Проектирование подстанции 110/6 кВ с решением задачи координации изоляции

Электрическая схема подстанции. Расчет токов короткого замыкания. Выбор электрооборудования подстанции. Защита электрооборудования от импульсов грозовых перенапряжений, набегающих с ВЛ. Расчет проходного изолятора на 110 кВ с бумажно-масляной изоляцией.

Рубрика Физика и энергетика
Вид дипломная работа
Язык русский
Дата добавления 04.09.2010
Размер файла 950,9 K

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

РВС-110. Uгаш.РВ = 102 кВ,

Uпр.г = 258 кВ,

Uост.г = 367 кВ при Iг = 10 кА.

Согласно ГОСТ 1516.3-96 испытательное напряжение полным грозовым импульсом нормальной изоляции силовых трансформаторов и аппаратов равно Uисп.гп = 460 кВ. Испытательное напряжение полным грозовым импульсом изоляций нейтрали силовых трансформаторов равно Uисп.н.гп = 200 кВ.

Выбор ОПН, включенных на шинах ПС. Напряжение Uнр.опн в соответствие с исходными данными равно:

Uнр.с = 1,1 Uном./v3 = 1,1•110/v3 = 70 кВ. (4.4.1)

Учет высших гармоник из-за влияния тяговой ПС вычисляется по формуле:

Uнр.с1 = 1,1• Uнр.с = 77 кВ (4.4.2)

С учетом коэффициента запаса

Uнр.опн ? 1,05• Uнр.с1 = 1,05•77 = 81 кВ (4.4.3)

По табл.1 этому условию соответствует следующие ОПН:

- EXLIM-Q-108: Uнр.опн = 84 кВ (АВВ-УЭТМ);

- ОПН-У/TEL-110/84: Uнр.опн = 84 кВ (TEL);

- Varistar AZG-2, AZG-3, AZG-4; Uнр.опн = 84 кВ (Cooper-ЭЛЗ);

- ОПН-110/88: Uнр.опн = 88 кВ (Феникс).

Проверка по характеристике «напряжение - время» Uв.опн(tв).

По табл.1 берем зависимость Кв.опн(tв) для предварительно нагруженного ОПН (индекс В):

- EXLIM-Q-108: Кв.опн = 1,525 - 0,075lgtв;

- ОПН-У/TEL-110/84: Кв.опн = 1,50 - 0,06lgtв;

- Varistar: Кв.опн = 1,41 - 0,07lgtв;

- ОПН-110/88: Кв.опн = 1,5 - 0,06lgtв;

Из приведенных исходных данных следует, что наибольшему значению Ку3 =1,8 соответствует tу3 = 0,2 с, а наибольшему tу2 = 4,0 с соответствует Ку2 =1,45.

В именованных величинах отрезок времени 0,2 с соответствует напряжению:

Uу3 = Ку3•Uраб.наиб/v3 = 1,8•1,15•110/v3 = 132 кВ. (4.4.4)

Времени 4,0 с соответствует

Uу2 = Ку2•Uраб.наиб/v3 = 1,45•1,15•110/v3 = 106 кВ. (4.4.5)

Расчеты сведены в табл. 4.4.1

Определение Uнр.опн по характеристике «напряжение-время» табл. 4.4.1

Тип ОПН

Паспортные значения

Uу, кВ

Кв.опн

Расчетное значение Uнр.опн, кВ

Uнр.опн, кВ

tу, c

EXLIM-Q-108

84

0,2

4,0

132

106

1,578

1,480

83,6

71,6

ОПН-У/TEL-110/84

84

0,2

4,0

132

106

1,542

1,484

85,6

72,4

Varistar

84

0,2

4,0

132

106

1,459

1,468

90,5

72,2

ОПН-110/88

88

0,2

4,0

132

106

1,548

1,484

85,6

72,4

Результаты расчетов показывают, что для использования могут быть рекомендованы ограничители EXLIM-Q-108 и ОПН-110/88, у которых паспортные значения Uнр.опн превышают расчетные по характеристике «напряжение-время» значения Uнр.опн.

Взрывобезопасность у выбранных ограничителей обеспечивается, т. к. Iкз = 20 кА меньше для Iвб = 65 кА для EXLIM-Q-108 и равен Iвб = 20 кА для ОПН -100/88.

Длина пути утечки должна соответствовать С-3-2, т.е.

лэ = 2,0 см/кВ

или

lут = лэ•Uраб.наиб. = 2,0•127 =254 см. (4.4.6.)

Этому требованию удовлетворяет ограничитель ОПН-П-110/88 (см. табл.4.4.1).

Итак, окончательно для замены РВС-110 используется ограничитель, у которого (см. табл.1) остающиеся напряжения равны;

Uост.г.опн = 260 кВ при Iг = 10 кА

Uост.к.опн = 216 кВ при Iг = 1000 А

Защитный уровень при коммутационных напряжениях.

Должно быть выполнено условие:

tв.доп.к = tв.к[1 - ( tу.к-1/ tв.доп.к-1)] (4.4.7)

с учетом Uост.к. ?Uдоп.к.

Для оборудования 110 кВ по ГОСТ 1516.3-96 нормируется одноминутное испытательное напряжение:

Uисп.1 = 200 кВ

Оценка испытательного напряжения коммутационным импульсом проводится по Uдоп.к = Uисп.к(1,15 - 1,2).

- для силовых трансформаторов Uисп.к.т = v2•1,3•200 = 367 кВ;

- для аппаратов Uисп.к.опн = v2•1,15•200 = 324 кВ.

Значения допустимого напряжения равны:

- для силовых трансформаторов Uдоп.к.т = 367/1,2 = 306 кВ;

- для аппаратов Uдоп.к.апп = 324/1,2 = 270 кВ.

Превышения Uдоп.к по отношению к Uост.к.опн составляют:

- для трансформаторов в 306/216 = 1,4 раза

- для аппаратов в 270/216 = 1,25 раза

Отсюда следует, что при коммутационных перенапряжениях ОПН создает дополнительный запас электрической прочности нормальной изоляции, которая при напряжениях 110-220 кВ рассчитана на работу без ограничения коммутационных перенапряжений.

Защитный уровень при грозовых перенапряжениях.

Остающееся напряжение ОПН меньше остающегося напряжения РВС в 367/260 = 1,4 раза. Поэтому возможна установка ОПН в той же ячейке, где располагался РВС, либо допустимо увеличить расстояние от ОПН до защищаемой изоляции. В нашем случае при lзп = 2 км согласно

lопн.из = lрв.из (4.4.8)

расстояния могут быть увеличены до следующих значений.

