Разработка электроприводов прессовых машин

Система управления электроприводом экструдера и основные требования к ней. Расчет мощности и выбор электродвигателя постоянного тока. Регулировочная характеристика преобразователя. Расчет естественного освещения. Защита от статического электричества.

Рубрика Физика и энергетика
Вид дипломная работа
Язык русский
Дата добавления 10.03.2011
Размер файла 697,8 K

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

-номинальное напряжение электродвигателя, тогда

(5.35)

Также из этой характеристики можно графически определить напряжение задатчика скорости, в данном случае

6 ОПИСАНИЕ РАЗОМКНУТОЙ СИСТЕМЫ ЭЛЕКТРОПРИВОДА

6.1 Структурная схема разомкнутого электропривода

Структурная схема разомкнутого электропривода, выполненного по принципу тиристорный преобразователь - ДПТ НВ с регулированием частоты вращения путем изменения напряжения на якоре состоит из двух основных частей - тиристорного преобразователя и ДПТ НВ с нагрузкой. Структурная схема разомкнутого электропривода приведена на рисунке 6.1.

В общем случае тиристорный преобразователь состоит из двух звеньев:

1. Система импульсно-фазного управления (СИФУ) с входным устройством.

2. Силовая схема.

В инженерных расчетах передаточную функцию тиристорного преобразователя в режиме непрерывного тока с достаточной для практических расчетов точностью, можно представить в виде:

(6.1)

где - р - оператор дифференцирования;

-коэффициент усиления тиристорного преобразователя на линейном участке регулировочной характеристики;

-постоянная времени тиристорного преобразователя.

Коэффициент усиления тиристорного преобразователя на линейном участке его регулировочной характеристики определяем по формуле:

(6.2)

где -напряжение регулирования, необходимое для изменения угла регулирования на 90 градусов.

Напряжение регулирования обычно составляет от 5 до 10В [9].

Рассчитаем постоянную времени трехфазного мостового управляемого выпрямителя:

где -постоянная времени, равная половине периода пульсаций выпрямленного напряжения;

-постоянная времени фильтра на входе СИФУ

(6.3)

m=6 - количество пульсаций выпрямленного напряжения за период переменного.

Структурная схема ДГТТ НВ при изменении напряжения на якоре и постоянном потоке возбуждения строится в соответствии с системой уравнений:

(6.4)

где -электромагнитная постоянная времени якорной цепи;

е-ЭДС двигателя;

М-электромагнитный момент двигателя;

- динамический момент двигателя;

J- момент инерции двигателя с механизмом, приведенный к валу двигателя.

Электромагнитная постоянная времени якорной цепи для мостовой схемы преобразователя определяется по формуле:

(6.5)

Индуктивность якорной цепи определяем по формуле:

(6.6)

-индуктивность якорной обмотки двигателя

-индуктивность сглаживающего дросселя

Определяем активное сопротивление якорной цепи:

(6.7)

-активное сопротивление обмотки якоря двигателя

-динамическое сопротивление тиристора

Электромеханическую постоянную времени электропривода определяем по формуле:

(6.8)

Между постоянными времени электропривода выполняется соотношение:

(6.9)

6.2 Статизм в разомкнутой системе регулирования

Оценкой стабильности рабочей скорости электропривода при различных нагрузках является статизм механической характеристики двигателя. Количественной оценкой статизма может служить номинальный перепад скорости ,соответствующий изменению момента двигателя от М=0 до М=

Анализ электромеханических свойств ДПТ НБ целесообразно начать с рассмотрения статических режимов работы. Уравнение статической механической характеристики двигателя имеет следующий вид:

(6.10)

Рассчитаем скорость холостого хода:

, (6.12)

где -рассчитанное напряжение на якоре

Номинальный электромагнитный момент:

(6.13)

При построении статистических характеристик необходимо определить значения напряжения на якоре и соответственно при работе двигателя на верхней и нижней частотах вращения:

Рассчитаем скорость холостого хода:

Теперь подставляя рассчитанные значения напряжения на якоре получим:

По полученным данным характеристику разомкнутой системы:

Статическая ошибка разомкнутой системы на верхнем пределе регулирования определяется по формуле:

(6.15)

Статическая ошибка разомкнутой системы на нижнем пределе регулирования равна:

(6.16)

Таким образом, проведенный расчет статической ошибки разомкнутой системы показывает, что статическая ошибка на нижнем пределе регулирования (26%) значительно превышает допустимую (), поэтому необходимо синтезировать и исследовать замкнутую систему электропривода.

7. СИНТЕЗ ЗАМКНУТОЙ СИСТЕМЫ ЭЛЕКТРОПРИВОДА ЭКСТРУДЕРА

На базе операционного усилителя DА1 реализован регулятор скорости (РС) с соответствующими цепями коррекции, а на базе операционного усилителя DА2 - регулятор тока (РТ),

Задающий сигнал поступает на вход РС через резистор R2 и устанавливается с помощью потенциометра RP1.

Выходной сигнал РС является задающим для РТ. Выходной сигнал РТ поступает на систему импульсно-фазового управления тиристорным преобразователем (СИФУ).

Датчиком скорости (ДС) является тахогенератор BR1 с возбуждением от постоянных магнитов, жестко закрепленных на валу двигателя, а датчиком тока (ДТ) - шунт RS1 в цепи якоря. Для согласования уровней напряжения шунта и напряжения, подаваемого на вход операционного усилителя DА2, в канал обратной связи по току включен усилитель напряжения (УН) [10].

Анализ механических характеристик разомкнутой системы ТП - ДПТ, показал, что разомкнутая система не обеспечивает требуемую жесткость в заданном диапазоне, а кроме того не предусматривает ограничение тока якоря. В связи с этим необходимо синтезировать замкнутую систему электропривода.

7.1 Подчиненное регулирование координат электропривода

Структурная схема электропривода постоянного тока, с подчиненным регулированием координат, содержащая два разомкнутых контура: внутренний -контур регулирования тока и внешний - контур регулирования скорости, показана на рисунке 7.2. Контур регулирования тока подчинен контуру регулирования скорости [11].

На этой схеме отдельные блоки электропривода представлены типовыми динамическими звеньями. Задачей синтеза является определение передаточных функций регулятора тока и скорости и расчет корректирующих элементов.

В настоящее время в электроприводе при создании замкнутых систем автоматизированного электропривода широкое; применение нашел принцип последовательной коррекции или так называемого подчиненного регулирования.

Объект регулирования представляется в виде последовательно соединенных звеньев, выходными параметрами которого являются существенные координаты объекта, например ток, напряжение, ЭДС, магнитный поток, момент, скорость, положение.

Для управления каждой из координат организуется отдельный регулятор, образующий с объектом контур, замкнутый соответствующей обратной связью. Регуляторы соединяются последовательно, так что выход одного является входом другого.

Структурная схема системы с подчиненным регулированием параметров показана на рисунке 7.3.

