Проектирование релейной защиты и автоматики блока генератор–трансформатор
Выбор вспомогательного оборудования и коммутационной аппаратуры. Проектирование релейной защиты блока генератор-трансформатор. Микропроцессорный автоматический регулятор возбуждения и синхронизатор. Продольная дифференциальная защита трансформатора.
Рубрика | Физика и энергетика |
Вид | дипломная работа |
Язык | русский |
Дата добавления | 25.04.2015 |
Размер файла | 991,6 K |
Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже
Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.
Для составляющих высших гармоник в напряжении цепи возбуждения дроссель L1 представляет значительное сопротивление, которое ограничивает ток с частотой сети высших гармоник, поступающий из цепи возбуждения в данное устройство. Постоянная составляющая напряжения ротора в устройство не проходит благодаря наличию разделительного конденсатора С1. Данная схема осуществляет гальваническую развязку цепей возбуждения генератора от измерительной части защиты при помощи трансформатора ТVЗ и разделительного трансформатора TV1.
В случае нарушения контакта перехода щетки - вал генератора теряется цепь возбуждения генератора. Это приводит к появлению небаланса реактивной составляющей на входе трансформатора TVЗ, сигнал от которого усиливается и поступает к АЦП.
Защита подключается к цепям возбуждения через специальный разделительный блок частотного фильтра (например, типа БЭ1105), обеспечивающий подавление высших гармонических составляющих напряжения возбуждения и ограничение напряжения на выходе до 120 В.
Защита имеет две независимые ступени срабатывания по сопротивлению изоляции.
В защите имеется устройство компенсации емкости цепей возбуждения генераторов с дискретной регулировкой ступенями по 0,025 мкФ, настраивающиеся на конкретное значения емкости цепи возбуждения.
Частота вспомогательного источника напряжения находится в пределах (16,7 ± 0,3) Гц.
Защита peагирует на нарушение (обрыв) контакта релейной щетки при емкости ротора относительно земли не менее 0,2 мкФ и обеспечивает сигнализацию о неисправности.
В защите предусмотрены выдержки времени при действии I и II ступеней, а также устройства контроля контакта релейной щетки.
Защита выдает сигналы для действия на табло «Неисправность» и на звуковую сигнализацию и действует на отключение генератора от сети.
Рис.2.10. Структурная схема защиты ротора от замыкания на землю.
2.16 Защита генератора от замыканий на землю обмотки статора
2.16.1 Защита от замыканий на землю обмотки статора блока генератор-трансформатор, un (U0)
Назначение - защита от замыкания на землю обмотки статора генератора, не имеющего гальванической связи с системой собственных нужд или сетью потребителей.
Орган напряжения основной составляющей нулевой последовательности U0 может обеспечивает защиту 85 - 95 % витков обмотки статора со стороны фазных выводов, а остальная часть обмотки защищается с помощью органа напряжения третьей гармоники U03, охватывающего примерно 20-30 % витков обмотки со стороны нейтрали. Для обеспечения надежного функционирования органа U03 не достаточно использовать только напряжение Uд установившегося режима при замыкании на землю вблизи нейтрали в связи со значительными колебаниями уровня э.д.с. третьей гармоники в зависимости от режима работы генератора. В органе u03 рабочая цепь включается на сумму напряжений UN+U, а резервная - на напряжение UN.
В состав защиты входят следующие функциональные органы:
орган напряжения основной составляющей напряжения нулевой последовательности (U0), обеспечивающий защиту 85-95% витков обмотки статора со стороны фазных выводов;
орган напряжения обратной последовательности (U2) для блокировки-защиты при внешних КЗ;
орган напряжения третьей гармоники с торможением (U03), обеспечивающий защиту до 30% витков обмотки статора со стороны нейтрали.
Орган u0 включается на напряжение нейтрали генератора относительно земли (un) (при наличии ТН в нейтрали генератора) или на напряжение 3·U0 ТН линейных выводов генератора (если ТН в нейтрали не установлен).
Орган U2 включается на линейные напряжения на выводах генератора.
Орган u03 включается на напряжения нулевой последовательности на выводах генератора (ua) и в его нейтрали (un).
Коэффициент возврата органов U2 и U0 нe менее 0,9. Коэффициент возврата органа U03 не ниже 0,8.
Защита действует на отключение генераторного выключателя.
Рис.2.11. Структурная схема защиты un (U0)
2.16.2 Защита от замыканий на землю обмотки статора блока генератор-трансформатор (с наложением 25 Гц), UN(F25)
Назначение - защита от замыкания на землю обмотки статора генератора, не имеющего гальванической связи с системой собственных нужд или сетью потребителей.
Принцип действия защиты основан на наложении на первичные цепи статора генератора контрольного тока с частотой FНОМ/2. К защите подводятся напряжение с измерительной обмотки дугогасящего реактора UДГР и напряжение (UИСТ) измерительной обмотки источника контрольного тока. При замыкании через переходное сопротивление (RПЕР) вектор напряжения UДГР меняет фазу и модуль в широких пределах относительно вектора напряжения при изменении величины RПЕР от сопротивления изоляции цепи относительно земли до металлического замыкания. При устойчивом замыкании через переходное сопротивление защита обеспечивает вычисление его величины и действие на сигнализацию и отключение, если вычисленная величина RПЕР меньше заданной уставки. Для повышения надежности работы защита должна дополняться органом напряжения, нулевой последовательности основной составляющей, что обеспечивает защиту 85-95% витков обмотки статора генератора со стороны фазных выводов.
Защита подключается к измерительным обмоткам дугогасящего реактора и источника контрольного тока (типа ИКТ-25, выпускаемого Томским политехническим университетом). Источник контрольного тока с частотой FНОМ/2 включается последовательно в цепь дугогасящего реактора генератора со стороны его заземляемого вывода и нейтрали генератора.
Защита имеет две независимые ступени срабатывания по переходному сопротивлению в месте замыкания на землю: 1 ст. и 2 ст.
Защита блокируется при снижении рабочей величины напряжения частотой FНОМ/2 на выходе измерительной обмотки источника контрольного тока до 0,7 от номинальной и обеспечивает сигнализацию о неисправности.
В защите имеется возможность индикации значения переходного сопротивления в месте замыкания на землю.
2.16.3 Защита от замыкания на землю обмотки статора блока генератор-трансформатор, UN (100)
Назначение - защита от замыкания на землю обмотки статора генератора, не имеющего гальванической связи с системой собственных нужд или сетью потребителей.