Подстанция работает в режиме - два трансформатора и две воздушных линии:

lопн.из.т1 = 90 = 194 м (4.4.9)

lопн.из.ап.1 = 200 = 430 м (4.4.10)

Подстанция работает в режиме - два трансформатора и одна воздушная линия.

lопн.из.т2 = 75 = 161 м (4.4.11)

lопн.из.ап.2 = 150 = 322 м (4.4.12)

Получаем увеличение расстояния более чем в два раза.

Заключение. Задача по замене РВС на ОПН для данной ОРУ может быть решена следующим образом. Вместо РВС-110 применяются ОПН типа

ОПН-П-110/88. Их можно установить в те же ячейки, где были установлены РВС-110, что значительно повысит надежность защиты оборудования ОРУ от грозовых перенапряжений. В частности, опасная зона (защищенный подход) на ВЛ может быть существенно сокращена.

4.5 Электрический расчет проходного изолятора на 110 кВ с бумажно-масляной изоляцией

Вводами называются проходные изоляторы на напряжения 35кВ и выше с более сложной внутренней изоляцией. Вводы применяются в качестве проходных изоляторов трансформаторов, выключателей и других аппаратов. Основными характеристиками ввода являются номинальное напряжение, рабочий ток и во многих случаях допустимая механическая нагрузка на токоведущий стержень.

Ввод представляет собой конструкцию с внешней и внутренней изоляцией. К внешней изоляции относятся промежутки в атмосферном воздухе вдоль поверхности изоляционного тела, к внутренней - участки в самом изоляционном теле, а также промежутки вдоль поверхности изоляционного тела, находящиеся внутри корпуса, если последний заполнен газообразным или жидким диэлектриком. Конструкция внутренней изоляции ввода оказывает большое влияние и на характеристики его внешней изоляции. Например, от числа и размеров дополнительных электродов, располагаемых в изоляционном теле для регулирования электрического поля, зависит характер изменения напряженности вдоль поверхности изолятора и, следовательно, разрядные напряжения его внешней изоляции.

Изоляционное тело служит одновременно и креплением токоведущего стержня. Оно воспринимает все механические усилия, которые действуют на стержень. С увеличением номинального напряжения и размеров изоляционного тела резко возрастают механические нагрузки от собственной массы изолятора. Наиболее опасными для вводов являются механические нагрузки, изгибающие его изоляционное тело. Поэтому для крупных изоляторов, имеющих большую массу, ограничивают угол отклонения от вертикали в рабочем положении.

Нагрев ввода обуславливает потери в токоведущем стержне от рабочих токов, а также диэлектрические потери в изоляционном теле. Кроме того, нагрев может происходить и за счет тепловыделений, имеющих место внутри корпуса оборудования. Например, в трансформаторах, реакторах и силовых конденсаторах вводы соприкасаются с нагретым маслом, заполняющим внутренний объем баков. С увеличением рабочего напряжения и радиальных размеров изолятора отвод тепла от токоведущего стержня и из толщи изоляции значительно затрудняется. Поэтому становятся более жесткими и требования в отношении диэлектрических потерь во внутренней изоляции.

Вводы на 110кВ и выше выполняются только заполненными маслом, т.е. с маслобарьерной или бумажно-масляной внутренней изоляцией. Для аппаратов и трансформаторов на напряжения 110кВ и выше в последние годы преимущественное применение получили вводы с бумажно-масляной изоляцией. Конструкция такого ввода на напряжение 110кВ показана на листе. Основной внутренней изоляцией в нём является пропитанный маслом бумажный остов, намотанный на токоведущий стержень.

Благодаря высокой кратковременной и длительной электрической прочности бумажно-масляной изоляции, вводы указанного типа имеют наименьшие радиальные размеры. Основной их недостаток - резкое ухудшение характеристик при увлажнении. В связи с этим к их конструкции предъявляются повышенные требования в отношении герметичности; маслорасширители непременно снабжаются специальными осушителями воздуха.

Расчёт изоляционного остова ввода с бумажно-масляной изоляцией для трансформатора на 110 кВ.

Чтобы пренебречь изменением, напряженность электрического поля в аксиальном направлении считаем, что емкости слоев изоляционного остова одинаковы.

Выдерживаемое напряжение в сухом состоянии UC0=295кВ.

Выдерживаемое напряжение под дождём UМ0=215кВ.

Испытательное напряжение UИС=265кВ.

Расчётное напряжение ввода по 1.55[2]:

кВ

Фазовое расчётное напряжение по 1.56[2]:

кВ

Наименьшую толщину слоя изоляции примем =0,1см. При такой толщине слоя максимальная расчётная напряжённость, вычисляемая по напряжению скользящи скользящих разрядов по 1.75[2]:

кВ/см, где =3.5 для бумаги пропитанной маслом.

Расчётная напряжённость, вычисляемая по напряжённости неустойчивой ионизации (по условию частичных разрядов) в принятой толщине слоя по 1.66[2]:

кВ/см.

За расчётную принимаем наименьшую из напряжённостей, т.е.Еr.макс.расч.=125кВ/см.

Количество слоёв в изоляционном остове по 1.74[2]:

26.

При таком количестве слоёв длина уступа по масляной части по 1.79[2]:

см,

где коэффициент запаса электрической прочности по отношению к расчетному напряжению m=1.4.

Сумма длин уступов по масляной части остова:

см.

Длину уступа по воздушной части принимаем по 1.84[2]:

см.

см

Принимаем см,

а сумма длин уступов по воздушной части остова:

см,

полная длина уступов:

см.

При условии получения минимального объёма остова длина n-ой заземляемой обкладки по 1.88[2]:

см, где для условия минимума =4.1.

длина нулевой обкладки остова по 1.89[2]:

см

и параметр:

.

Радиус нулевой обкладки по 1.95[2]:

см,

радиус n-ой обкладки по 1.96[2]:

см.

Результаты расчета остальных слоев сведем в таблицу:

Параметр А будет равен:

а параметр:

Максимальная напряженность в слое x:

кВ/см, где напряжение в слое Uсл=U/n=325/26=12.45кВ/см.

Длина слоя x:

Максимальная расчётная напряжённость получилась равной 125 кВ/см. Максимальная радиальная напряжённость при рабочем напряжении ввода в слое наименьшей толщины равна 28кВ/см, а допустимая напряжённость по напряжённости ионизации составляет 37кВ/см.

Результаты расчета остова даны в таблице.