Выходные параметры отдельных звеньев объекта управления(ОУ1, ОУ2, ОУЗ) подаются на датчики обратных связей (ДОС1, ДОС2, ДОС3), откуда сигналы обратной связи подаются на регуляторы (PI, P2,I P3).

Поэтому регулирование каждой координаты подчинено регулированию предыдущей. Система с подчиненным регулированием позволяет настраивать каждый контур отдельно, начиная с внутреннего, и делать это независимо от настройки внешнего контура. В таких системах достаточно просто осуществляется ограничение значений параметров путем ограничения выходного параметра предыдущего контура.

Управляющим воздействием является сигнал задания U 3 . К отдельным блокам объекта управления (или каждому из них) может быть приложено возмущающее воздействие, а сам объект управления может иметь более сложную структуру, чем показано на рисунке 7.3.

Преимущества подчиненного регулирования заключаются в упрощении решения задачи регулирования координат, облегчении наладки, сокращении сроков пуска объектов, в широких возможностях унификации узлов управления различными объектами.

Недостаток подчиненного регулирования - некоторый проигрыш по быстродействию, связанный с последовательным воздействием на систему через внутренние контуры, а не сразу на входное звено объекта управления. Указанный недостаток для применения в электроприводе не является принципиальным, а перечисленные выше преимущества имеют решающее значение. Поэтому подчиненное регулирование координат нашло широкое применение в электроприводе.

Обычно объект управления описывается математически и разбивается на звенья с известными передаточными функциями. В большинстве случаев известна передаточная функция замкнутой системы и желаемая передаточная функция разомкнутой системы управления, которая выбирается, исходя из требований к динамике объекта управления.

Принцип подчиненного регулирования значительно облегчает поиск передаточных функций регуляторов и реализацию желаемого управления. Оптимизацию системы с последовательной коррекцией начинают с внутреннего контура, последовательно переходя к внешним. При переходе к внешнему контуру передаточную функцию подчиненного контура упрощают, аппроксимируя контур звеном первого порядка. Ошибка аппроксимации при этом несущественна. Новую некомпенсируемую постоянную времени выбирают с учетом быстродействия внутреннего контура и датчика обратной связи. Аналогичным образом поступают при переходе к следующему контуру.

В системах электропривода есть звенья как с большими, так и с малыми постоянными времени. Компенсация всех постоянных времени нереальна и просто нецелесообразна, поскольку система в таком случае стала бы не защищенной от помех, поэтому компенсируют только большие и средние постоянные времени, такие как электромагнитная постоянная времени якорной цепи и электромеханическая постоянная времени привода. Малые постоянные времени (тиристорного преобразователя, фильтров на выходах усилителей, датчиков обратных связей и т.п.) оставляют некомпенсированными.

Передаточные функции регуляторов выбирают с таким расчетом, чтобы получить достаточно быстро протекающий переходной процесс с малым перерегулированием - оптимальный переходной процесс. Эту процедуру называют оптимизацией системы.

При выборе желаемой передаточной функции замкнутого контура за некомпенсируемую малую постоянную времени принимают малую постоянную времени объекта управления.

Для выбора желаемой передаточной функции был предложен так

называемый технический оптимум (оптимум по модулю), соответствующий

передаточной функции колебательного звена:

(7.1)

Передаточная функция (7.1) замкнутого контура, настроенного на технический оптимум, соответствует передаточной функции колебательного звена с коэффициентом демпфирования равным

Колебательное звено (7.1) образуется замыканием входа и выхода звена с передаточной функцией:

(7.2)

Выражение (7.2) представляет собой передаточную функцию разомкнутого контура, настроенного на технический оптимум.

Асимптотическая логарифмическая амплитудно-частотная характеристика (ЛАЧХ) разомкнутого контура при настройке на оптимум по модулю приведена на рисунке 7.4, а на рисунке 7.5 - переходная функция замкнутого контура, которая описывается уравнением:

(7.3)

Из рисунка 7.5 видно, что выходной сигнал звена с передаточной функцией (7.1) при единичном входном сигнале будет отрабатываться со следующими показателями качества переходного процесса: перерегулирование - 4,3%, врем; нарастания регулируемой величины до установившегося значения равно 4,71, время регулирования равно 8,4. За время регулирования принимают момент вхождения регулируемой величины в область значений, отличающихся от установившегося не более чем на 2%.

Оптимизация по модулю обычно используется для внутренних контуров регулирования тока.

Колебательное звено с передаточной функцией (7.1) не обеспечивает астатизма системы. Поэтому в случаях, когда требуется точное воспроизведение в статике при наличии посторонних возмущений, например в системах стабилизации скорости, применяется дополнительный интегральный регулятор (И - регулятор).

С целью повышения порядка астатизма контура (и всей системы) применяется настройка на симметричный оптимум. Передаточная функция разомкнутого контура в этом случае имеет вид:

(7.4)

Тогда передаточная функция замкнутого контура, настроенного на симметричный оптимум:

(7.5)

Асимптотическая (ЛАЧХ) разомкнутой системы при настройке на симметричный оптимум приведена на рисунке 7.6, а на рисунке 7.7 - переходная функция замкнутого контура, которая описывается уравнением:

(7.6)

Как видно из рисунка 7.6, изломы ЛАЧХ расположены симметрично относительно частоты среза откуда и произошло название симметричный оптимум.

Из рисунка 7.7 видно, что выходной сигнал звена с передаточной функцией (7.4) при единичном входном сигнале будет отрабатываться со следующими показателями качества переходного процесса: перерегулирование - 43,4%, время нарастания регулируемой величины до установившегося значения равно 3,1, время регулирования - 16,5.

Настройка на симметричный оптимум обычно используется для контуров регулирования скорости.

Следует отметить, что системы, настроенные на симметричный оптимум, не имеют статической ошибки, однако большое значение перерегулирования требует принятия дополнительных мер по формированию задающего сигнала.

Синтез системы с подчиненным регулированием координат проводим при следующих допущениях:

а) тиристорный преобразователь совместно с системой управления рассматриваем как непрерывное инерционное звено, с передаточной функцией:

(7.7)

б) наличие зоны прерывистых токов при синтезе не учитывается;

в) влиянием внутренней обратной связи по ЭДС двигателя пренебрегаем, поскольку скорость ее изменения значительно меньше скорости изменения тока якоря.

7.2 Оптимизация контура регулирования тока

В качестве датчика тока в этой системе ЭП используется шунт RS1 падение напряжения на котором пропорционально току якоря В результате сигнал обратной связи по току.

(7.8)

где -коэффициент передачи обратной связи по току.

Рассмотрим работу контура регулирования тока с обратной связью по току, показанной на рисунке 7.1

Сигнал обратной связи сравнивается с выходным сигналом РС (задающим сигналом скорости) и их разность в виде сигнала рассогласования (ошибки регулирования тока) подается на вход РТ, который усиливает этот сигнал и подает его на СИФУ.