Принцип действия защиты основан на наложении на первичные цепи статора генератора постоянного тока. К защите подводится напряжение с измерительной обмотки источника постоянного контрольного тока (ИКТП-1) частотой Fном/2. Среднее значение этого сигнала примерно пропорционально постоянной составляющей наложенного тока, а последняя примерно обратно пропорциональна переходному сопротивлению обмотки статора генератора относительно земли. При этом нейтрали всех трансформаторов напряжения блока генератор-трансформатор объединяются и заземляются через устройство наложения постоянного тока ИКТП-1.
При устойчивом замыкании через переходное сопротивление защита обеспечивает вычисление его величины и действие на сигнализацию и отключение, если вычисленная величина переходного сопротивления меньше заданной уставки. Высокая чувствительность защиты на принципе наложения постоянного тока позволяет выявлять различные дефекты изоляции статора генератора.
В источнике контрольного тока осуществляется непрерывный контроль наличия напряжения питания (220 или 100 В, 50 Гц). Тестовый контроль всей защиты осуществляется взаимодействием элементов, предусмотренных для этого как в ИКТП-1, так и в терминале цифровой защиты.
Рис.2.12. Структурная схема защиты UN (100).
2.17 Направленная токовая защита обратной последовательности (M2)
Назначение - резервная защита от несимметричных повреждений.
В нормальном режиме работы, когда на вход защиты поданы симметричные системы тока и напряжения, на выходе фильтров тока обратной последовательности (ФТОП) и фильтров напряжений обратной последовательности (ФНОП) будут присутствовать только небалансы нормального режима и органы тока I2, напряжения U2 и направления мощности М2 будут находиться в несработанном состоянии, так как они отстроены от небалансов по величине уставки.
В режиме несимметричного КЗ на выходах ФТОП и ФНОП появляются составляющие токов и напряжений обратной последовательности и срабатывают органы I2, U2.
При КЗ в зоне действия защиты орган М2 срабатывает и защита действует на отключение, а при повреждении вне зоны действия защиты орган М2 не срабатывает и защита остается заблокированной.
Рис.2.13. Структурная схема защиты M2
2.18 Устройства контроля синхронизма (КС)
Назначение - осуществление контроля разности модулей напряжений генератора UГ и системы UС, разности углов между векторами этих напряжений и разности их частот и формирование сигнал о наличии синхронизма этих напряжений.
КС осуществляет контроль условий синхронизации (амплитуды, сдвига фазы и разности частоты) напряжений генератора и системы и формирует сигнал о наличии синхронизма этих напряжений. КС содержит следующие функциональные органы:
- органы максимального напряжения генератора UГ> и системы UС> соответственно;
- орган разности напряжений, U, срабатывающий при разности модулей напряжений генератора и системы меньше заданной;
- орган разности углов, , срабатывающий в допустимом диапазоне углов опережения от ОП,0 до ОП,К (вектор напряжения UГ опережает вектор напряжения системы UС);
- орган разности частот, F, срабатывающий при разности частот напряжений генератора и системы меньше заданной и при условии, что частота генератора больше частоты системы.
Коэффициент возврата не ниже 0,97, основная погрешность не больше 3%.
Рис.2.14. Структурная схема защиты КС.
2.19 Защита от частичного пробоя изоляции высоковольтных вводов трансформатора(КИВ)
Назначение - защита от частичного пробоя изоляции вводов ВН блочного трансформатора (КИВ) предназначена для защиты маслонаполненных конденсаторных вводов ВН трансформатора от повреждения путем выявления начальной стадии повреждения (частичного пробоя нескольких слоев конденсаторной изоляции) и подачи сигнала на отключение неисправного оборудования до наступления полного пробоя изоляции и разрушения ввода.
Защита подключается к измерительным выводам высоковольтных вводов через согласующие трансформаторы (например, типа ТПС-066 производства Самарского завода измерительных трансформаторов), а также на напряжение 3U0 разомкнутого треугольника стороны ВН. Для наладки защиты подводятся все цепи напряжения разомкнутого треугольника (Н, К, U, F).
Принцип действия КИВ основан на измерении составляющей основной частоты суммарного емкостного тока ввода трех фаз при рабочем напряжении на них в предположении, что наиболее вероятно повреждение одного ввода в трехфазной группе.
Входные цепи тока КИВ регулируются так, чтобы сумма емкостных токов трех вводов при отсутствии напряжения 3U0 равнялось бы нулю.
На начальной стадии повреждения ввода происходит пробой между отдельными слоями конденсаторной изоляции, эквивалентная емкость ввода на землю возрастает и увеличивается составляющая основной частоты емкостного неисправного ввода. Влияние высших гармонических составляющих в емкостном токе ввода подавляется с помощью цифрового фильтра. Выделенный из суммы токов трех фаз приращенный ток ввода ДIс, сравнивается с величиной уставки органов Iсигн и Iоткл.
Предотвращение ложного срабатывания КИВ под действием составляющих нулевой последовательности емкостного тока вводов при замыканиях на землю в первичной сети либо при неполнофазных режимах производится путем компенсации возникающего в таких режимах небаланса током, пропорциональным напряжению 3U0. В случае развивающегося повреждения ввода компенсация составляющей нулевой последовательности не происходит и органы Iсигн и Iоткл срабатывают с порогом чувствительности, не зависящим от наличия составляющей нулевой последовательности в первичной сети.
Действие избирателей поврежденной фазы основано на сравнении модуля емкостного тока каждого из вводов с модулем геометрической суммы емкостных токов в двух других фазах и величины, пропорциональной напряжению 3U0 в первичной сети.
Наличие в защите избирателей позволяет получить пофазный выход защиты с действием на сигнализацию и, кроме того, предотвращает ложное срабатывание при обрыве одной из фаз емкостного тока ввода, поскольку в этом режиме происходит ложное действие органов Iсигн и Iоткл. Так как выходы КИВ с действием на отключение и на сигнализацию включены по схемам «И» с выходами избирателей, ложное действие защиты не происходит. При отсутствии срабатывания органов Iсигн и Iоткл чувствительность избирателей фазы остается низкой.
При увеличении тока одного из вводов в процессе развития повреждения срабатывает Iсигн и чувствительность избирателей становится более высокой, чем чувствительность Iсигн, и срабатывание цепей сигнализации определяется только чувствительностью Iсигн.
При дальнейшем увеличении тока поврежденного ввода срабатывает Iоткл и чувствительность избирателей становится более низкой, но выше чувствительности органа Iоткл. При этом действие защиты на отключение происходит с чувствительностью, определяемой органом Iоткл.