Номер слоя

0

-

0,1398

1,15

-

127,2

1

0,0868

0,2266

1,25

125

123,5

2

0,0842

0,3102

1,38

118,5

119,8

3

0,0816

0,3924

1,48

112,5

116,1

4

0,0790

0,4714

1,60

107,5

112,4

5

0,0764

0,5478

1,73

102,0

108,7

6

0,0738

0,6216

1,86

98,0

105,0

7

0,0712

0,6928

2,00

94,0

101,3

8

0,0686

0,7614

2,14

91,5

97,6

9

0,0660

0,8274

2,29

88,3

93,9

10

0,0634

0,8908

2,44

86,0

90,2

11

0,0608

0,9576

2,59

84,5

86,5

12

0,0582

1,0098

2,74

82,7

82,8

13

0,0556

1,0654

2,90

82

79,1

14

0,0530

1,1184

3,06

81,5

75,4

15

0,0504

1,1688

3,22

80,7

71,7

16

0,0478

1,2166

3,37

81,3

68,0

17

0,0452

1,2618

3,53

82,2

64,3

18

0,0426

1,3044

3,69

82,9

60,6

19

0,0400

1,3444

3,84

85,0

56,9

20

0,0374

1,3818

3,98

86,8

53,2

21

0,0348

1,4166

4,12

90,0

49,5

22

0,0322

1,4488

4,26

94,8

45,8

23

0,0296

1,4784

4,39

99,0

42,1

24

0,0270

1,5054

4,51

105

38,4

25

0,0244

1,5298

4,62

113,5

34,7

26

0,0218

1,5510

4,72

125

31,0

2) Определение геометрических размеров ввода.

Длина верхней покрышки:

см,

Длина нижней покрышки:

см

тогда

Длина соединительной втулки:

см

Внутренний диаметр соединительной втулки примем:

см,

а наружный: см

Диаметр покрышек примем:

см,

а наружный: см.

Диаметр по крыльям примем :

см.

Вылет крыла примем a=5 см, при таком вылете шаг принимаем t=8,5см. При длине верхней покрышки Lвп=85см число крыльев:

крыльев.

Мокроразрядное напряжение ввода при выбранных размерах и числе крыльев:

кВ.

Задано UМН.=215кВ, запас составляет 12%. Мокрооазрядные напряжения имеют разброс порядка 10 - 15%, следовательно, при выбранной длине покрышки минимальное значение мокроразрядного напряжения является достаточным.

кВ,

кВ/см,

кВ/см.

Средняя радиальная напряженность, взятая по максимуму:

кВ/см.

Объём изоляционного остова:

дм3

Максимальная напряжённость у фланца:

кВ/см

где d - толщина фарфорового слоя,

k - коэффициент пропорциональности [2].

При таких выбранных размерах изоляционного остова аксиальные и радиальные напряженности электрического поля максимальные и в рабочем режиме не превышают допустимых. Выбранные размеры покрышек ввода отвечают допустимым мокроразрядному и сухоразрядному напряжениям. Размеры ввода и изоляционного остова были выбраны исходя из наивыгоднейших размеров (=4.1).

Распределение напряженности электрического поля по слоям изоляции ввода.

Напряженность электрического поля в вводе в зависимости от rx и x

по 2.21[2]:

где:

rx - радиус изоляционного слоя х, см.

х - диэлектрическая проницаемость слоя х коэффициент А:

1=3.5 для бумажно-масляной изоляции (БМИ);

2=2.6 для трансформаторного масла;

3=6.5 для фарфора;

r0=1.15см - радиус токоведущего стержня;

r1=4.72см - радиус изоляционного остова;

r2=6.25см- внутренний диаметр фарфоровой покрышки;

r3=8.75см - внешний диаметр фарфоровой покрышки;

Uнаиб.раб.фаз.=73кВ.

Результаты расчета:

Тип изоляции

rx, см

Ex, кВ/см

Изоляционный остов (БМИ) 1=3.5

1.15

32.3

2

18.6

3

12.4

4.72

7.9

Трансформаторное масло 2=2.6

4.72

10.6

5

10

5.5

9.1

6

8.3

6.25

8

Фарфор 3=6.5

6.25

3.2

7

2.9

7.5

2.7

8

2.5

8.75

2.3

4.6 Выбор числа изоляторов в поддерживающих гирляндах подходящей ЛЭП 110 кВ

Изоляторы представляют собой конструкции, которые используются для крепления токоведущих и других, находящихся под напряжением, частей электротехнических устройств (проводов воздушных линий электропередачи, шин распределительных устройств и т.д.), а также для перемещения подвижных контактов выключателей и иных коммутационных аппаратов.

В соответствии с выполняемыми функциями изоляторы, прежде всего, должны обладать достаточной механической прочностью по отношению ко всем видам возможных эксплуатационных нагрузок: статическим, ударным и др. особенность этого очевидного требования применительно к изоляторам установок высокого напряжения состоит в том, что механическая прочность должна обеспечиваться при воздействии сильных электрических полей. В таких условиях местные, небольшие повреждения, не влияющие на общую механическую прочность, могут иногда вызывать существенное снижение пробивного напряжения и приводить к преждевременному выходу изолятора из строя.

На линиях 35 кВ и более высокого напряжения применяются преимущественно подвесные изоляторы тарельчатого типа. Путем последовательного соединения таких изоляторов можно получить гирлянды на любое номинальное напряжение. Применение на линиях разного класса напряжения гирлянд из изоляторов одного и того же типа значительно упрощает организацию их массового производства и эксплуатацию.

Из-за шарнирного соединения изоляторы в гирлянде работают только на растяжение. Однако сами изоляторы сконструированы так, что внешнее растягивающее усилие вызывает в изоляционном теле в основном напряжения сжатия и среза. Тем самым используется весьма высокая прочность фарфора и стекла на сжатие.

Основу изолятора составляет фарфоровое или стеклянное тело - тарелка, средняя часть которой, вытянутая к верху, называется головкой. На головке крепится шапка из ковкого чугуна, а в гнездо, расположенное внутри головки, заделывается стальной стержень. Армировка изолятора, т.е. механическое соединение изоляционного тела с металлической арматурой, выполняется при помощи цемента.

Соединение изоляторов в гирлянду осуществляется путем введения утолщенной головки стержня в специальное ушко на шапке другого изолятора и закрепления его замком. Длина стержня делается минимальной но достаточной для удобной сборки гирлянды.

Механическую нагрузку несут в основном головка изолятора и прежде всего ее боковые опорные части. Поэтому конструкции тарельчатых изоляторов различаются в первую очередь формой головки.

Высота над уровнем моря 200 м, II степень загрязнения.

Определим расчетное значение коммутационных перенапряжений по формуле из (7):

.

Находим среднее Мокроразрядное напряжение гирлянды по формуле (7):

,

Где kф=1.15;

kг=1.1;

kp=0.5(1+P/760)=0.99;

kу=0. 85.