Запишем выражение для сигнала рассогласования:

(7.9)

В цепи обратной связи операционного усилителя DА2 установлены резистор R4 и конденсатор С2, что позволяет реализовать пропорционально-

интегральный регулятор тока якоря. Выходной сигнал регулятора тока

можно представить в виде суммы двух составляющих:

(7.10)

где -коэффициент передачи регулятора тока;

-постоянная времени регулятора тока.

Синтез системы управления проводим на основании структурной схемы (рисунок 7.2).

Контур тока состоит из объекта регулирования - цепи якоря двигателя, силового преобразователя и регулятора тока. Контур замыкается обратной связью по величине напряжения, снимаемого с датчика тока, включенного в цепь якоря [11].

Коэффициент преобразования цепи обратной связи по току равен Усложнение структурной схемы контура тока связано с появлением внутренней обратной связи по ЭДС.

Во многих случаях внутренней связью пренебрегают и рассматривают упрощенную структуру контура тока.

Рассмотрим параметры контура регулирования тока и оценим точность регулирования:

-суммарное сопротивление якорной цепи: Ом;

-постоянную времени преобразователя: .

Суммарная постоянная времени приближенно учитывает запаздывание преобразователя и малые инерционности системы управления, поэтому ее можно принять в качестве меры для оценки суммарной постоянной некомпенсированных инерционных элементов контура тока, положив:

(7.11)

Коэффициент усиления преобразователя;

(7.12)

Постоянная времени якорной цепи:

(7.13)

Желаемая для настройки на симметричный оптимум передаточная функция разомкнутого контура регулирования тока:

(7.14)

Передаточная функция объекта регулирования:

(7.15)

Передаточная функция регулятора тока:

(7.16)

Получим, что РТ пропорционально-интегральный (ПИ-регулятор), где -постоянная интегрирования ПИ-регулятора:

(7.17)

где -коэффициент настройки контура тока

Стандартная величина =2

-коэффициент передачи обратной связи по току.

Постоянная цепи обратной связи регулятора:

(7.18)

Задаваясь значением ,в качестве выбираем керамический конденсатор типа К10-7В-2мкФ-Н90, определяем значение сопротивления:

(7.19)

(7.20)

В качестве резистора выбираем резистор типа МЛТ-0,125-160кОм

Регулятор тока строим на базе операционного усилителя К553УД1А, с параметрами:

-напряжение питания

-минимальный коэффициент усиления

-потребляемый ток

Значение , приведенной к задающей цепи:

(7.21)

где -коэффициент датчика тока (принимаем )

-коэффициент шунта

(7.22)

(7.23)

Откуда

(7.24)

Коэффициент усиления регулятора тока:

(7.25)

(7.26)

Примем , то есть ,тогда:

(7.27)

(7.28)

В качестве резистора выбираем резистор типа МЛТ-0,125-220кОм5%Ток стопорения электропривода:

(7.29)

где -допустимая кратность пускового тока, ;

(7.30)

Электромеханическая постоянная времени:

(7.31)

7.3 Оптимизация контура регулирования скорости

Объектом регулирования внешнего контура скорости является замкнутый контур тока и звено, описывающее механическое сопротивление двигателя.

Контур замыкается безинерционной обратной связью по скорости с коэффициентом преобразования [11].

Рассмотрим работу замкнутой системы тиристорный преобразователь - двигатель (ТП - Д) с отрицательной обратной связью по скорости ДПТ НВ (рисунок 7.1).

На валу ДПТ НВ - М1 находится датчик скорости - тахогенератор ВR1,

выходное напряжение которого пропорционально частоте вращения ДПТ

(7.31)

Коэффициент пропорциональности называется коэффициентом обратной связи по скорости[10]. Сигнал обратной связи:

(7.32)

Сравнивается с задающим сигналом скорости , и их разность в виде сигнала рассогласовывания (ошибки регулирования скорости) подается на вход операционного усилителя DA1 являющегося РС, который с коэффициентом усиления усиливает сигнал рассогласовывания и подает его в виде сигнала управления на вход РТ.

Запишем выражения для сигнала рассогласовывания и выходного сигнала РС:

(7.33)

(7.34)

(7.35)

где и соответственно ЭДС и коэффициент усиления преобразователя.

Рассмотрим физическую сторону процесса регулирования скорости в данной системе. Предположим, что ДПТ работает под нагрузкой в установившемся режиме и по каким-то причинам увеличился момент нагрузки Так как развиваемый ДПТ момент становится меньше момента нагрузки, его скорость начинает снижаться и соответственно будет снижаться сигнал обратной связи по скорости , что в свою очередь согласно вызовет увеличение сигналов рассогласования и управления и приведет к повышению ЭДС преобразователя, а следовательно напряжения и скорости ДПТ. При уменьшении момента нагрузки обратная связь будет действовать в другом направлении, приводя к снижению ЭДС преобразователя [10] .

В цепи обратной связи операционного усилителя DА1 установлен резистор R2, что позволяет реализовать пропорциональный регулятор скорости.

В схеме, приведенной на рисунке 7.1, в цепь обратной связи РС DA1 включены стабилитроны VD1-VD2, которые ограничивают сигнал на выходе РС, то есть обеспечивает ограничение тока и момента двигателя.

Перейдем к расчету параметров регулятора скорости. Замыканием цепи обратной связи по скорости и введением в цепь управления регулятора скорости с передаточной функцией получаем второй контур регулирования, структурная схема которого представлена на рисунке 7.2. В прямой цепи этого контура представлена передаточная функция замкнутого оптимизированного контура тока Без учета внутренней связи по ЭДС двигателя она имеет вид:

(7.36)

Передаточную функцию объекта регулирования скорости:

(7.37)

Желаемая передаточная функция разомкнутого контура скорости:

(7.38)

Передаточная функция регулятора скорости имеет вид:

(7.39)

где

Отсюда видно, что требуется пропорционально-интегральный регулятор скорости, с постоянной интегрирования:

(7.40)

Вычислим коэффициент усиления регулятора скорости при

(7.41)

Определим величину коэффициента передачи по моменту:

(7.42)

(7.43)

Определим модуль статической жесткости естественной характеристики:

(7.44)

(7.45)

Определим коэффициент обратной связи по скорости:

, Вс (7.46)

где -максимальный задающий сигнал

-максимальная скорость идеального холостого хода (); Тогда

(7.47)

Отсюда

(7.48)

Задавшись сопротивлением , в качестве резистора выбираем резистор типа МЛТ-0,25-100кОм[9], определим сопротивление :

(7.49)

(7.50)

(7.51)

В качестве резистора выбираем резистор типа МЛТ-0,5-400кОм

Регулятор скорости строим на базе операционного усилителя К553УД1А, с параметрами [9]:

-напряжение питания

-минимальный коэффициент усиления

Потребляемый ток

Определим ЭДС тахогенератора при

(7.52)

(7.53)

(7.54)

Рассчитаем сопротивление

(7.55)

(7.56)

В качестве резистора выбираем резистор типа МЛТ-0,5-210кОм Стабилитроны VD1 и VD2 в цепи обратной связи РС, включенные для ограничения его выходного напряжения, должны быть выбраны на напряжение:

(7.57)

Выбираем по справочнику [9] стабилитрон КС5102А,

(7.58)

где -напряжение ограничения регулятора скорости.