В случае обрыва фазы ёмкостного тока происходит срабатывание органов Iсигн и Iоткл, но чувствительность избирателей будет низкой, что улучшает отстройку КИВ от возникающих в этих режимах небалансов.
В защите предусмотрен вход от приемной цепи для загрубления органов Iсигн и Iоткл при отключении выключателя стороны ВН, если при этом отключаются цепи напряжения 3U0.
Защита выдает сигналы для действия на звуковую сигнализацию и действует на отключение выключателей со стороны НН и стороны ВН блочного трансформатора.
Рис.2.15. Структурная схема КИВ.
3. Автоматика (автоматическая регулировка возбуждения, автоматическая синхронизация генераторов)
За последнее десятилетие произошло существенное обновление технических средств автоматического управления нормальными режимами работы электрических станций и электроэнергетических систем и, особенно, противоаварийного управления ими. Разработаны и внедрены цифровые микропроцессорные автоматические управляющие устройства.
3.1 Микропроцессорный автоматический регулятор возбуждения
Напряжение и реактивная мощность синхронного генератора определяется состоянием его возбудителя, воспринимающего управляющее воздействие автоматического регулятора возбуждения (АРВ). Возбудителем мощных генераторов служит вспомогательный генератор и управляемый тиристорный преобразователь -- тиристорное независимое возбуждение. Распространение получило и тиристорное самовозбуждение, при котором подключается через трансформатор к возбуждаемому генератору [7, c.145].
При практически без инерционных тиристорных возбудителях мощных генераторов реализуются алгоритмы пропорционально-дифференциального автоматического регулирования напряжения и реактивной мощности. Интенсивность и быстрота их воздействия на возбудитель обусловили название регулирования «сильного» действия (АРВ СД). Указанные ценные свойства АРВ СД обеспечиваются использованием сигналов, формируемых не только по отклонению, но и по скорости изменения действующего значения напряжения генератора и угла сдвига фаз между ЭДС синхронного генератора электростанции и напряжением на шинах приемной подстанции.
Поэтому назначением АРВ СД является не только поддержание напряжения на заданном уровне на шинах электростанции и генерируемой или потребляемой генератором реактивной мощности, но и повышение до максимально возможных уровней статической и динамической устойчивости параллельной работы электрических станций.
Функциональная схема. Микропроцессорный автоматический регулятор возбуждения сильного действия (АРВ-СДМ) поставляется АО «Электросила» комплектно с турбогенератором. Функциональная схема АРВ-СДМ (рис. 3.1) состоит из вычислительной части ВЧ, содержащей две взаимно резервируемые микроЭВМ, измерительно-преобразовательной ИПЧ и исполнительной Ис.Ч частей.
В цифровых устройствах на ЭВМ и микропроцессорах измерительно-преобразовательная и исполнительная функциональные части обычно объединяются под общим названием -- устройство связи с управляемым объектом (УСО).
Измерительно-преобразовательная часть содержит вторичные измерительные трансформаторы напряжения ИТН и тока ИТТ (или шунты), пассивные малоинерционные (Т = 1 мс) первого порядка ФНЧ и элементы аналогового измерительного преобразования напряжений и токов АИН и АИТ, формирующие сигналы в виде:
* чисто синусоидальных напряжений, пропорциональных фазным напряжениям и токам синхронного генератора, используемые затем программными измерительными органами вычислительной части;
* постоянных напряжений, пропорциональных напряжениям генератора и на шинах электростанции;
* импульсных напряжений управления прерываниями и микроЭВМ в целом (длительностью Ти = 30 мкс).
Они формируются усилителями, трехфазными выпрямителями с активными ФНЧ и аналого-дискретным преобразователем АДП, входящими в состав элементов АИН и АИТ. На схеме показаны элементы ввода дискретных сигналов ВДС в виде малогабаритных реле с герметизированными контактами (герконов).
Исполнительная часть состоит из цифро-аналогового преобразователя ЦАП: элементов аналогового гальванического отделения (развязки) ЭГР вычислительной части от цепей управления в виде усилителей-преобразователей с модулятором и демодулятором, исполнительных усилителей ИУ аналогового регулирующего воздействия Upeг устройства управления УУ тиристорами преобразователей VST возбудителя; времяимпульсного преобразователя ВИН и выходных герконов вывода дискретных сигналов (комплекта выходных реле КВР).
Регулятор имеет развитой программно-аппаратный контроль исправностей всех его частей. Элементы контроля ЭК формируют сигналы неисправностей, поступающие в элемент коммутации ЭКМ выходных сигналов микроЭВМ, который переводит вычислительные операции на резервную микроЭВМ или выводит регулятор из действия.
Основной группой программ комплекса математического обеспечения АРВ-СДМ являются программы автоматического регулирования возбуждения и синхронизации генератора.
Они обеспечивают выполнение алгоритма регулирования возбуждения сильного действия, выполнение условий точной автоматической синхронизации и вычисление угла опережения по закону равнопеременного вращения синхронного генератора.
Функционирование программных измерительных органов АРВ СДМ обеспечивается импульсами управления аналого-дискретного преобразователя (АДП), формирующего короткие импульсы ииа, ииb, иис в моменты времени изменения знака мгновенными синусоидальными напряжениями трех фаз иа, иb, ис с отрицательного на положительный -- в момент положительных их переходов через нуль.
Измерительные органы микропроцессорного автоматического регулятора. Измерительный орган амплитуды напряжения (ИОН). Быстродействие измерительного органа напряжения АРВ СДМ достигается фиксированием положительных амплитудных мгновенных значений напряжений трех фаз Uma, Umb, Umc. Производится вычисление среднего значения амплитуды, которое сравнивается (путем вычитания) с заданным (предписанным) значением -- вычисляется ее отклонение. На основе численного дифференцирования определяется производная амплитуды. Указанные операции производятся за время, не превышающее 1/3 длительности периода Тп промышленной частоты.
Амплитуда фиксируется путем управления соответствующим каналом мультиплексора АЦП, включаемого импульсным напряжением иит на несколько микросекунд практически в момент прохождения фазным напряжением генератора через положительное амплитудное мгновенное значение.
Включение канала мультиплексора производится вычитающим счетчиком тактовых импульсов (частотой 2 МГц), в который в момент Т1 прохождения мгновенным фазным напряжением через нуль записывается число NTп/4 , равное количеству тактовых импульсов, размещающемуся на интервале времени в 1/4 периода промышленной частоты. Запись числа производится импульсом ии, формируемым АДП в момент изменения знака с отрицательного на положительный (положительного перехода через нуль) мгновенным фазным напряжением.