.

Определим необходимое количество изоляторов марки ПС-4.5. Имеем: строительная высота h=13 см, диаметр тарелки D=25.5см, длина пути утечки Lут=25 см, мокроразрядная напряженность Емр=3.7 кВ/см. Тогда:

изоляторов.

Прибавив один запасной элемент, определяем полное число изоляторов марки ПС-4.5: .

Проверяем на достаточность обеспечения удельной длины пути утечки:

, что не превышает установленный для II района .

Определенное расчетным путем число изоляторов соответствует числу изоляторов в гирлянде ЛЭП, подходящей к подстанции.

Определяем расчетные значения разрядных напряжений по формуле из (7):

,

где для троса на высоте до 500 м.

.

Для найденных UP и UРК определяем величины изоляционных промежутков:

S1=25 см. S1K=60 см.

Вычисляем импульсную прочность выбранной гирлянды 7*ПС-4.5:

L2=n*h=7*13=91 см. (длина всей гирлянды).

UРИ=500 кВ. (7)

определяем изоляционный промежуток: S1И=45 см.

Определенные расчетным путем изоляционные расстояния соответствуют изоляционным промежуткам подходящей ЛЭП 110 кВ. По расчетам видно, что выбранное количество изоляторов должно обеспечивать высокое пробивное напряжение гирлянды. Однако, напряжение коронирования гирлянды Uкг на гирлянде из 7 изоляторов, соответствующее появлению короны на одном из изоляторов, может быть значительно меньше 7*Uки и при некоторых условиях оказаться ниже рабочего напряжения. Объясняется это тем, что напряжение, приложенное к гирлянде, распределяется по изоляторам неравномерно. Поэтому при увлажненном загрязнении может произойти перекрытие гирлянды и отключение линии.

5. Техника и правила безопасности при работе с электрооборудованием

5.1 Безопасность при работах под напряжением на воздушных линиях электропередачи

Особенности метода работ под напряжением заключаются в том, что:

1) линия электропередачи при этом остаётся в работе, благодаря чему обеспечивается бесперебойность электроснабжения потребителей;

2) персонал, выполняющий ремонтные работы, будучи надёжно изолирован от земли, может безопасно прикасаться неизолированным инструментом или голыми руками к проводам линии, находящимся под рабочим напряжением.

В настоящее время ремонт воздушных линий электропередачи под напряжением производится также в ряде зарубежных стран (США, Англии, Японии и др.), причем этот метод ремонта применяется на воздушных линиях практически любого напряжения от 1 до 500 кВ включительно. Иногда он применяется и в открытых распределительных устройствах.

Под напряжением на ВЛ производятся : замена изоляторов и арматуры; снятие с проводов набросов ; осмотр провода со вскрытием подвесных зажимов ; замена провода на отдельных участках линии ; ремонт провода в любом месте пролёта - установка шунтов, бандажей и ремонтных муфт, вставка жил и небольших кусков провода; установка на проводе контрольно - измерительной аппаратуры и подобные им работы. Кроме того, без отключения ВЛ выполняются и другие работы, не требующие прикосновения к проводам : покраска металлических и антисептирование деревянных опор, выправка опор; замена отдельных деталей деревянных опор - пасынков, траверс, стоек и пр., а также опор в целом; замена грозовых тросов и т.п.

Достоинством метода ремонта ВЛ под напряжением является то, что он приносит народному хозяйству значительную экономию благодаря тому, что при этом методе исключаются недоотпуск энергии потребителям и увеличение потерь энергии, неизбежных при ремонте с отключением линии. При этом методе ремонта сохраняется не только непрерывность, но и существующая надёжность питания потребителей электроэнергии.

При ремонте не отключенных линий требуется меньшее количество ремонтного персонала, так как работы на различных участках линии могут производиться в разное время, а не одновременно, что имеет место при ремонтах с отключением линии.

В основу метода работы с непосредственными прикосновением человека к проводу, находящемуся под рабочим напряжением, положен принцип изоляции человека от земли и тел, имеющий иной, чем провод, потенциал. При опытах, проводившихся во время разработки этого метода, в качестве изоляции использовались обычные фарфоровые опорно - штыревые изоляторы типа ИШД - 35, предназначенные для монтажа колонок разъединителей открытых распределительных устройств, на которых размещался человек. При этом было установлено, что человек может касаться голого провода, несущего напряжения до 500 В, не испытывая неприятных ощущений. При большем напряжении вплоть до 1000 В прикосновение к проводу сопровождалось неприятным ощущением, а при напряжении 1000 - 4000 В - болезненным ощущением с явлением покалывания в месте касания от искры, возникающей между проводом и рукой.

С ростом напряжения мощность искры увеличивалась и усиливалась болезненность ощущения. При напряжении 8 - 10 кВ действие искры оказалось настолько значительным, что исключало возможность прикосновения к проводу.

Для ограничения установившегося тока применяется специальный экранирующий костюм, изготовленный из токопроводящей ткани и снабженный специальной обувью. Применяются также металлические экраны, защищающие пространство, в котором находится человек, работающий с изолирующего устройства.

Защитный костюм электрически соединяется с металлической рабочей площадкой изолирующего устройства. Он экранирует все тело человека, за исключением лица, кистей рук и ступней ног, благодаря чему емкостные токи уменьшаются в несколько раз и оказываются значительно ниже ощутимых токов. Применение экранирующих костюмов или других средств защиты от воздействия электрического поля является обязательным при работах с изолирующих устройств на линиях 220 кВ и выше.

Изолирующие устройства и вспомогательные приспособления.

Материалом для изготовления изолирующих устройств, предназначенных для изоляции человека от земли, а также вспомогательных изолирующих приспособлений, предназначенных для изоляции отдельных частей линий с разными потенциалами, служит, как правило, электротехнический древесно-слоистый пластик, а в отдельных случаях - текстолит, стеклотекстолит и подобные им электроизоляционные материалы, обладающие высокой электрической и механической прочностью. За рубежом находят применение также бакелит, различные пластмассы, в том числе усиленные стеклянным волокном.

Вспомогательные изолирующие приспособления, к которым относятся в первую очередь тяги и захваты, имеют конструкцию, соответствующую их назначениям.

Замена гирлянды изоляторов на ВЛ 110-220 кВ с металлическими опорами производится с применением изолирующего устройства, изолирующей тяги и поворотного крана, с помощью которого перемещаются старая и новая гирлянды.