7.4 Расчет статической характеристики

Рассчитаем статическую электромеханическую характеристику синтезированного электропривода при и при

Уравнение механической характеристики при линейной характеристике регулятора скорости можно получить из условия:

(7.59)

Так как в статическом режиме напряжение на выходе ПИ-регулятора тока должно быть равно нулю

(7.60)

В результате алгебраических преобразований получим следующее усиление по скорости:

(7.61)

где -скорость холостого хода ()

При

(7.62)

при

при

при

8 РАСЧЕТ ДИНАМИЧЕСКИХ ХАРАКТЕРИСТИК

Из теории автоматического управления известно, что динамические свойства замкнутых систем определяются свойствами разомкнутой системы, ее передаточными функциями и частотными характеристиками. Знание свойств объекта необходимо при синтезе замкнутых систем регулируемых электроприводов, обладающих требуемыми: быстродействием, колебательностью и точностью обработки заданных режимов.

8.1 Устойчивость электропривода

На любую автоматическую систему всегда действуют различные внешние возмущения, которые могут нарушить ее нормальную работу. Правильно спроектированная система должна быть устойчива при всех внешних возмущениях.

Понятие устойчивость системы связано со способностью ее возвращаться с определенной точностью в состояние равновесия после исчезновения внешних сил, которые вывели ее из этого состояния.

На практике широкое применение получил анализ устойчивости систем автоматического управления, основанный на применении логарифмически- частотных характеристик разомкнутой системы.

Для построения ЛАЧХ и ФЧХ необходимо определить передаточную функцию разомкнутой системы электропривода, изображенной на рисунке 8.1.

Определим передаточную функцию замкнутого контура тока, изображенного на рисунке 7.8. Для этого сначала определим передаточную функцию разомкнутого контура тока.

(8.1)

(8.2)

где -соотношение постоянных времени.

Передаточная функция замкнутого оптимизированного контура тока без учета внутренней связи по ЭДС двигателя имеет следующий вид:

(8.3)

Перейдем к расчету регулятора скорости. Замыканием цепи обратной связи по скорости и введением в цепь управления регулятора скорости с передаточной функцией получаем второй контур регулирования, структурная схема которого показана на рисунке 7.9.

Определим передаточную функцию разомкнутого контура скорости электропривода:

(8.4)

Представив числовое значение сек. в уравнение (8.4) получим передаточную функцию разомкнутого контура скорости электропривода [10]:

(8.5)

Составим выражения для построения ЛАЧХ (L()) и ФЧХ (ф()):

(8.6)

(8.7)

Подставляя значение w от 0 до 1000 1/с в полученные выражения, получим значения ЛАЧХ и ФЧХ (таблица 8.1)

Таблица 8.1 Данные для построения ЛАЧХ и ФЧХ.

W, 1/с

0,2

0,5

1

5

10

25

50

70

100

, град

-180

-179

-177

-164

-153

-143

-150

-155

-161

L,дБ

77

61

49

22

11

0

-1,3

-13

-18

Продолжение таблицы 8.1 Данные для построения ЛАЧХ и ФЧХ.

W,1/с

200

300

400

500

600

700

1000

, град

-170

-173

-175

-176

-177

-177

-178

L, дБ

-30

-37

-42

46

-49

-51

58

Построим ЛАЧХ и ФЧХ:

Частоты сопряжения:

(8.8)

(8.9)

Частота среза:

(8.10)

Из построенных характеристик видно, что система обладает устойчивостью, так как при положительном усилении системы фазо-частотная характеристика не имеет ни положительного, ни отрицательного перехода через ось 180°. При этом запас устойчивости составляет 37°.

8.2 Расчет переходного процесса

В процессе расчета систем автоматического регулирования необходимо получить требуемые показатели качества переходного процесса: быстродействие, колебательность, перерегулирование, характеризующих точность и плавность протекания процесса [10].

Показатели качества, определяемые непосредственно по кривой переходного процесса, называются прямыми оценками качества.

Переходную характеристику h(t) получаем путем подставления значения времени t в выражение (7.6).

Результаты занесем в таблицу 8.2.

Таблица 8.2 Данные для построения переходной характеристики

h(t)

0

0,88

1,19

1,15

1,09

1,03

0,993

0,94

0,95

0,975

0,99

t,c

0

0,05

0,1

0,15

0,2

0,25

0,3

0,35

0,4

0,45

0,5

Продолжение таблицы 8.2

h(t)

1,02

1,019

1,01

0,99

0,98

0,99

0,998

1,005

1,09

1,001

0,995

t,c

0,55

0,6

0,65

0,7

0,75

0,8

0,85

0,9

0,95

1,0

1,1

Оценим качества рассчитываемой системы по переходным характеристикам [11]. Время регулирования - максимальное время по истечении, которого регулируемая величина будет оставаться близкой к установившемуся значению с заданной точностью, в данном случае =2%.

Тогда; (8.11)

с (8.12)

Перерегулирование - максимальное отклонение переходной характеристики от установившегося значения выходной величины, выраженное в процентах.

(8.13)

где значение первого максимума (), (8.14)

При настройке системы на симметричный оптимум перерегулирование может достигать 43,4%.

Частота колебаний:

Т-период колебаний

(8.15)

Число колебаний n, которое имеет переходная характеристика h(t) за время регулирования .

Время достижения первого максимума: сек.

Декремент затухания , равный отношению модулей двух смежных перерегулирований [ 11 ]:

(8.16)

(8.17)

По полученным характеристикам качества переходного процесса видно, что рассчитываемая система удовлетворяет заданным требованиям и может быть использована в качестве системы автоматического управления электроприводом экструдера.

9 РАСЧЕТ НЕУПРАВЛЯЕМОГО ВЫПРЯМИТЕЛЯ ДЛЯ ПИТАНИЯ ОБМОТКИ ВОЗБУЖДЕНИЯ

9.1 Выбор и расчет параметров трансформатора

Выбор трансформатора для питания вентильного преобразователя производится по расчетным значениям фазных токов во вторичной и первичной обмотках, ЭДС вторичной обмотки и типовой мощности трансформатора .

Расчетное значение ЭДС вторичной обмотки трансформатора для питания преобразователя, работающего в режиме непрерывного тока, определяем по формуле:

(9.1)

где -коэффициент, характеризующий отношение напряжений в реальном выпрямителе, =0,428;

-коэффициент запаса по напряжению, учитывающий возможное снижение напряжения сети,

-коэффициент запаса по углу открывания вентиля, учитывающий неполное открытие вентилей при максимальном управляющем сигнале,

-коэффициент запаса по напряжению, учитывающий падение напряжения в обмотках трансформатора, в вентилях и за счет перекрытия анодов,

-напряжение на обмотке возбуждения.