В момент времени Т3 обнуления счетчика по переднему фронту импульса иит контроллером прерываний работы микропроцессора (МП) включается в работу программа ввода информации в микроЭВМ и вычисления среднего значения амплитуды напряжения. Вычисления отклонения амплитуды и ее производной производятся отдельными программами.
Измерительный орган изменения частоты (ИОИЧ). Формирование сигналов по изменению и производной частоты производится на основе вычислений длительности периода промышленной частоты. В измерительном органе используется второй вычитающий счетчик тактовых импульсов, в который периодически после каждого считывания до нуля вновь записывается число импульсов N'a = N max >>N Tn/4. Поэтому за время, равное длительности периода промышленной частоты, число импульсов в счетчике уменьшается на небольшую часть N max.
Разность числа импульсов, например , фиксируемых импульсными напряжениями , , соответствующими положительным переходам через нуль мгновенного напряжения фазы А, получается пропорциональной истинной длительности периода промышленной частоты. По трем таким замерам , и , производимым с использованием напряжений , и соответственно , , вычисляется средняя истинная длительность Т периода напряжения синхронного генератора и, как указывалось, по правилу дифференцирования дробей -- производная частоты.
Формирование цифровых сигналов об изменениях частоты производится пропусканием сигналов о ее производной через программный ФНЧ первого порядка (апериодическое звено).
Измерительный орган реактивного и активного тока (ИОРиАТ). Необходимое быстродействие измерительного органа достигается запоминанием мгновенного тока генератора. Для этого по задним фронтам импульсов напряжения ии и иит включаются (в моменты Т2 и Т4) соответствующие каналы мультиплексора АЦП, фиксирующего в двоичном коде мгновенные значения тока одной из фаз, например , равные в момент t = 0 реактивной , а в момент t = Тп/4 активной а составляющим тока синхронного генератора. Они используются для измерительного органа потребляемой генератором реактивной мощности, определяющего минимально допустимый (по условию статической устойчивости электропередачи) ток возбуждения синхронного генератора. Сигнал о минимально допустимом возбуждении формируется как функция IР и Iа расчетами по отдельной программе.
Измерительный орган угла сдвига фаз (ИОУ). В измерительном органе угла сдвига фаз между напряжением на шинах электростанции частотой fс и напряжением холостого хода синхронного генератора частотой fг fс, непрерывно изменяющегося при подготовке генератора к включению на параллельную работу с электроэнергетической системой (синхронизации) в функции частоты скольжения fs =|fс - fг|, используется времяимпульсное преобразование фазы. Формируемый импульсом одной из фаз, например ии.г =ииа , и аналогичным импульсом ии.ш , фиксирующим переход через нуль мгновенного напряжения на шинах электростанции, времяимпульсный сигнал является линейной функцией угла сдвига.
Измерительное преобразование угла сдвига фаз в цифровой сигнал производится аналогично рассмотренному фиксированию длительности периода считывания из третьего вычитающего счетчика с периодически записываемым числом тактовых импульсов N max >>N Tn/4 чисел в моменты времени появления указанных импульсов напряжений ии.г и ии.ш. По отдельной программе в измерительном органе вычисляется угол сдвига фаз в начальный момент воздействия на привод выключателя синхронного генератора, необходимый для совпадения по фазе напряжений на шинах электростанции и генератора в момент включения (соединения силовых контактов выключателя), - угол опережения.
Рис.3.1. Функциональная схема микропроцессорного автоматического регулятора возбуждения синхронного генератора.
3.2 Микропроцессорный автоматический синхронизатор
Автоматические устройства точной синхронизации (АУТС) синхронных генераторов состоят из трех частей, обеспечивающих три условия точной синхронизации: равенство амплитуд ЭДС генератора Ег.х и напряжения Uш на шинах электростанции, близкая к синхронной частота вращения (малая частота скольжения) генератора и совпадение по фазе указанных ЭДС и напряжений в момент включения (замыкания контактов) выключателя синхронного генератора. Такие устройства соответственно называются уравнителем амплитуд напряжения, уравнителем частот и автоматическим синхронизатором.
Автоматический синхронизатор обеспечивает выполнение наиболее ответственной операции точной синхронизации по обеспечению практического совпадения по фазе ЭДС генератора и напряжения на шинах электростанции в момент включения выключателя генератора.
Функциональная схема. Цифровой автоматический синхронизатор типа СПРИНТ выполняет все три основные функции АУТС с выдчаей через алфавитно-цифровой индикатор информации о состоянии автоматического устройства и синхронизируемого генератора и производит контроль и диагностику исправности его элементов и анализ достоверности выдаваемой информации, что является его важным достоинством.
Основная -- вычислительная ВЧ функциональная часть синхронизаторов реализована на одной, поскольку они работают эпизодически и кратковременно, микроЭВМ: на микропроцессоре МП типа К18108ВМ88 с контроллером прерывания КП, таймером Т и оперативным ОЗУ и постоянным ПЗУ запоминающими устройствами. Вычислительная часть выполняет цифровое измерительное преобразование амплитуд и частот ЭДС генератора Ег.х и напряжения Uш шин электростанции, угла сдвига фаз между ними и вычисляет их разности и угол опережения синхронизатора по уравнению равнопеременного вращения генератора при его подготовке к включению на параллельную работу.
Управление микроЭВМ производится измерительно-преобразовательной частью ИПЧ. Она выполняет предварительную обработку аналоговых входных сигналов -- вторичных (на выходах TV1, TV2) ЭДС генератора Ег.х и напряжения Uш на шинах электростанции с изменяющимися информационными параметрами: амплитудой, частотой и фазой.
Она содержит вторичный измерительный трансформатор напряжения TVL, аналого-дискретный преобразователь АДП, формирующий сигналы прерываний, аналого-цифровой интегральный АЦП типа К1113ПА1 с коммутатором входных аналоговых сигналов -- мультиплексором МПЛ, задающие элементы ЗЭ настройки синхронизаторов и формирователи тестового сигнала ФТС.
В исполнительную часть Ис. Ч синхронизатора входят комплект электромагнитных выходных реле КВР с герметизированными контактами -- герконов. К ней относятся и элементы отображения информации: аналого-цифровой АЦИ индикатор угла сдвига фаз между Ег.х и Uш и других величин, табло светодиодных индикаторов СИ, алфавитно-цифровой индикатор и клавиатура диалогового режима КЛ.
Действие синхронизаторов. Вычислительная часть синхронизатора функционирует на основе времяимпульсного преобразования.