Вначале монтеры, поднявшись на опору, укрепляют на траверсе над сменяемой гирляндой изолирующую тягу и поворотный кран. Затем монтер. Находящийся на изолирующем устройстве, укрепляет на проводе захваты тяг, при помощи натяжных винтов переводит нагрузку провода с гирлянды на тяги и отцепляет от гирлянды подвесной зажим, т.е. освобождает гирлянду от провода. После этого производится замена гирлянды. Монтер, находящийся на траверсе, закрепляет на верхнем изоляторе (заводит в зазор между шапкой и тарелкой изолятора) стальной хомут, укрепленный на конце каната поворотного крана. Краном поднимают гирлянду, отцепляют её от траверсы, а затем краном же переносят её к опоре и с помощью каната отпускают на землю.

Новая гирлянда подается к месту установки поворотным краном, сочленяется с подвесной арматурой и при помощи тех же натяжных винтов воспринимает нагрузку провода, разгружая тяги.

Причины поражения током и способы их устранения

При работах под напряжением на ВЛ электропередачи основной опасностью для персонала является опасность поражения током и ожога электрической дугой. Эта опасность существует как для человека, работающего на изолирующем устройстве, т.е. находящегося под потенциалом провода, так и для работающего на опоре.

Возможные причины поражения током человека, выполняющие эти работы, следующие:

1) недостаточная электрическая прочность устройства, изолирующего человека от земли или вспомогательных изолирующих приспособлений ( тяг, захватов и т.п.), вследствие чего изоляция их может быть перекрыта напряжением провода ВЛ относительно земли ;

2) недостаточная электрическая прочность изоляции провода линии на месте работы людей, вследствие чего она может быть перекрыта напряжением провода относительно земли;

3) приближение человека, работающего с изолирующего устройства, к телу опоры (или работающего с опоры - к проводу) на расстояние, при котором произойдет пробой воздушного промежутка между человеком и опорой (или проводом).

Электрическая прочность изолирующих устройств и приспособлений, т.е. их разрядное напряжение по поверхности, зависит от земли по изоляции: чем больше длина, тем выше разрядное напряжение.

Электрическая прочность изоляции провода относительно земли обусловливается разрядным напряжением по поверхности гирлянд изоляторов. На линиях с деревянными опорами фарфоровая (стеклянная) изоляция усиливается за счет последовательного включенного участка деревянной траверсы или стойки опоры.

Расстояние от человека, работающего с изолирующего устройства, до опоры (или работающего с опоры до провода) зависит главным образом от организации работы и выдерживается, как правило, самим работающим на глаз.

Условия безопасности. Для устранения указанных причин несчастных случаев необходимо, чтобы изоляция устройств, изолирующих человека от земли, и вспомогательных изолирующих приспособлений, а также изоляция проводов линий на месте работы людей и воздушный промежуток между человеком и частями линии, имеющими иной потенциал, обладали в период работы разрядными напряжениями, превышающими возможное напряжение проводов линии относительно земли в данном месте.

Напряжение провода относительно земли на месте работы людей может значительно превышать фазное напряжение линии в результате внутренних и атмосферных перенапряжений, значения от номинального которых находятся в зависимости напряжения линии и ряда других факторов.

5.2 Технические мероприятия, обеспечивающие безопасность работ со снятием напряжения

При подготовке рабочего места со снятием напряжения должны быть в указанном порядке выполнены следующие технические мероприятия:

произведены необходимые отключения и приняты меры, препятствующие подаче напряжения на место работы вследствие ошибочного или самопроизвольного включения коммутационных аппаратов;

на приводах ручного и на ключах дистанционного управления коммутационных аппаратов должны быть вывешены запрещающие плакаты;

проверено отсутствие напряжения на токоведущих частях, которые должны быть заземлены для защиты людей от поражения электрическим током;

наложено заземление (включены заземляющие ножи, а там, где они отсутствуют, установлены переносные заземления);

вывешены указательные плакаты «Заземлено», ограждены при необходимости рабочие места и оставшиеся под напряжением токоведущие части, вывешены предупреждающие и предписывающие плакаты.

Требования к персоналу

Персонал, обслуживающий электроустановки, должен пройти проверку знаний настоящих Правил и других нормативно-технических документов (правил и инструкций по технической эксплуатации, пожарной безопасности, пользованию защитными средствами, устройства электроустановок) в пределах требований, предъявляемых к соответствующей должности или профессии, и иметь соответствующую группу по электробезопасности в соответствии с приложением №1 к настоящим Правилам.

Персонал обязан соблюдать требования настоящих Правил, инструкций по охране труда, указания, полученные при инструктаже.

Опасность для обслуживающего персонала в электроустановках возникает тогда, когда повреждается изоляция оборудования и через заземлитель проходит ток короткого замыкания или ток короткого замыкания на землю. При прикосновении человека, например к баку выключателя, при повреждении изоляции его руки приобретут также потенциал и заземлителя, а ноги получат потенциал Uн, значение которого можно найти по кривой, показывающей распределение потенциалов. Следовательно тело человека подвергается разности потенциалов Uз-Uн, которую называют напряжением прикосновения Uпр:

Расчет заземляющих устройств на напряжение прикосновения производится при помощи ЭВМ.

Чем ближе к баку выключателя находится человек, тем меньше напряжение прикосновения. Если человек не касается бака, а подходит к нему, то правая и левая нога находятся каждая под своим потенциалом, а разность этих потенциалов называют шаговым напряжением.

Если молниеотвод установлен на таком месте, где вблизи могут находиться люди, то для того, чтобы обеспечить их безопасность, сопротивление обособленного заземлителя молниеотвода не должно превышать 10 Ом.

Обеспечить условия безопасности на ПС, т.е. снизить напряжение прикосновения до допустимых значений можно как снижением потенциала U заземлителя, уменьшая его сопротивление R, так и уменьшением коэффициента прикосновения приняв меры по выравниванию потенциала на территории ПС [21,c.42].

Вероятность поражения человека электрическим током под действием напряжения прикосновения и шага определяется как значением тока замыкания на землю, так и длительностью его протекания. Длительность протекания тока замыкания на землю не только усугубляет его физиологические последствия от протекания тока через человека, но и увеличивает вероятность его попадания под напряжение прикосновения и шага.

В соответствии с этим требования, предъявляемые к защитному заземлению электроустановок, должны определяться допустимым значением тока через тело человека с учетом его длительности и вероятности попадания человека под напряжения прикосновения и шага. Этот ток определяет допустимое значение напряжения на теле человека.

Однако по ПУЭ в системах с заземленной нейтралью защитное заземление ПС ВН нормировалось не по допустимому напряжению на теле человека, а по допустимому сопротивлению заземления.