(9.2)

Расчетное действующее значение фазного тока вторичной обмотки трансформатора определяют по величине выпрямленного тока :

(9.3)

где -коэффициент, учитывающий отклонение формы тока от прямоугольной (

-коэффициент, характеризующий отношение действующего значения фазного тока вторичной обмотки трансформатора к величине выпрямленного тока;

-значение выпрямленного тока, которое здесь следует принимать равным

(9.4)

Величина коэффициента зависит от схемы выпрямления на основании данных таблицы 5.2.

Определяем коэффициент трансформации :

(9.5)

(9.6)

где и -число витков первичной и вторичной обмоток соответственно;

-номинальное значение фазного напряжения питающей сети переменного тока.

Расчетное действующее значение фазного тока первичной обмотки трансформатора определяем по формуле

(9.7)

А, (9.8)

где -коэффициент, характеризующий отношение действующего значения фазного тока первичной обмотки трансформатора к величине выпрямленного тока. Величина коэффициента зависит от схемы выпрямления и выбирается на основании данных таблицы 5.2.

Определяем расчетное значение мощности трансформатора:

(9.9)

ВА (9.10)

где -коэффициент схемы выпрямителя.

Коэффициент представляет собой отношение типовой мощности трансформатора к максимальной мощности цепи постоянного тока, которая определяется произведением ЭДС преобразователя в режиме холостого хода и величины выпрямленного тока . Величина коэффициента выбирается на основании данных таблицы 5.2.

Выбор трансформатора осуществляется на основании расчетного значения типовой мощности с учетом следующих условий:

(9.11)

(9.12)

где -номинальное фазное напряжение вторичной обмотки трансформатора;

-номинальный фазный ток вторичной обмотки трансформатора.

Выбираем трансформатор ТСЗ-160/0,66 [9]

Для выбранного трансформатора известны значения мощности и напряжения , определяемые из опыта короткого замыкания. Отметим, что напряжение ПРИВОДИТСЯ в процентах от номинального значения фазного напряжения питающей сети переменного тока и

9.2 Расчет и выбор диодов

Определим величину выходного напряжения на выходе трехфазного мостового неуправляемого выпрямителя, питающего обмотку возбуждения:

(9.13)

В, (9.14)

где -лилейное напряжение обмотки трансформатора;

1,35-коэффициент для трехфазной мостовой схемы выпрямления.

Сопротивление обмотки возбуждения равно 26,8 Ом. Рассчитаем номинальный ток возбуждения:

(9.15)

где -напряжение обмотки возбуждения;

-сопротивление обмотки возбуждения.

А, (9.16)

Средний ток, проходящий по диодам:

,А, (9.17)

где -номинальный ток возбуждения

А, (9.18)

Рассчитаем обратное напряжение диодов:

, (9.19)

В, (9.20)

По справочнику [9] выбираем диоды марки Д112-1С с параметрами:

А,

В

10 ВЫБОР АППАРАТУРЫ ЗАЩИТЫ

Для обеспечения надежной работы электропривода и технологического оборудования в схемах управления предусматривается специальная защитная аппаратура. Во многих случаях целесообразно осуществлять контроль за состоянием, и режимами работы отдельных узлов ЭП, что обеспечивается с помощью средств управления, защиты, сигнализации, измерительных и регистрирующих приборов. В зависимости от назначения их можно разделить на две основные группы: коммутационные аппараты (высоковольтные выключатели, разъединители, контакторы) и защитные аппараты (автоматические выключатели, плавкие предохранители, различные реле и разрядники для защиты от перенапряжений)[12].

Автоматические выключатели имеют тепловой расцепитель и, как правило, электродинамический расцепитель. Автоматы, как правило, снабжаются дугогасящими устройствами в виде фибровых пластин либо дугогасящих камер [12].

Автоматы выбирают по их номинальному току, току уставки расцепителей, определяют по следующим соотношениям:

- ток уставки теплового расцепителя:

А, (10.1)

А, (10.2)

- ток установки электродинамического расцепителя:

А, (10.3)

А, (10.4)

Исходя из полученных отношений из справочника [9] выбираем автоматический воздушный выключатель серии А3710Б.

Таблица 10.1 Параметры автоматического выключателя А3710Б

Тип

А3710Б

Номинальный ток, А

160-630

Напряжение, В

440-660

Число полюсов

2,3

Ток установки расцепителя, А

250-600

Предельный ток отключения, кА

Постоянный

25-50

Переменный

32-40

Время отключения, с

0,03

Габаритные размеры, мм

225500190

Основными элементами предохранителя являются плавкая вставка и дугогасящая среда. Выбор плавкой вставки предохранителей производится по пусковому току, который рассчитывается таким образом, чтобы она не перегорала при пуске двигателя. Исходя из выше сказанного, из справочника [9] выбираем предохранитель типа:

Таблица 10.2 Параметры предохранителя ПП61.

Тип

Ток, А

Напряжение, В

Предельный ток отключения, кА

ПП61

40-160

380

100

Магнитный пускатель представляет собой комплексное устройство управления, состоящее из одного или нескольких электромагнитных контакторов, тепловых реле и кнопок управления. Контакторы имеют главные

(силовые) контакты и вспомогательные или блок-контакты, предназначенные для организации цепей управления и блокировки [12].

Выбор контакторов и магнитных пускателей осуществляется по номинальному напряжению сети, номинальному напряжению питания катушек контакторов и пускателей, по номинальному коммутируемому току электроприёмника, исходя из этого выбираем по справочнику [9] контактор типа КТ64 и магнитный пускатель ПА400. В данном пускателе для тепловой защиты (т.е. защиту двигателя от перегрева, вызванного перегрузкой по току) применяются тепловые реле серии ТРП (номинальный ток тепловых элементов 1,75 - 500 А; предел регулирования уставок 15%; реле срабатывает в течении 20 мин при токе 1,35 ).

Для защиты ДПТ от обрыва цепи обмотки возбуждения применяется минимально-токовая защита. Осуществляется она с помощью реле минимального тока, которое включается в цепь контролируемой обмотки. Для этого выбираем реле типа РЭВ-830:

Таблица 10.3 Параметры реле РЭВ-830.

Пределы уставки номинала

Число размыкающих

Ток через контакты, А

Коэффициент возврата

отключаемый

Включаемый

0,3-0,65

3

1-5

10-15

0,4

11 БЕЗОПАСНОСТЬ И ЭКОЛОГИЧНОСТЬ ПРОЕКТА

11.1 Общая характеристика проектируемого объекта

В данной работе представлен главный привод тянущего устройства, применяемый при производстве пластмассовых труб.

Производство труб напорных из полиэтилена низкого давления, предназначенные для трубопроводов, транспортирующих воду, труб из полиэтилена низкого давления неответственного назначения и труб из полиэтилена для газопроводов располагается в городе Казани на АО «Казаньоргсинтез» на заводе ПНД. Технологическое оборудование этого завода представляет собой 30 экструзионных линий по изготовлению труб различного диаметра. Сама установка располагается в цехе пластмассовых изделий. Метод производства труб - непрерывная шнековая экструзия.