Длительности периодов ЭДС генератора и напряжения электростанции, необходимые для вычисления их частот и частоты скольжения, и время несовпадения их мгновенных значений по знаку, пропорциональное углу сдвига фаз , фиксируются считыванием кодов таймера в моменты переходов ЭДС ег.х и напряжения иш через нулевые мгновенные значения.
Текущие коды Nг и Nш фиксируются в моменты времени исчезновения напряжений Uк.г и Uк.ш. Их разность (Nг-Nш) определяет код угла сдвига фаз , а числа, обратно пропорциональные разностям кодов, зафиксированных в текущем и предыдущем периодах, частоты ЭДС генератора и напряжения электростанции . Очевидно, что разность указанных чисел отображает частоту скольжения генератора в виде двоичного кода .
В зависимости от результатов вычислений синхронизатор формирует времяимпульсные управляющие воздействия на частоты вращения АРЧВ генератора. Если разности амплитуд и частот больше допустимых |±Um|> 0,01 и |±|>, то выдаются первые импульсы воздействия ограниченной установленной длительности для соответствующего изменения амплитуды и частоты ЭДС синхронного генератора.
По мере уменьшения Um и вычислительной частью рассчитываются уменьшающиеся длительности Ти импульсов воздействий по линейной зависимости Tи от разности истинной и установленной частот скольжения = -- при длительности паузы Тп и заданного коэффициента подстройки частоты Кпод.
В синхронизаторах принята установленная частота скольжения: || = |+|/2 и /5 =. После установления и Um < 0,1 управляющие воздействия прекращаются и синхронизатор переходит к программе вычисления угла опережения по закону равнопеременного вращения генератора и формирует импульсное управляющее воздействие достаточной для включения выключателя Q синхронного генератора длительности.
Синхронизаторы обладают свойством однократности действия. Если выключатель не включился или тут же после включения отключился, повторное действие не формируется: предусмотрен новый запуск программного обеспечения путем кратковременного отключения синхронизатора от источника питания.
Рис.3.2. Функциональная схема микропроцессорного автоматического синхронизатора СПРИНТ.
4. Научно-исследовательская работа
Целью научной работы является исследование защит блока генератор-трансформатор, выполненных на разных элементных базах (электромеханическая и микропроцессорная) и проведение сравнительного анализа.
4.1Защита энергоблока, выполненная на базе электромеханических реле.
Основные защиты.
Защиты генератора:
1. Поперечная дифференциальная защита генератора.
Назначение: защита от витковых замыканий в обмотке статора с двумя параллельными ветвями.
Реагирует на разность суммарных токов трех фаз в указанных параллельных ветвях.
2. Продольная дифференциальная защита генератора.
Назначение: защита от внутренних многофазных КЗ.
Осуществляет сравнение токов со стороны фазных и нулевых выводов обмотки статора на каждой фазе.
3. Защита от замыкания на землю в обмотке статора турбогенератора, осуществляемая с использованием напряжения третьей гармоники.
Защита состоит из максимального реле напряжения нулевой последовательности основной частоты, защищающего большую часть витков обмотки статора генератора со стороны линейных выводов, и органа напряжения третьей гармоники, защищающего часть обмотки статора, примыкающую к нейтрали, и саму нейтраль.
4. Защита от замыканий на землю в цепи обмотки ротора и в цепях возбуждения турбогенератора.
Назначение: сигнализировать о возникновении замыканий на землю.
5. Защита ротора от перегрузки током возбуждения.
Назначение: предотвращение повреждений генератора при перегрузке обмотки ротора.
Применяется токовая защита с интегральной зависимой выдержкой времени, соответствующей тепловой характеристике генератора.
Защита действует на подачу звуковой сигнализации.
6. Защита от потери возбуждения.
Назначение: выявление потери возбуждения и перевод генератора в допустимый асинхронный режим (разгрузка генератора, торможение турбины и шунтирования обмотки ротора гасительным сопротивлением) или отключение блока, если асинхронный режим недопустим.
Защита действует на отключение генератора от сети и торможение турбины.
7. Защита от симметричной перегрузки турбогенератора.
Назначение: сигнализировать о возникновении симметричной перегрузки.
Применяется максимальная токовая защита с независимой выдержкой времени, отстроенной от наибольшей выдержки времени резервных защит.
8. Защита от несимметричной перегрузки турбогенератора.
Применяется токовая защита обратной последовательности, имеющая сигнальный орган, подающий сигнал о превышении длительно допустимого для генератора значения тока обратной последовательности.
9. Защита от повышения напряжения.
Реагирует на повышение напряжения обмотки статора более чем в 1,2 раза. Выполняется на максимальном реле напряжения с высоким коэффициентом возврата.
Защита от повышения напряжения на энергоблоках с турбогенераторами должна автоматически вводиться в работу только в режиме холостого хода энергоблока и действовать лишь на гашение поля генератора.
При внутренних повреждениях генератора защита действует на отключение генератора от сети, гашение поля генератора и возбудителя и пуск УРОВ, останов блока. При этом гашение поля возбудителя предусматривается для повышения надежности прекращения работы генератора на КЗ.
Для отключения генератора от сети необходимо отключить выключатель в цепи генератора, а при его отсутствии - выключатели на стороне ВН блока. В последнем случае должны также отключаться выключатели в цепи ответвления от блока на рабочий источник питания собственных нужд. Это необходимо для автоматического перевода нагрузки собственных нужд на источник резервного питания с помощью АВР.
Защиты трансформатора:
10. Дифференциальная защита трансформатора.
Назначение: защита от всех видов КЗ в трансформаторе и на его ошиновке.
11. Газовая защита трансформатора.
Назначение: защита от внутренних повреждений (в том числе от витковых замыканий), сопровождающихся горением дуги и выделением газа.
На трансформаторах применяют газовую защиту, содержащую два элемента: сигнальный, действующий при слабом газообразовании, и отключающий, срабатывающий при быстром выделении большого объема газа. Газовая защита срабатывает также при понижении уровня масла из-за течи из бака или вследствие значительного охлаждения трансформатора.
12. Контроль изоляции на стороне НН.
Назначение: сигнализировать о появлении замыкания на землю на стороне НН.
Представляет собой максимальную защиту напряжения нулевой последовательности с независимой выдержкой времени, включенную в цепь разомкнутого треугольника трансформатора напряжения, присоединенного к выводам обмотки НН трансформатора энергоблока.
13. Пуск устройства пожаротушения от релейной защиты.