Пожаротушение ПС производится первичными средствами: огнетушителями, песком и т.д. Выбор первичных средств пожаротушения производится дирекцией строящейся ПС на основе действующих норм.

5.3 Эксплуатация устройств защиты ПС от ПУМ

Устройства защиты от ПУМ ЭС и ПС требуют систематического надзора. Ответственными лицами за состояние устройств защиты от ПУМ являются на ЭС начальники электроцехов, а в электросетевых предприятиях - начальники ПС и начальники групп ПС. Для того чтобы вести систематический и технически грамотный надзор за состоянием и работой устройств защиты от ПУМ, нужно иметь полную техническую документацию и приборы, позволяющие контролировать состояние и работу молниеотводов.

Согласно Правилам технической эксплуатации ЭС и сетей для контроля состояния заземляющего устройства на ЭС и ПС должны производиться измерения сопротивления заземления после монтажа перед включением в эксплуатацию и после переустройства и капитального ремонта этих устройств, а затем через каждые 10 лет с выборочной проверкой их состояния со вскрытием грунта. Проверяется наличие нумерации на каждом стержневом молниеотводе и плакатов, предупреждающих об опасности нахождения людей вблизи молниеотвода во время грозы.

Осмотры устройств защиты. Для того чтобы защита от ПУМ в эксплуатации постоянно поддерживалась в исправном состоянии, она должна наравне со всем оборудованием ОРУ подвергаться систематическим осмотрам. Согласно [9] осмотры ПС с постоянным дежурным персоналом производится не реже чем 1 раз втрое суток.

Осмотры молниеотводов на территории ЭС и ПС производятся каждый год перед началом грозового сезона. Молниеотводы, установленные в ОРУ с постоянным дежурным персоналом, осматриваются в период грозового сезона после каждой близкой грозы. Выявленные неисправности заносятся в журнал дефектов, которые имеются у дежурного персонала, и сообщаются лицам, ответственным за состояние защиты от ПУМ.

Для контроля работы молниеотводов и изучения эффективности их действия на токоотводах и на металлических несущих конструкциях или на молниеприемниках молниеотводов с железобетонными опорами часто устанавливаются магнитные регистраторы, которые намагничиваются при прохождении по токоотводам и молниеприемникам токов молнии. Магнитные регистраторы обычно вынимаются из своих «гнезд» после окончания грозового сезона и отправляются в высоковольтные лаборатории ЭС и электросетевых предприятий для проверки их намагниченности и определения амплитуды токов молнии, которые вызвали это намагничивание. Случаи срабатывания молниеотводов должны отмечаться в ведомостях учета состояния защиты от ПУМ. [25]

5.4 ТБ при обслуживании разъединителей

При эксплуатации разъединителей необходимо соблюдать правила ТБ, изложенные в соответствующих параграфах ПТБ.

Все оперативные переключения с разъединителями должны выполняться в защитных касках. Для защиты персонала от воздействия дуги при отключении разъединителя и на случай поломки изоляторов над приводами аппаратов сооружаются защитные козырьки. Во время выполнения операций персонал обязан находиться под защитным козырьком и пользоваться диэлектрическими перчатками.

Необходимо помнить, что за время производства оперативных переключений, а также при регулировке разъединителей может произойти излом фарфорового изолятора и его падение особенно в морозную погоду. Поэтому необходимо тщательно осмотреть изоляторы с земли не имеются ли трещины на изоляторах. При наличии последних оперировать такими разъединителями ЗАПРЕЩАЕТСЯ.

5.5 Техника безопасности при эксплуатации ОРУ

Современные системы электроснабжения промышленных предприятий включают помимо воздушных и кабельных линий трансформаторные и в ряде случаев преобразовательные подстанции. Подстанция - это электроустановка, состоящая из трансформаторов или других преобразователей энергии, распределительных устройств (РУ), устройств управления и вспомогательных сооружений. Подстанции промышленных предприятий могут быть пристроенными к основному зданию, встроенными, а также внутрицеховыми. Широкое применение имеют трансформаторные подстанции (КТП), поставляемые собранном или полностью подготовленным для сборки виде. Комплектным (КРУ) называется РУ, состоящее из полностью или частично закрытых шкафов или блоков с встроенными в них аппаратами, устройствами защиты и автоматики, поставляемыми в собранном или полностью подготовленном для сборки виде.

Таким образом, монтаж современной подстанции сводится в основном к установке в подготовленном помещении (или на площадке в случае открытого РУ) отдельных шкафов или блоков, соединении их аппаратов между собой и с КЛ или ВЛ. Электромонтажники выполняют при этом слесарно-сборочные и такелажные работы: выполнение электромонтажных заготовок в мастерских, выполнение электрических соединении первичных и вторичных цепей, включение приборов и автоматики, наладку смонтированного оборудования. При электромонтаже и ремонте оборудования подстанции следует применять меры защиты от механических травм (ушибов, ранений), ожогов, от поражения электрическим током. Персонал электромонтажной организации независимо от наличия квалификационной группы по технике безопасности не приравнивается к эксплуатационному персоналу, и ему запрещается производить какие-либо работы по эксплуатации электроустановок на строительных площадках.

Для крепления отдельных деталей электрооборудования к стенам и конструкциям помещения РУ с помощью дюбелей применяют пороховые инструменты - строительно-монтажный пистолет поршневого типа ПЦ-52-1 и пороховые оправки типа ОДП-4М. Меры безопасности при использовании пороховых инструментов предусмотрены по их эксплуатации.

Подъем деталей оборудования или конструкций массой более 20 кг следует выполнять двоим электромонтажникам. При массе груза более 50 кг поднимать его следует с применением блоков или лебедки.

Опасным в отношении возможности травмирования являются, связанные с подъемом на высоту и креплением тяжелых деталей электрооборудования РУ (разъединителей, трансформаторов тока, опорных и проходных изоляторов и др.). При перемещении и подъеме на места установки разъединителей, отделителей и короткозамыкателей их необходимо устанавливать в положение «включено», так как при таком положении ножей исключается возможность травмирования рабочих ножевыми контактами рубящего типа.

Все автоматические выключатели, электромагнитные приводы и другие аппараты, снабженные возвратными пружинами или механизмами свободного расцепления, следует перемещать с места на место, когда они находятся в положении «отключено». Дело в том, что при включенном положении этих аппаратов возможно случайное срабатывание на отключение и внезапное движение механизма может травмировать рабочего, производящего перемещение аппарата.

В процессе регулировки выключателей и разъединителей с автоматическими приводами должны быть приняты меры против непредусмотренного включения или отключения приводов другим лицом или самопроизвольно. В этом случае возможны ушибы выполняющего работу электромонтажника. Для предотвращения такого случайного включения плавкие вставки в цепях управления электромагнитным (электродвигательным) приводом снимаются.