Производственное помещение имеет следующие геометрические размеры: длина - 90м, ширина - 40м, высота - 10м. Стены железобетонные с двойным остеклением. Здание имеет следующие геометрические размеры: длина - 144м, ширина - 132м, высота - 15м.

Состав экструзионной линии по производству труб из полиэтилена приведен в таблице:

Таблица 11.1 Характеристика оборудования

Оборудование

Технологическая операция

1

2

Загрузчик

Автоматическая загрузка гранулированного полиэтилена в сушилку

Сушилка

Нагрев гранулированных термопластов до температуры 120оС и удаление влаги

Экструдер с червячным прессом

Непрерывная переработка гранулированных термопластов в однородный расплав и равномерное выдавливание его через формирующую головку

Головка трубная

Формирование трубных заготовок

Калибратор

Предназначен для образования на поверхности заготовки затвердевшего слоя, обеспечивающий сохранение трубой необходимой формы и размеров при прохождении через охлаждающие ванны

Ванны охлаждения

Охлаждение труб орошением водой и обдува их на выходе для удаления влаги

Толщиномер

Замер толщины стенок

Маркиратор

Нанесение шрифта (маркировки) на трубы

Таблица 11.2 Характеристики полиэтилена и продуктов его разложения

Наименование

Группа горючести

Класс опасности

ПДК в воздухе рабочей зоны мг/

НКПРП %, об.

С

Характер токсического действия

Полиэтилен

ТГ

3

10

12,0

440

Не оказывает

токсического действия

Формальдегид

ГГ

2

10

7,00

430

Действует на нервную систему

Окись углерода

ГГ

2

20

12,5

605

Действует на дыхательные пути

Примечания: - температура самовоспламенения; ГГ - горючий газ.

11.1.1 Определение категории помещения

Так как в производстве труб используется полиэтилен низкого давления, который относится к разряду горючих и трудногорючих твердых веществ, то помещение, где располагается данное производство можно отнести к категории В1-В4 (т.е. горючие и трудногорючие жидкости, твёрдые горючие и трудногорючие вещества и материалы (в том числе пыли и волокна), вещества и материалы, способные при взаимодействии с водой, кислородом воздуха или друг с другом только гореть) [13].

Определение категории пожарной опасности помещения (В1В4) осуществляется путём сравнения максимального значения удельной временной пожарной нагрузки на любом из участков помещения с величиной удельной пожарной нагрузки, приведённой в таблице 4.

Таблица 11.4 Категории пожарной опасности помещения

Категория пожарной опасности помещения

Удельная пожарная нагрузка

Категория В1

q2200 МДж/

Категория В2

q=1401-2200 МДж/

Категория В3

q=181-1400 МДж/

Категория В4

q=1-180 МДж/

Удельная нагрузка q определяется по формуле:

(11.1)

где Gi-количество i-го материала, МДж/кг; S-площадь размещения пожарной нагрузки, .

МДж/кг;

Gi=1000 кг;

МДж/

Удельная пожарная нагрузка данного помещения находится в пределах q=181-М 400 МДж/м , поэтому данное помещение имеет категорию - ВЗ.

Согласно классификации взрывоопасных помещений по ПУЭ помещения цеха пластмассовых изделий относятся к классу П-IIа, как помещения, в которых образуются или хранятся твердые горючие вещества и в которых отсутствует пыль во взвешенном состоянии [14].

В процессе производства отсутствует возможность образования взрывоопасных смесей, не имеются продуктов способных к разложению со взрывом, не возможны аварийные ситуации способные привести к разрушению зданий и сооружений, групповому поражению людей, отрицательному воздействию на окружающую среду. По классификации процессов по санитарным группам в соответствии со СНиП и 1111-92-76 отделение экструзии относятся к группе IIа.

Таблица 11.5 Классификации процесса по санитарным группам

Наименование цеха, отделения, установки

Категория взрыво-пожароопасности

Классификация помещений и наружных установок по ПУЭ

Группа производственных процессов по СНиП 2-0904-87

Отделение экструзии

В3

П-IIа

Па

11.2 Шум и вибрация

В проектируемом помещении источником шума являются тянущее устройство, экструдер с червячным прессом, намоточная машина.

По техническому паспорту средний уровень шума для ДПТ с номинальной частотой вращения 900 об/мин и выше соответствует 2 классу. Среднеквадратичное значение вибрационной скорости (по ГОСТ 16.92.1-83) от 1,8мм/с до 2,8мм/с.

Предельно допустимый уровень воздействия шума на рабочих местах не превышает 80 дБ. Это определяется тем, что объём помещения достаточно большой по сравнению с количеством электродвигателей.

При проектировании электропривода учитывается, чтобы шум не превышал допустимых значений. Аэродинамический шум также не превышает допустимых значений. Предельно допустимый уровень вибрации электродвигателей по СН 245-71. не превышает допустимой величины (10,5 мм/с).

Для защиты от шума используют специальные кожухи из тонких алюминиевых или пластмассовых листов, которые непосредственно устанавливаются на электродвигатели главного электропривода тянущего устройства и электропривода экструдера с червячным прессом, намоточную машину, с внутренней стороны которых используются звукопоглощающие материалы [15].

Источниками вибрации в данной экструзионной линии являются следующие ее элементы: экструдер с червячным прессом, тянущее устройство, намоточная машина. Общая вибрация на рабочем месте не превышает 12 дБ. Это обуславливается наличием электродвигателей и редукторов. Для защиты от вибрации в данной установке используем массивный фундамент под оборудованием, который делают заглубленным и со всех сторон изолируют его войлоком или другим материалом.

Для устранения вибрации осуществляют следующие меры:

- в местах крепления электродвигателя и редуктора к каркасу устанавливают виброизолирующие материалы и прокладки (резина, пластик);

- увеличивают жёсткость конструкции каркаса тянущего устройства за счёт установления рёбер жесткости и сварных конструкций.

Для уменьшения вибрации кожухов, различных ограждений выполненных из стальных листов, на них нужно нанести слой резины, пластика, которые рассеивают энергию колебаний.

11.3 Микроклимат на рабочем месте

Таблица 11.6-Оптимальные и допустимые нормы микроклимата

категория

Температура воздуха єС

Относительная влажность в %

Скорость движения воздуха

оптим.

допуст.

оптим.

допуст.

оптим.

допуст.

период года

период года

период года

период года

период года

период года

хол

теп

хол

теп

хол

теп

хол

теп

хол

теп

хол

теп

Па

8-20

1-23

7-23

8-27

0-60

0-60

не более 75

не более 75 при t-ре 25єС

0,2

0,3

не более 0

не более 0,2-0,4

Во время технологического процесса от электронагревателей экструдера выделяется значительное тепло, которое для поддержания оптимальной температуры в помещении целесообразно отводить с помощью вытяжной вентиляции.

Обслуживание данной установки относится к категории IIа - физический труд средней тяжести., связанный с постоянной ходьбой, выполняемый стоя или сидя, но не требующий перемещений тяжести.