Устройство пожаротушения пускается от дифференциальной и газовой защит трансформатора. Для предотвращения пуска устройства пожаротушения при КЗ на ошиновке трансформатора в схеме пуска применяются контроль тока в проводе, заземляющем бак трансформатора. При отсутствии этого тока пуск пожаротушения от дифференциальной защиты не производится.
При повреждении трансформатора блока для ликвидации КЗ необходимо отключить трансформатор со стороны ВН и со стороны НН и обеспечить пуск пожаротушения. При наличии выключателя в цепи генератора со стороны НН достаточно отключить этот выключатель, а при отсутствии необходимо гашение поля генератора. Однако ввиду невозможности использования генератора при выходе из строя трансформатора блока во всех случаях производится гашение поля генератора и возбудителя и останов технологического оборудования блока.
При отказе выключателя генератора или выключателя на стороне ВН блок должен отключаться от сети с помощью УРОВ генераторного выключателя или УРОВ выключателя стороны ВН.
Резервные защиты:
14. Защита от несимметричных КЗ.
Назначение: отключение несимметричных КЗ при дальнем и ближнем резервировании.
Используется токовая защита обратной последовательности.
15. Дополнительная резервная токовая защита на стороне ВН.
Назначение: резервирование основных защит трансформатора блока при отключенном выключателе генератора.
Устанавливается максимальная токовая защита с независимой выдержкой времени. Автоматически вводится в действие при исчезновении тока в цепи.
16. Устройство резервирования отказа выключателей (УРОВ).
При отказе выключателя поврежденного блока УРОВ пускается защитами блока, действующими на этот выключатель, и с выдержкой времени 0,3-0,4 с., перекрывающей время отключения выключателя, действует на отключение всех выключателей, смежных с отказавшим.
17. Защита от симметричных КЗ.
Назначение: дальнее и ближнее резервирование защит при трехфазном КЗ.
Применяют одноступенчатую дистанционную защиту с круговой или эллиптической характеристикой. Так как защита имеет выдержку более 1,5 с, она выполняется без блокировки при качаниях.
18. Защита от КЗ на землю.
Назначение: дальнее и ближнее резервирование защит при однофазном КЗ на землю на стороне ВН (может работать и при КЗ двух фаз на землю).
Устанавливается токовая защита нулевой последовательности, включаемая на ток в нейтрали трансформатора блока. На блоке используются два комплекта защиты, поскольку целесообразно иметь разную чувствительность и разные выдержки времени для деления шин и для дальнего резервирования.
19. Ускорение резервной защиты при неполнофазных отключениях блока.
При неполнофазных отключениях выключателя на стороне ВН, имеющего пофазные приводы, автоматически вводится ускорение чувствительного комплекта токовой защиты нулевой последовательности. Ускорение осуществляется с помощью реле контроля непереключения фаз и реле времени с уставкой, перекрывающей разновременность отключения фаз выключателя. Действие токовой защиты нулевой последовательности по цепи ускорения обеспечивает ускоренный пуск УРОВ на стороне ВН при неполнофазном отключении блока.
Для резервирования защит от внутренних КЗ (ближнее резервирование) устанавливается резервная дифференциальная защита, охватывающая генератор и трансформатор блока вместе с ошиновкой на стороне ВН и действующая на отключение выключателей блока и рабочего трансформатора собственных нужд (ТСН), на гашение поля генератора и на пуск УРОВ на стороне ВН.
Устройства защиты от внешних КЗ должны действовать только на отключение энергоблока от сети выключателями на стороне ВН. При отказе какого-либо из этих выключателей защита от внешних КЗ должна с помощью УРОВ гасить поле генератора.
4.2 Микропроцессорная защита энергоблока
Цифровая защита генератора НПП «ЭКРА» предназначена для защиты генераторов, в том числе и работающих на сборные шины мощностью до 100 МВт, трансформаторов и блоков генератор-трансформатор малой, средней и большой мощности до 800 МВт. Необходимые для защиты определенного объекта защитные функции могут выбираться из библиотеки программ цифрового терминала с помощью персонального компьютера.
Перечень защитных функций:
1. Продольная токовая дифференциальная защита генератора, IG.
Назначение: защита от междуфазных повреждений в обмотке статора генератора и на его выводах, а также от двойных замыканий на землю в цепях генераторного напряжения.
2. Дифференциальная защита трансформатора, IT.
Назначение: защита от внутренних повреждений двух или трехобмоточного трансформатора (блочного трансформатора или трансформатора собственных нужд), КЗ на его выводах, а также блока генератор-трансформатор
3. Поперечная токовая дифференциальная защита генератора, I >.
Назначение: защита от витковых замыканий в обмотке статора с двумя параллельными ветвями.
Защита реагирует на ток между нейтралями параллельных ветвей обмотки статора, соединенных в "звезду".
4. Максимальная токовая защита трансформатора, I >.
Назначение: МТЗ блочного трансформатора с отстройкой от броска тока намагничивания (резервная защита блочного трансформатора).
5. Защита от несимметричных перегрузок, I2.
Назначение: резервная защита от внешних несимметричных повреждений, защита генератора от несимметричных перегрузок (защита от перегрева ротора генератора из-за асимметричной нагрузки).
Защита реагирует на относительный ток обратной последовательности (I2*).
6. Защита от симметричных перегрузок, I1.
Защита реагирует на относительный ток статора фазы с максимальным значением тока в трехфазном режиме (I*).
7. Защита ротора от перегрузок, IP.
Назначение: защита от перегрузок ротора генератора при наличии измерительных трансформаторов тока в системе возбуждения (IP), защита от перегрузок ротора генератора с бесщеточной системой возбуждения (=IP).
Защита реагирует на относительный ток ротора (IP*).
8. Измерительные органы максимального (ИО I >) и минимального (ИО I <) тока.
Назначение: контроль максимального (минимального) тока фаз.
Органы тока выполняются трехфазными.
9. Защита от повышения напряжения генератора, UG >.
10. Измерительные органы максимального (ИО U>) и минимального (ИО U<) напряжения.
Назначение: контроль максимального (минимального) напряжения.
11. Устройство контроля исправности цепей напряжения переменного тока, КИН.
Назначение: контроль исправности цепей напряжения переменного тока измерительных трансформаторов напряжения с вторичными обмотка-ми, соединенными в "звезду" (с линейным напряжением uhоm =100 В) и в "треугольник" (с максимальным напряжением на выходе разомкнутого треугольника 100 В или 33 В - для сетей с изолированной нейтралью).
Устройство КИН не работает в нормальных симметричных режимах и при внешних несимметричных КЗ. Реагирует на обрыв одной, двух либо трех фаз или нулевого провода в цепях напряжения переменного тока, соединенных в звезду.