Если же в процессе регулировки потребуется включить оперативный ток, то постановка вставок предохранителей допускается только после удаления всех людей от привода выключателя.

Меры безопасности при монтаже силовых масляных трансформаторов в основном сводятся к безопасным приемам перемещения трансформатора и установке его на фундаменте. На время монтажа подготовленная бетонированная яма под трансформатором (для спуска масла в случае аварии и пожара) должна быть закрыта настилом из прочных досок. Разгрузку трансформатора с железнодорожной платформы или из кузова автомашины обычно производят автокраном. Допускается спуск трансформатора по наклонной плоскости (по брусьям) под углом не более 10 градусов. Трансформатор со стороны, противоположной направлению спуска, поддерживают оттяжками при помощи лебедки.

В процессе подъема сердечника трансформатора из бака или при опускании его в бак никто из людей не должен находиться вблизи трансформатора. Всякие работы на сердечнике или на баке допускаются только после полного удаления сердечника из бака и установки его на прочном основании. При необходимости работы в баке под поднятой крышкой силового трансформатора под крышку следует установить належные подставки для удержания ее в поднятом состоянии. После того как смонтирована ошиновка трансформатора и его обмотки присоединены к шинам РУ, их внешние выводы следует замкнуть и заземлить. Эта мера необходима на случай ошибочной подачи напряжения на трансформатор, который еще не принят в эксплуатацию и, возможно, еще не окончены какие- либо работы. То же относится и к измерительным трансформаторам.

Оперативное обслуживание действующих электроустановок предприятий предусматривает периодические и внеочередные осмотры электрооборудования систем электроснабжения и электроприемников, контроль и учет электроэнергии, оперативные переключения в электросетях, обеспечивающие бесперебойное снабжение электроэнергией. Оперативное обслуживание электроустановок осуществляется инженерно-техническим, дежурным и оперативно - ремонтным электротехническим персоналом.

Обязанности закрепленного за данной электроустановкой дежурного (оперативно-ремонтного) персонала определяются местными инструкциями, в которых должны быть изложены также конкретные основные меры по электробезопасности и пожарной безопасности применительно к эксплуатируемому электрооборудованию.

Оперативное обслуживание электроустановок может осуществляться как одним лицом, так и бригадами из двух человек и более. Численность персонала для каждого цеха, участка, подстанции определяется главным энергетиком предприятия, который является лицом, ответственным за эксплуатацию всего электрохозяйства.

При обслуживании электроустановок напряжением выше 1000В старший в смене (бригадир) или одиночный дежурный должны иметь квалификационную группу по ТБ не ниже IV, а в электроустановках до 1000В - не ниже группы III.

Осмотр электрооборудования, находящегося под напряжением сопряжен с опасностью поражения электрическим током, которая возникает при случайном прикосновении к неизолированным токоведущим частям или приближении к ним на такое близкое расстояние, когда возможно перекрытие воздушного промежутка и поражение через электрическую искру (электрическую дугу). Поражение также возможно при прикосновении к металлическим корпусам и ограждениям электроустановок, имеющих вследствие повреждения изоляции замыкание на корпус в случае неудовлетворительного состояния заземления (зануления). Поэтому лицо, производящее осмотр, должно иметь достаточную квалификацию и знание ТБ. Помимо дежурного (оперативно-ремонтного) персонала единоличный осмотр электроустановок разрешается административно-техническому персоналу службы эксплуатации, имеющему квалификационную группу V (в установках до 1000 В - IV группу).

Во избежание поражения электрическим током во время осмотра действующих электроустановок необходимо соблюдать следующие меры предосторожности. При осмотре электроустановки выше 1000 В одним лицом не разрешается проникать за ограждения и входить в камеры РУ. Осматривать электрооборудование следует только с порога камеры или стоя перед барьером. В случае необходимости дежурному, имеющему квалификационную группу не ниже IV, разрешается для осмотра вход в камеру РУ при условии, что в проходах расстояние от пола до нижних фланцев изоляторов аппаратов (например, трансформаторов) не менее 2м, а до неогражденных токоведущих частей не менее 2.75 м при напряжении 35 кВ. Если эти расстояния окажутся меньше, то вход за ограждения допускается только в присутствии второго лица с квалификационной группой не ниже III, присутствие которого необходимо для наблюдения за действиями человека, вошедшего в камеру РУ, предупреждения его об опасности приближении к токоведущим частям, а также оказания в случае необходимости помощи.

При обнаружении во время осмотра случайного замыкания какой-либо токоведущей части электроустановки на землю запрещается до отключения поврежденного участка приближаться к месту токового замыкания на расстояние менее 4 м в закрытых РУ и 8 м на открытых подстанциях во избежание поражения шаговым напряжением. Если окажется необходимым приближение к месту замыкания на землю, например для оказания помощи пострадавшему или для выполнения операций с коммутационной аппаратурой, то следует применить средства защиты (диэлектрические боты, галоши).

Самостоятельное обслуживания электроустановок напряжением до 1000 В, включая периодические осмотры, проверки, измерения и текущий ремонт, разрешается рабочим-электрикам, имеющую квалификационную группу не ниже III. Во время осмотра цехового электрооборудования запрещается выполнять какие-либо работы на этом оборудовании, за исключением работ, связанных с предупреждением аварии или несчастного случая. Также запрещается снимать ограждения токоведущих частей и вращающихся частей, проникать за ограждения, косятся токоведущих частей и приближаться к ним на опасное расстояние. Дежурному электрику, обслуживающему цеховые производственные электроустановки. разрешается при необходимости открывать для осмотра дверцы распределительных шкафов, щитков, пусковых устройств и т.п., соблюдая при этом особую осторожность.

Смена сгоревших плавких вставок предохранителей, как правило, должно выполнятся при снятом напряжении. Смену плавких вставок закрытых (пробочных, трубчатых) предохранителей допускается производить под напряжением, но при отключенной нагрузке. Эта работа выполняется в электроустановках напряжением до 1000 В в диэлектрических перчатках и предохранительных очках, а в установках напряжением выше 1000 В - при помощи изолирующих клещей, также в перчатках и очках. Опасность при смене вставок предохранителей состоит в том, что в случае постановки предохранителя при наличии в сети короткого замыкания плавкая вставка перегорает в руках оператора и при наличии электрической дуги есть опасность ожога и поражения электрическим током.