В соответствии с ГОСТ 12.1.005-88 микроклимат проектируемого производственного помещения для категории работ IIа оптимальные и допустимые нормы температуры, относительной влажности и скорости движения воздуха в рабочей зоне производственных помещений сведены в таблицу.

11.4 Вентиляция, отопление

По способу перемещения воздуха в данном помещении предусматривается естественная общеобменная и приточно-вытяжная механическая вентиляция.

По способу перемещения воздуха используется естественная канальная вентиляция, представляющая собой систему вытяжных шахт, в устье которых для усиления тяги предусматриваются дефлекторы.

Также применяют осевой механический вентилятор, который устанавливается снаружи здания в тех местах, где воздух наименее загрязнён. Он применяется для подогрева воздуха, который проходит через фильтры и калориферы .

В холодный период года приточную механическую вентиляцию применяют для подогрева воздуха в помещении. Удаляется воздух через неплотности окон и дверей. Данный тип вентиляции, т.е.естественная , используется в помещениях с малой концентрацией вредных веществ, при этом воздух в помещение нагнетается вентиляторами.

11.5 Освещение

В данном помещении используется искусственное и естественное освещение. Естественное освещение - боковое, осуществляемое через световые проёмы в боковых наружных стенах. Искусственное освещение - общее равномерное (световой поток равномерно распределяется по помещению без учёта расположения оборудования).

Нормы естественной и искусственной освещенности выбираются в соответствии с разрядом зрительной работы, определяемым по величине объекта различения. Производится расчет требуемой площади световых проемов (окон) для естественного освещения и необходимого числа ламп для обеспечения нормированного значения освещенности на рабочих местах при искусственном освещении в соответствии с требованиями.

Таблица 11.7 Нормы освещенности

Характеристика зрительной работы

Размер объектов различ-ия, мм

Разряд зрительной работы

Подразряд зрительной работы

Освещенность при общем освещении, Е,лк

КЕО при боковом освещении, (%)

Малой точности

1-5

V

б

150

1

11.5.1 Расчет естественного освещения

Естественное освещение используется в дневное время суток. Площадь светового проема при боковом освещении можно определить по формуле:

(11.2)

где -площадь окон, ;

-площадь помещения, ;

-нормированное значение КЕО;

-световые характеристики окна;

-коэффициент, учитывающий затемнение от противостоящих зданий;

-общий коэффициент светопропускания;

-коэффициент, учитывающий повышение КЕО, за счет отражения светового потолка и стен помещения.

Площадь помещения

Значение КЕО для средней полосы европейской части России )диапазон г. Казани находится в 3 части), установленное [19], возьмем из таблицы , при боковом освещении, где: m-коэффициент светового климата (m=1); с-коэффициент солнечного климата (с=1). Тогда:

Световые характеристики окна из приложения 2 СНиП IIА-72 h=11,5. Коэффициент, учитывающий затемнение другими зданиями, при расстоянии между рассматриваемыми зданиями L=10 м и высотой здания Н=10 м, =1,4.

Общий коэффициент светопропускания:

(11.3)

где -соответственно коэффициенты, учитывающие потери света в материале остекления, светопроемов, слое загрязнения остекления и солнцезащитных устройств:

Коэффициент, учитывающий повышение КЕО за счет отражения света от потолка и стен помещения, =1,2.

Тогда:

Таким образом, получим, что необходимая площадь световых проемов окон при боковом освещении равна 465 .

11.5.2 Расчет искусственного освещения

Расчет искусственного освещения можно произвести методом коэффициента использования светового потока.

В этом методе учитывается не только прямой свет от светильника, но и отраженный от стен и потолка.

(11.4)

где F-световой поток лампы в светильнике, Лм;

E-минимальная освещенность, Лк;

S-площадь освещаемого помещения, м;

k-коэффициент запаса;

z-коэффициент неравномерности освещения;

-коэффициент использования осветительной установки;

n-требуемое число ламп.

Значение минимальной освещенности определяется из таблицы, исходя из разряда зрительных работ (V), типа ламп (газоразрядные), вида освещения (общее), Е=150 лк.

Площадь освещаемого помещения равна:

где А-длина помещения (А=90 м);

В-ширина помещения (В=40 м)

Коэффициент запаса помещения с воздушной средой, содержащей не более 5 пыли, дыма и копоти равен 1,5.

Значение коэффициента неравномерности освещения z имеет значение от 1,1 до 1,5.

Определим показатель помещения, i:

i=AB/Mc(A+B)?

i=9040/7(90+40)=3,59 (11.5)

где Мс-высота расположения светильника над освещаемой поверхностью (Мс=7 м)

По найденному показателю помещения i определяем по таблице значение коэффициента использования осветительной установки =0,59.

Получив все исходные данные, принимаем необходимое число ламп:

n=72 шт.

По всем данным определяем световой поток одной лампы:

Лм.

По найденному значению светового потока каждой лампы определяем ее тип и мощность, предпочтение отдается газоразрядным лампам.

Выбираем лампу типа ДРЛ - 500м и светильник ГсР - 500. Основные данные лампы приведены в таблице 11.8;

Таблица 11.8 Основные данные лампы ДРЛ.

Тип

Мощность, Вт

Световой поток,Лм

цоколь

Размеры, мм

диаметр

длина

ДРЛ 500 м

500

21000

Р40

145

360

11.6 Электробезопасность

Электрооборудование питается от трёхфазной сети переменного тока с глухо заземленной нейтралью, напряжением U=380/220 B, A, 50 Гц. В неуправляемом выпрямителе происходит преобразования переменного тока в постоянный для питания обмотки возбуждения U=540 B, =20,1 А.

Из классификации помещений по характеру окружающей среды данное производственное помещение сухое. В данном помещении имеется железобетонный пол. В результате этого помещение по степени опасности поражения людей электрическим током относится к помещениям с повышенной опасностью.

Основные меры, обеспечивающие электробезопасность при прикосновении к конструктивным частям электрооборудования, заключаются в контроле сопротивления двойной изоляции, применении заземления и защитного отключения [16].

Предусматривается заземление корпусов всех электрических двигателей, светильников, экструдера, калибратор, тянущего устройства.

Защитное отключение установки используется при появлении напряжения на корпусе относительно земли. Датчиком служит реле напряжения, включенное между корпусом и вспомогательным заземлителем. При появлении напряжения на корпусе любого из оборудования входящего в состав экструзионной линии реле срабатывает и своим контактом отключает автоматический выключатель, установка при этом отключается от питающей сети.

Предусматривается двойная изоляция токоведущих частей электропривода. В соответствии с ПУЭ величина изолирующего сопротивления токоведущих частей должна быть не менее 5 МОм.

Проектируемое электрооборудование располагается в пожароопасном помещении П-IIа. Степень защиты электродвигателя IР44.

Таблица 11.9 Степень защиты оболочки

Вид установки и условия работы

Степень защиты оболочки для пожароопасной зоны класса П-IIа

Стационарно установленные светильники

IP44

IP22

В данном помещении следует применять защищенную электропроводку (провод марки ВРГ, кабель или провод ПР и ПВ в тонкостенных стальных трубках).