12. Направленная токовая защита обратной последовательности (M2).
Назначение: резервная защита от несимметричных повреждений.
В нормальном режиме работы, когда на вход защиты поданы симметричные системы тока и напряжения, на входе фильтров тока обратной последовательности (ФТОП) и фильтров напряжения обратной последовательности (ФНОП) будут присутсвовать только небалансы нормального режима. Органы тока I2, напряжения U2 и направления мощности M2 будут находиться в несработанном состоянии, так как они от небалансов по величине уставки. В режиме несимметричного КЗ на выходах ФТОП и ФНОП появляются составляющие токов и напряжений обратной последовательности и срабатывают органы I2 ,U2.
При КЗ в зоне действия защиты орган M2 срабатывает и защита действует на отключение, а при повреждении вне зоны действия защиты орган M2 не срабатывает и защита остается заблокированной.
13. Защита от асинхронного режима, Фz .
Назначение: защита от асинхронного режима без потери возбуждения (Фz) предназначена для ликвидации асинхронного режима генератора, характеризующегося большими колебаниями активной и реактивной мощности, что может привести к развитию крупных аварий. Защита выполняется на основе контроля сопротивления на зажимах генератора и имеет специальные характеристики срабатывания. Кроме того, контролируется нахождение годографа сопротивления в одном из четырех квадрантов комплексной плоскости сопротивлений.
14. Дистанционная защита, Z<.
Назначение: резервная защита от междуфазных повреждений.
15. Защита от потери возбуждения, Ф<.
16. Защита мощности, P.
Назначение: защита обратной мощности, активной мощности, реактивной, направления мощности.
17. Защита от изменения частоты, F<.
Защита от изменения частоты содержит следующие функциональные органы: орган частоты с выходами срабатывания при повышении частоты (F>) и при понижении частоты (F<); орган максимального напряжения (U >), контролирующий наличие входного напряжения и вводящий в действие защиту.
18. Защита от перевозбуждения, U/F.
Назначение: защита генераторов и трансформаторов от перевозбуждения.
Защита реагирует на отношение средневыпрямленного значения напряжения к частоте U/f.
19. Защита ротора от замыкания на землю, Re<.
Назначение: выявление замыканий на землю в одной точке цепи возбуждения.
Защита подключается к цепям возбуждения через специальный разделительный блок частотного фильтра (например типа БЭ1105), обеспечивающий подавление высших гармонических составляющих напряжения возбуждения и ограничение напряжения на выходе до 120 В.
20. Устройства контроля синхронизма (КС).
Назначение: осуществление контроля разности модулей напряжений генератора UГ и системы UС, разности углов между векторами этих напряжений и разности их частот и формирование сигнал о наличии синхронизма этих напряжений.
21. Защиты генератора от замыканий на землю, UN(U0), UN(F25), UN(100).
Защита от замыканий на землю обмотки статора блока генератор-трансформатор, UN(U0). В состав защиты входят следующие функциональные органы: орган напряжения основной составляющей напряжения нулевой последовательности (U0), обеспечивающий защиту 85-95% витков обмотки статора со стороны фазных выводов; орган напряжения обратной последовательности (U2) для блокировки защиты при внешних КЗ; орган напряжения третьей гармоники с торможением (U03), обеспечивающий защиту до 30% витков обмотки статора со стороны нейтрали.
Защита от замыканий на землю обмотки статора блока генератор- трансформатор (с наложением 25 Гц), UN(F25). Защита подключается к измерительным обмоткам дугогасящего реактора и источника контрольного тока. Источник контрольного тока с частотой Fном/2 включается последовательно в цепь дугогасящего реактора генератора со стороны его заземляемого вывода и нейтрали генератора.
Защита от однофазных замыканий на землю обмотки статора блока генератор-трансформатор, UN(100). Защита подключается к выходу специального датчика в источнике постоянного контрольного тока. Для подключения источника нейтрали всех трансформаторов напряжения блока объединяются и заземляются через разделительный конденсатор.
22. Резервная защита блока нулевой последовательности от замыканий на землю, I0 (U0).
Токовая защита нулевой последовательности (I0) подключается к трансформатору тока, встроенному во ввод нейтрали обмотки напряжения трансформатора. Для режима работы блока с незаземленной нейтралью блочного трансформатора предусматривается защита напряжения нулевой последовательности (U0) с контролем отсутствия тока в нейтрали.
23. Устройство резервирования отказа выключателей генератора, УРОВ G.
УРОВ G действует на отключение при срабатывании защит генератора на его отключение и отказе генераторного выключателя.
24. Защита от частичного пробоя изоляции высоковольтных вводов трансформатора (КИВ).
Назначение: защита от частичного пробоя изоляции вводов ВН блочного трансформатора (КИВ) предназначена для защиты маслонаполненных конденсаторных вводов ВН трансформатора от повреждения путем выявления начальной стадии повреждения (частичного пробоя нескольких слоев конденсаторной изоляции) и подаче сигнала на отключение неисправного оборудования до наступления полного пробоя изоляции и разрушения ввода.
25. Орган блокировки при качаниях Z.
Орган подключается к измерительным трансформаторам, установленным в цепи генератора, на междуфазное напряжение и соответствующую разность фазных токов. Орган Z отличает повреждение от качаний в энергосистеме по скорости изменения полного сопротивления.
26. Органы тока и напряжения при изменяющейся частоте.
Выполняются однофазными или трехфазными, реагируют на средневыпрямленное значение и предназначены для работы в условиях изменяющейся частоты. Рабочий диапазон частот от 0,2 до 1,2 Fном.
Способ выполнения, адрес и принцип действия защитных функций цифровой защиты генератора на базе шкафа ШЭ1111 были изложены во второй главе бакалаврской работы.
Дополнительные функции:
- в терминале обеспечивается возможность индикации значений однофазного напряжения, тока, частоты, активной и реактивной мощностей с отображением указанных значений на экране монитора локального интерфейса человек-машина или на дисплее цифрового терминала.
- регистратор событий, обеспечивающий запись изменения состояний до 128 логических сигналов любой защитной или логической функции, выбираемых из доступных логических сигналов терминала. Емкость буфера памяти регистратора событий позволяет запомнить до 1500 событий по времени с точностью 0,001 с. При переполнении буфера новая информация записывается на место самой старой по времени записи информации.