Если цеховое электрооборудование было отключено по заказу эксплуатационного не электротехнического персонала для каких-либо ремонтных работ, то последующее его включение может быть произведено только по требованию лица, давшего заявку на отключение, или лица, сменившего его. Это условие необходимо соблюдать для того, чтобы исключить аварию и несчастный случай, если на электроприводах или производственных машинах окажется ремонтный персонал, не уведомленный о предстоящем включении. Перед включением силовой электроустановки после ремонта дежурный электрик обязан её осмотреть и убедится в готовности электрооборудования к приему напряжения и предупредить производственных рабочих о предстоящим включении.

Оперативные отключения в РУ подстанций промышленных предприятий производится дежурным или оперативно-ремонтным персоналом по распоряжению или с ведома вышестоящего дежурного электротехнического персонала в соответствии с установленным на предприятии режимом работы. Распоряжение о переключениях может быть передано устно или по телефону с записью его в оперативном журнале. Только в случаях, не терпящих отлагательства (авария, пожар, несчастный случай, предупреждение аварии и т.п.), допускаются переключения без ведома вышестоящего оперативного персонала, но с последующим его уведомлением и с записью выполненных операций в оперативном журнале. Список лиц, имеющих право производить оперативные переключения, утверждается главным энергетиком предприятия.

В РУ напряжением выше 1000В сложные оперативные переключения, производимые более чем на одном присоединении, должны выполняться двумя лицами, причем старший из них по должности контролирует и руководит действиями младшего, который непосредственно управляет коммутационными аппаратами. Этим обеспечивается правильная последовательность операций с выключателями и разъединителями, а следовательно, и безопасность операторов.

Согласно требованиям ПТБ работы, производимые в действующих электроустановках, в отношении принятия мер безопасности разделяются на четыре категории.

1. Работы, выполняемые при полном снятии напряжения, производимые в электроустановках, где со всех токоведущих частей, в том числе и вводов, снято напряжение. Нет незапертого входа в помещения, в которых размещены электроустановки, находящиеся под напряжением. Так, например, текущий ремонт силового трансформатора осуществляется при полном снятии напряжения со стороны как высшего напряжения (со стороны питания), так и низшего напряжения.

2. Работы, выполняемые при частичном снятии напряжения, производимые в открытой электроустановке или в электроустановке, расположенном в отдельном помещении, где снято напряжение только с тех присоединений, на которых производится работа или где напряжение полностью снято, но есть незапертый вход в помещение соседней электроустановки, находящийся под напряжением.

3. Работы выполняемые без снятия напряжения вблизи токоведущих частей и на токоведущих частях электроустановок, находящиеся под напряжением. К ним относятся работы, требующие принятия технических или организационных мероприятий по предотвращению возможности приближения работающих людей и используемой ремонтной оснастки и инструмента к токоведущим частям на опасное расстояние, а также работы, производимые непосредственно на токоведущих частях, находящихся под напряжением, с помощью специальных средств защиты и приспособлений.

4.Работы, выполняемые без снятия напряжения вдали от токоведущих частей, находящихся под напряжением, при котором исключено случайное прикосновение или приближение к токоведущим частям на опасное расстояние и не требуется принятия технических и организационных мер для предотвращения такого приближения. К таким работам относятся, чистка от пыли кожуха электрооборудования при наличии в РУ постоянного ограждения токоведущих частей, уборка территории РУ и другие работы в пределах до постоянных ограждений токоведущих частей.


Подобные документы

  • Производственная мощность проектируемой электрической подстанции. Выбор числа и мощности трансформаторов. Расчет токов короткого замыкания. Максимальная токовая защита от перегрузки автотрансформаторов. Компоновка основного электрооборудования подстанции.

    дипломная работа [661,4 K], добавлен 01.07.2015

  • Общая характеристика Борзинского района, особенности климатических и природных условий. Проектирование электрической подстанции, расчет электрических нагрузок. Выбор силовых трансформаторов, расчет токов короткого замыкания. Выбор электрооборудования.

    дипломная работа [371,3 K], добавлен 19.08.2011

  • Характеристика потребителей электроэнергии. Расчет мощности подстанции, определение нагрузок, выбор трансформаторов. Компоновка распределительных устройств. Расчет токов короткого замыкания. Выбор электрооборудования, коммутационной и защитной аппаратуры.

    дипломная работа [993,5 K], добавлен 10.04.2017

  • Построение графиков нагрузки для обмоток трансформаторов высокого, среднего, низкого напряжения по исходным данным. Выбор трансформаторов на подстанции, обоснование. Расчет токов короткого замыкания на проектируемой подстанции, выбор электрооборудования.

    дипломная работа [336,9 K], добавлен 10.03.2010

  • Построение графиков нагрузки для обмоток трансформатор высокого, среднего и низкого напряжения. Выбор электрооборудования выключателей, разъединителей, шин, преобразователей тока, напряжения и расчет токов короткого замыкания на подстанции 500/220/10.

    дипломная работа [423,7 K], добавлен 28.04.2010

  • Выбор числа и мощности силовых трансформаторов. Проверка коэффициентов их загрузки. Разработка и обоснование принципиальной электрической схемы подстанции. Расчет токов короткого замыкания. Выбор и проверка основного электрооборудования. Выбор изоляторов.

    курсовая работа [615,2 K], добавлен 12.06.2011

  • Расчет нагрузки и выбор главной схемы соединений электрической подстанции. Выбор типа, числа и мощности трансформаторов. Расчет токов короткого замыкания. Выбор электрических аппаратов и проводников. Релейная защита, расчет заземления подстанции.

    курсовая работа [1,1 M], добавлен 17.12.2014

  • Характеристика электрооборудования узловой распределительной подстанции. Расчет электрических нагрузок, компенсация реактивной мощности, выбор типа, числа и мощности силовых трансформаторов и места расположения подстанции. Расчет токов короткого замыкания

    курсовая работа [99,3 K], добавлен 05.06.2011

  • Расчет электрических нагрузок. Выбор числа мощности и типа трансформатора, выбор местоположения подстанции. Расчет токов короткого замыкания, выбор высоковольтного оборудования. Расчет затрат на реконструкцию подстанции, схема заземления и молниезащиты.

    дипломная работа [1,2 M], добавлен 20.10.2014

  • Расчет мощности силового трансформатора, капитальных вложений и токов короткого замыкания. Выбор типа распределительного устройства и изоляции. Определение экономической целесообразности схемы. Схема электрических соединений проектируемой подстанции.

    курсовая работа [411,6 K], добавлен 12.12.2013

Работы в архивах красиво оформлены согласно требованиям ВУЗов и содержат рисунки, диаграммы, формулы и т.д.
PPT, PPTX и PDF-файлы представлены только в архивах.
Рекомендуем скачать работу.