11.6.1 Расчёт заземлителей

В качестве искусственного заземлителя используем вертикально забитые трубы соединённые металлическими полосками (контурное заземление). Определим сопротивление вертикально забитой в землю трубы:

, (11.6)

где p-удельное сопротивление грунта, Омм;

-длина трубы, м, h=2 м;

Ом

Необходимое число заземлителей:

, (11.7)

-требуемое сопротивление заземления;

-коэффициент сезонности;

-коэффициент экранирования;

Сопротивление металлической полосы применяемой для соединения трубных заземлителей:

(11.8)

где -длина полосы (1320 м);

h-глубина заложения полосы (0,7 м);

b-ширина полосы (0,05 м)

Ом

11 .7 Защита от статического электричества

Так как удельное электрическое сопротивление полиэтилена равно 1,73- Ом-м, то на нем могут накапливаться электрические заряды, которые могут быть опасными для людей и также является пожароопасными. Поэтому, согласно ГОСТ 12.1.018-79, данный объект относится ко 2 классу электрической искробезопасности - сильная электрилизация, объект с заземлённым электроприводным оборудованием,

Для уменьшения поверхностного электрического сопротивления диэлектриков, повышают относительную влажность воздуха до 65-70%. Для этого достаточно общего или местного увлажнения воздуха.

В цехе пластмассовых изделий все оборудование и трубопроводы выполнены из токопроводящих материалов и основной мерой снятия статических зарядов с его частей является заземление. Оборудование и трубопроводы имеют на всем протяжении непрерывную цепь заземления, присоединенную к заземляющему контуру.

11.8 Молниезащита

Способ защиты от молнии выбирается в зависимости от назначения сооружения, интенсивности грозовой деятельности, ожидаемого количества поражений молний в год. Из СН 305-77 видно, что Казань расположена в зоне, где среднегодовая грозовая деятельность равна 2040 часов. Ожидаемое количество поражений молнией в год зданий, не оборудованного молниезащитой определяется по формуле:

(11.9)

где S и L-соответственно ширина и длина защищаемого здания, м;

S=132 м, L=144 м;

-наибольшая высота здания, =15 м;

n-среднегодовое число ударов молний в 1 , n=3.

Данное здание по устройству молнезащиты относится к III категории здания и сооружения, в которых от прямого удара молнии могут возникнуть пожары.

Исходя из того, что 0,01<N<2, то тип зоны защиты Б со степенью надёжности 95% и выше.

По типу молниеприемника молниеотвод - сетчатый.

Сетчатые молниеприемники выполняют в виде стальной сетки из проволоки диаметром 68 мм, укладываемой на плоской кровле , в этом случае площадь ячеек должна быть не более 150 (12x12 м). Величина импульсного сопротивления каждого заземлителя защиты от прямого удара молнии должна составлять не более 20 Ом,

11.9 Пожарная профилактика и средства пожаротушения

Проектируемое оборудование расположено в цехе с классом опасной зоны П-IIа.

Минимальные пределы огнестойкости основных строительных конструкций для I степени огнестойкости: несущие стены, стены лестничных клеток, колонны - 2,5 ч.; лестничные площадки - 1 ч.; внутренние несущие стены (перегородки) - 0,5 ч.; плиты, настилы, покрытия - 0,5 ч.

Исходя из категории производства по СНиП П-90-81 .-наибольшее количество этажей здания 6; требуемая степень огнестойкости I.

Рассматриваемое здание - одноэтажное. Устройство противопожарных стен в нём не требуется.

В трубопроводах необходима защита от распространения пламени в виде быстродействующих заслонок.


Подобные документы

  • Расчет мощности и выбор типа двигателя постоянного тока. Вычисление катодного дросселя, подбор типа преобразователя и элементов регуляторов тока и скорости. Разработка принципиальной схемы управления электроприводом подъемной тележки и её описание.

    курсовая работа [225,3 K], добавлен 04.08.2011

  • Основные размеры электродвигателя постоянного тока. Расчет обмоток якоря и возбуждения. Размеры зубцов, пазов, проводов и электрические параметры якоря. Коллектор, щеткодержатели и щетки. Магнитная система и рабочие характеристики электродвигателя.

    курсовая работа [367,2 K], добавлен 13.10.2014

  • Выбор главных размеров и расчет параметров якоря. Магнитная система машин постоянного тока. Определение размагничивающего действия поперечной реакции якоря. Расчет системы возбуждения и определение потерь мощности. Тепловой и вентиляционный расчет.

    курсовая работа [538,3 K], добавлен 30.04.2012

  • Выбор электродвигателя и расчет электромеханических характеристик. Вычисление мощности силового трансформатора и вентилей преобразователя. Определение индуктивности уравнительных и сглаживающих реакторов. Статические особенности управляемого выпрямителя.

    курсовая работа [331,7 K], добавлен 10.02.2014

  • Особенности расчета двигателя постоянного тока с позиции объекта управления. Расчет тиристорного преобразователя, датчиков электропривода и датчика тока. Схема двигателя постоянного тока с независимым возбуждением. Моделирование внешнего контура.

    курсовая работа [1,2 M], добавлен 19.06.2011

  • Разработка следящего электропривода постоянного тока, выбор и расчет его силовых элементов. Принципиальная электрическая схема. Расчёт трансформатора, напряжение его вторичной обмотки. Диоды и тиристоры, их расчет и выбор. Сельсины, фазовый детектор.

    курсовая работа [403,2 K], добавлен 05.12.2012

  • Использование трансформатора в прямоходовом преобразователе постоянного тока с целью передачи энергии из первичной цепи во вторичные цепи. Характеристика достоинств и недостатков. Выбор и обоснование силовой части, ее расчет. Система управления и защиты.

    реферат [439,8 K], добавлен 22.11.2015

  • Исследование реверсивного тиристорного преобразователя – двигателя постоянного тока типа ПБВ100М. Расчет, выбор узлов силовой схемы тиристорного преобразователя с трехфазной шестипульсной Н-схемой выпрямления. Выбор системы импульсно-фазового управления.

    курсовая работа [1,9 M], добавлен 14.12.2012

  • Выбор вентилятора, расчет мощности и выбор электродвигателя. Механическая характеристика асинхронного двигателя. Выбор преобразователя частот. Компьютерное моделирование энергетических характеристик частотно-управляемых электроприводов в среде Matlab.

    курсовая работа [1,5 M], добавлен 26.05.2012

  • Выбор рода тока и напряжения двигателя, его номинальной скорости и конструктивного исполнения. Расчёт мощности и выбор электродвигателя для длительного режима работы. Устройство и принцип действия двигателя постоянного тока. Выбор двигателя по мощности.

    курсовая работа [3,5 M], добавлен 01.03.2009

Работы в архивах красиво оформлены согласно требованиям ВУЗов и содержат рисунки, диаграммы, формулы и т.д.
PPT, PPTX и PDF-файлы представлены только в архивах.
Рекомендуем скачать работу.