- предусмотрена возможность пуска терминала на запись аварийного процесса (осциллографирование) при появлении или исчезновении любых из 128 логических сигналов, выбираемых из любой доступной защитной или логической функции терминала. Предусмотрена возможность выбора для одновременного осциллографирования до 16 аналоговых и до 128 логических сигналов.
Терминал также оборудован системой автоматического тестового контроля, служащей для проверки работоспособности основных узлов и блоков.
Сравнительный анализ
На основании данных, полученных в результате исследования защит, можем сделать вывод о большей степени надежности микропроцессорной защиты: цифровая защита состоит из двух независимых и дублирующих друг друга подсистем (комплектов) защит, расположенных в двух шкафах ШЭ1111. Каждая подсистема независима по цепям оперативного постоянного тока, входным и выходным цепям, цепям сигнализации и контроля, и содержит блоки питания, логические схемы выходных цепей, сигнализации, контроля и диагностики.
Защита от симметричных перегрузок статора генератора и защита ротора от перегрузок, выполненные на микропроцессорной базе, в отличие от защит на электромеханических реле, действуют не только на сигнализацию, но и на отключение генераторного выключателя.
Использование в устройствах современной микропроцессорной элементной базы обеспечивает высокую точность измерений и постоянство характеристик, что позволяет существенно повысить чувствительность и быстродействие защит, а также уменьшить ступени селективности. Алгоритмы функций защиты и автоматики, а также интерфейсы для внешних соединений устройства разработаны по техническим требованиям к отечественным системам РЗА, что обеспечивает совместимость с действующими устройствами и облегчает эксплуатационному персоналу переход на новую технику.
Наличие функций непрерывного самоконтроля и диагностики обеспечивает высокую готовность защиты при наличии требования к срабатыванию, а использование высокоинтегрированных и высоконадежных микросхем - повышенную надежность аппаратной части защиты.
5. Экономическая часть
5.1 Затраты на приобретение микропроцессорной защиты
Ориентировочная рыночная стоимость шкафа цифровой защиты генератора ШЭ1111 НПП «ЭКРА» составляет 2 600 000 руб.
Целесообразно заменять устаревшие типы защит современными микропроцессорными защитами при капитальном ремонте станции и при проектировании новых станций, а так же подстанций.
5.2 Оценка экономической эффективности инвестиций
Технико-экономическое обоснование целесообразности реализации любого проекта предполагает следующую последовательность выполнения этапов, определяющих структуру основных разделов ВКР [8]:
1.Определение ожидаемой выручки;
2.Определение инвестиционных затрат, необходимых для осуществления проекта;
3.Определения себестоимости продукции;
4.Определения цены реализации продукции;
5.Составление «Отчета о финансовых результатах» предприятия проектируемой продукции;
6.Определение точки безубыточности производства;
7.Определение срока окупаемости реализации проекта;
8. Подготовка выводов по проведенному исследованию.
Расчет
1.Определение ожидаемой выручки.
Станция вырабатывает определенное количество электроэнергии, кВтч/год:
Эвыраб = Nуст Туст = (200 3) 4000 = 2,4 109,
где Nуст - суммарная мощность станции, МВт;
Туст - время работы в максимальном режиме (Туст = 4000 ).
Стоимость выработанной электроэнергии, млрд. руб./год:
Пвыраб = Эвыраб Цпр = 2,4 109 1,4 = 3,36,
где руб./кВтч - цена реализации продукции;
2. Определение инвестиционных затрат, необходимых для осуществления проекта:
,
где - инвестиционные затраты, руб.;
- стоимость оборудования;
- сметная стоимость проектных работ;
Подобные документы
Выбор системы релейной защиты блока генератор-трансформатор электрической станции. Расчет уставок срабатывания и разработка схемы подключения выбранных устройств релейной защиты. Техническое обслуживание дифференциального устройства защиты типа ДЗТ-21.
курсовая работа [1,0 M], добавлен 22.02.2015Схема электрических соединений и схема собственных нужд. Выбор электрооборудования схемы собственных нужд, его обоснование. Выбор устройств релейной защиты и автоматики для элементов. Разработка схем релейной защиты блока генератор-трансформатор.
дипломная работа [604,1 K], добавлен 09.04.2012Выбор необходимого состава системы релейной защиты блока, обеспечивающего полноту его защищенности, расчет вставок срабатывания и разработка схемы подключения устройств. Разработка методов проведения технического обслуживания реле контроля сигнализатора.
курсовая работа [267,5 K], добавлен 22.11.2010Проектирование электростанции, обоснование выбора схемы объекта и трансформаторов. Выбор схемы блока генератор – трансформатор, трансформаторов собственных нужд, способа синхронизации. Расчет токов короткого замыкания и релейной защиты трансформатора.
дипломная работа [2,2 M], добавлен 04.08.2012Системы электроснабжения как сложный производственный комплекс. Виды устройств релейной защиты в блоках турбогенератор-трансформатор. Принципы исполнения и расчёт установок защиты. Составление схемы замещения сети для расчета тока асинхронного хода.
курсовая работа [2,1 M], добавлен 12.11.2012Расчет токов коротких замыканий, продольной и поперечной дифференциальной защиты генератора. Защита от замыканий на землю в обмотке статора, дифференциальная защита трансформатора блока. Дополнительная резервная защита на стороне высокого напряжения.
курсовая работа [1,2 M], добавлен 13.11.2012Выбор и расчет устройства релейной защиты и автоматики. Расчёт токов короткого замыкания. Типы защит, схема защиты кабельной линии от замыканий. Защита силовых трансформаторов. Расчетная проверка трансформаторов тока. Оперативный ток в цепях автоматики.
курсовая работа [1,3 M], добавлен 08.01.2012Газовая и дифференциальная защита трансформатора, максимальные токовые защиты трансформатора от внешних коротких замыканий. Проверка трансформаторов тока на 10%-ную погрешность, защита блокировки отделителя. Максимальная токовая направленная защита.
курсовая работа [309,8 K], добавлен 05.10.2009Расчет токов короткого замыкания и релейной защиты для рассматриваемого фрагмента электрической сети. Организация и выбор оборудования для выполнения релейной защиты. Расчет релейной защиты объекта СЭС. Выбор трансформатора тока и расчет его нагрузки.
курсовая работа [911,3 K], добавлен 29.10.2010Выбор релейной защиты и автоматики для линий 6кВ и 110кв. Газовая защита трансформатора. Расчёт тока срабатывания защиты по стороне 6 кВ. Выбор трансформатора тока. Расчёт тока срабатывания реле и тока отсечки. Параметры коммутационной аппаратуры.
курсовая работа [634,8 K], добавлен 20.12.2012