається граничною відстанню, на якій відбувається виснаження лазерного накачування, і ефект безінверсного посилення гамма-випромінювання пропадає. У імпульсному режимі лазерне випромінювання створює вікно прозорості для резонансних гамма квантів. Воно «откравается» на якийсь час рівне тривалості лазерного імпульсу. Цей імпульс поширюється в середовищі без втрат, якщо для нього виконується умова самоіндуцированної прозорості. Посилене гамма-випромінювання теж набуває форми імпульсу. Його посилення відбувається завдяки енергії збуджених ядер і перекачування енергії між лазерним імпульсом і гамма-випромінюванням. Перекачування енергії є джерелом порушення самоіндуцированної прозорості для лазерного імпульсу, що також наводить до обмеження області безінверсного посилення.
8. Розглянута динамічна інтерференція каналів поглинання гамма-квантів, створена радіочастотним збудженням ядерних спинів.
Запропоновано використання радіочастотного збудження ядерних спинів в резонансному поглиначі гамма-квантів для прояснення цього поглинача. Показано, що в разі прояснення гамма-кванти в поглиначі мають швидкість істотно меншу швидкості світла у вакуумі. В результаті довжина когерентності кожного кванта може стати порівнянною з розмірами поглинача. Запропоновано використовувати цей ефект для затримки і накопичення квантів у фізично обмеженому об'ємі речовини резонансного поглинача [15].
Висновки
За минулі роки було вивчено багато незвичайних властивостей фотонного відлуння найрізноманітніших модифікацій. Наприклад, ехо-камери в багаторівневих системах, ехо-камери при багатофотонному резонансі, модифікованої ехо-камери. Використовуючи техніку фотонної ехо-камери отримують багату інформацію про структуру, динаміку, кінетичні процеси кристалічних і аморфних речовин, напівпровідників і діелектриків, надпровідників, а також всіляких рідин і газів. Удалося виміряти багато їх параметрів з надвисокою точністю, недоступною якими-небудь іншими методами. Виникла нова область наукових досліджень - оптична ехо-камера-спектроскопія.
Явище фотонної ехо-камери обіцяє цілий ряд перспективних технічних вживань в області оптоелектроніки. Річ у тому, що на відміну від магнітних резонансів ЕПР і ЯМР фотонна ехо-камера володіє всіма перевагами оптичного діапазону, а саме надшвидкодією і многоканальностью. Тобто можна створити такі умови, при яких в кристалі розміром 1 см паралельно працюватиме велика кількість світлових променів (порядка 108), що складаються з оптичних імпульсів тривалістю в 1 пс (10-12 з). В даний час розроблений принцип роботи і зроблені макети пристроїв оптичної пам'яті великої ємкості для використання в комп'ютерних системах. Створені лабораторні пристрої по автоматичній обробці інформації - фільтри, змішувачі, розгалуджувачі, логічні елементи, векторно-матричні помножувачі, системи розпізнавання образів і пристроїв штучного інтелекту. Розробки продовжуються.
Література
1. C.V. Heer, Mc Manamon P.F., Opt.Соmmun., 23, N1, 49, 1977.
2. E.I. Shtyrcov, N.L. Nevelskaia, V.S. Lobkov, N.G. Yarmukhametov. Phys.Stat. Solid (b), 98, 1980.
3. E.L. Hahn. Phys.Rеv., 80, 580, 1950.
4. M.S. Shiron. Appl.Phys.Lett., 33, 4, 299, 1978.
5. Абрагам А.. Ядерний магнетизм, ІЛ, М., 1963.
6. Аллен Л., Дж.Эберли. Оптичний резонанс і дворівневі атоми, "Світ", М., 1978.
7. Маныкин Э.А., Самарцев В.В. Оптическая эхо-спектроскопия. М.: Наука, 1984. 270 с.
8. Штирков Е.І, B.C.Лобков, Н.Г.Ярмухаметов. Листи в ЖЕТФ, 27, стр.12, 685, 1978.
9. Штирков Е.І. Оптика і спектроскопія, 45, стр.603, 1978.
10. Железняков В.В. Что такое сверхизлучение // Соросовский Образовательный Журнал. 1997. № 4. С. 52-54.
11. Трифонов Е.Д. Сверхизлучение - спонтанное излучение многоатомной системы // Там же. 1996. № 12. С. 75-80.
Подобные документы
Взаємодія електромагнітних хвиль з речовиною. Особливості поширення електромагнітних хвиль радіочастотного діапазону в живих тканинах. Характеристики полів, що створюються тілом людини. Електронні переходи в збудженій молекулі. Фоторецепторні клітини.
реферат [238,5 K], добавлен 12.02.2011Існування електромагнітних хвиль. Змінне електромагнітне поле, яке поширюється в просторі з кінцевою швидкістю. Наслідки теорії Максвелла. Хвильові рівняння електромагнітних хвиль та рівняння Максвелла. Енергія електромагнітних хвиль, вектор Пойнтінга.
реферат [229,2 K], добавлен 06.04.2009Електромагнітна хвиля як змінне електромагнітне поле, що розповсюджується в просторі. Властивості електромагнітних хвиль. Опис закономірностей поляризації світла, види поляризованого світла. Закон Малюса. Опис явища подвійного променезаломлення.
реферат [277,9 K], добавлен 18.10.2009Зв'язок важких заряджених частинок з речовиною. До важких частинок відносяться частинки, маси яких у сотні разів більші за масу електрона. Вільний пробіг важких заряджених частинок у речовині. Взаємодія електронів, нейтронів з речовиною. Кулонівська сила.
реферат [51,0 K], добавлен 12.04.2009Визначення поняття сцинтиляційного спектрометра як приладу для реєстрації і спектрометрії частинок. Основні методи спостереження та вивчення зіткнень і взаємних перетворень ядер і елементарних частинок. Принцип дії лічильника Гейгера та камери Вільсона.
презентация [975,1 K], добавлен 17.03.2012Метод математичного моделювання фізичних властивостей діелектричних періодичних структур та їх електродинамічні характеристики за наявності електромагнітної хвилі великої амплітуди. Фізичні обмеження на управління електромагнітним випромінюванням.
автореферат [797,6 K], добавлен 11.04.2009Оптика – вчення про природу світла, світлових явищах і взаємодії світла з речовиною. Роль оптики в розвитку сучасної фізики. Предмет і його віддзеркалення. Явища, пов'язані з віддзеркаленням та із заломленням світла: міраж, веселка, північне сяйво.
курсовая работа [32,1 K], добавлен 05.04.2008Взаємодія заряджених частинок з твердим тілом, пружні зіткнення. Види резерфордівського зворотнього розсіювання. Автоматизація вимірювання температури підкладки. Взаємодія атомних частинок з кристалами. Проведення структурних досліджень плівок.
дипломная работа [2,5 M], добавлен 21.05.2015Перші дослідження електромагнітних явищ. Проблеми поведінки плазми в лабораторних умовах і в космосі. Взаємодія електричних зарядів і струмів. Методи наукового пізнання. Фахові фронтальні лабораторні роботи, які проводяться під керівництвом викладача.
дипломная работа [2,5 M], добавлен 20.01.2016Застосування тензометрів для зміни деформацій у деталях машин і механізмів. Дротові, напівпровідникові, фольгові тензометричні датчики. Зворотний зв'язок у магнітних підсилювачах. Використання електромагнітних реле та систем автоматичного регулювання.
контрольная работа [136,7 K], добавлен 23.10.2013