Реконструкция подстанции "Байдарка"

Реконструкция подстанции 35/6 кВ "Байдарка" с целью улучшения технико-экономических показателей при минимальных затратах денежных средств, оборудования и материалов. Установка нового оборудования, отвечающего требованиям изменившегося режима работы.

Рубрика Физика и энергетика
Вид дипломная работа
Язык русский
Дата добавления 29.04.2010
Размер файла 3,8 M

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

По таблице [5] находим допустимый коэффициент аварийной перегрузки.

К2адоп=1,8

К=1,47<К2адоп=1,8

Условие выполняется

Следовательно в аварийном режиме такая перегрузка допустима и ущерба от недоотпуска электроэнергии не будет.

Трансформатор мощностью 6300 ква в аварийном режиме перегрузки испытывать не будет.

Как показали расчеты на подстанции «Байдарка» есть возможность вместо трансформаторов мощностью 6300 ква использовать трансформаторы мощностью 2500.

Для того чтобы окончательно убедиться в возможности использовать трансформаторы мощностью 2500 ква приведем экономическое обоснование целесообразности замены трансформаторов одной мощности на другую.

8.1 Экономическое обоснование целесообразности замены трансформаторов одной мощности на другую

Для сравнения принимаем два варианта

1)два трансформатора мощностью по 2500 ква ТМ - 2500/35. Стоимость одного трансформатора 1214620 руб.

2)два трансформатора мощностью по 6300 ква ТМ - 6300/35. Стоимостью одного трансформатора 1845690 руб.

Для обоснования предлагаемого решения необходимо рассчитать следующие показатели: капитальные вложения, эксплуатационные издержки, приведенные затраты, потери электроэнергии и их стоимость, годовую экономию и годовой экономический эффект. [1]

Капитальные вложения определяем по формуле:

(8.6)

Где Ц - цена приобретения трансформатора, руб

Т - расходу на доставку, руб

М - затраты на монтаж и пуско-наладочные работы, руб

Расходы на доставку составляют 12% от стоимости оборудования.

Т=ЦЧ0,12 (8.7)

Т2500=1214620Ч0,12=145754 руб

Т6300=1845690Ч0,12=221493 руб

10.1.2Затраты на монтаж и пуско-наладочные работы составляют 25% от стоимости оборудования.

М=ЦЧ0,25 (8.8)

М2500=1214620Ч0,25=303655 руб

М6300=1845690Ч0,25=461423 руб

По формуле (8.6) определяем капитальные вложения

КВ2500=1214620+145754+303655=1664029 руб

КВ6300=1845690+221493+461423=2528606 руб

Расчитываем годовой фонд заработной платы для обоих случаев он будет одинаковый, так как напряжения у трансформаторов одинаковые.

ЗП=ТФзпЧКдопЧКотч (8.9)

Где ТФзп - тарифный фонд заработной платы, руб

Кдоп - премиальные. Составляют 75%

Котч - коэффициен отчислений. Составляет 26%

Тарифный фонд заработной платы определяется

ТФзптсЧЗТ (8.10)

Где Чтс - часовая тарифная ставка, руб/час

ЗТ - затраты труда, челЧчас

Для обслуживания трансформатора необходим электромонтер 4 разряда его оклад 4412 рублей

Чтс=оклад/176 (8.11)

Где 176 - среднее число часов работы в месяц

Чтс=4412/176=25 руб/час

10.2.2Затраты труда определяем по формуле

ЗТ=у.е. Ч18,6 (8.12)

Где у.е.=4,9 - переводной коэффициент [1]

18,6 - трудоемкость обслуживания одной условной единицы, челЧчас

ЗТ=4,9Ч18,6=91,1 челЧчас

Тогда тарифный фонд определяется как

ТФзп=25Ч91,1=2278 руб

По формуле (8.9) определяем фонд заработной платы

ЗП=2278Ч1,75Ч1,26=5022 руб

Рассчитываем эксплуатационные затраты

ЭЗ=ЗП+Аотодэр (8.13)

Где Ао - Амортизационные отчисления, руб

Рто - расходы на ремонт и техническое обслуживание, руб

Сдэ - стоимость потерь электроэнергии в трансформаторах, руб

Пр - прочие расходы, руб

Расходы на амортизацию составляют 3,5% от капитальных вложений

Ао=КВЧ0,035 (8.14)

Ао2500=1664029Ч0,035=58241 руб

Ао6300=2528606Ч0,035=88501 руб

Расходы на ремонт и техническое обслуживание составляют 2,9% от капитальных вложений

Рто=КВЧ0,029 (8.15)

Рто2500=1664029Ч0,029=48257 руб

Рто6300=2528606Ч0,029=73330 руб

Прочие расходы составляют 1% от капитальных вложений

Пр=КВЧ0,001 (8.16)

Пр=1664029Ч0,001=1664 руб

Пр=2528606Ч0,001=2528 руб

Годовые потери электроэнергии в трансформаторах определяются по уравнению

(8.17)

Где -потери мощности короткого замыкания, кВт

=0,12 коэффициент перевода реактивной мощности в активную

- реактивные потери мощности короткого замыкания, квар

- максимальна нагрузка трансформатора, ква

- номинальная мощность трансформатора, ква

- потери мощности холостого хода, кВт

- потери реактивной мощности холостого хода квар

Реактивные потери мощности короткого замыкания определяются

(8.18)

Реактивные потери мощности холостого хода определяются

(8.19)

Тогда годовые потери энергии будут

Определяем стоимость потерь электроэнергии

Сэ=QпэЧТЭ (8.20)

Где Тэ=1,95 тариф на электроэнергию, руб

Сэ2500=131743Ч1,95=256898 руб

Сэ6300=150032Ч1,95=292563 руб

Результаты расчетов сводим в таблицу

Таблица 8.5

Элементы эксплуатационных затрат

Варианты

Трансформатор мощностью 2500ква

Трансформатор мощностью 6300ква

Амортизационные отчисления, т.руб

58,24

88,50

Расходы на ремонт и техническое обслуживание, т.руб

48,26

73,33

Стоимость потерь электроэнергии, т.руб

256,90

292,56

Прочие расходы, т.руб

1,66

2.53

итого

368,42

459,42

Так как в обоих вариантах работают по два трансформатора, то по условиям надежности электроснабжения варианты равноценные, поэтому выбираем вариант с наименьшими приведенными затратами

10.4Расчитываем приведенные затраты

З=КВЧЕн+ЭЗ (8.21)

Где Ен =0,10 нормативный коэффициент экономической эффективности

ЭЗ - эксплуатационные затраты, руб

З2500=1664029Ч0,1+368420=534822 руб

З6300=2528606Ч0,1+459420=712280 руб

Определяем суммарную годовую экономию

Гэ=(ЭЗ6300 - ЭЗ2500)+ЭП (8.22)

Где ЭП - Экономия потерь, руб

Определяем экономию потерь

ЭП=Сэ6300 - Сэ2500 (8.23)

ЭП=292563 - 256898=35665 руб

Тогда суммарная годовая экономия определится как

Гэ=(459420 - 368420)+35665=126665

Определяем суммарный годовой экономический эффект

Эг=(З6300 - З2500)+ЭП (8.24)

Эг=(712280 - 534822)+35665=213123

Результаты расчетов сводим в таблицу

Таблица 8.6 - экономическое обоснование замены трансформаторов

Показатель

Вариант с трансформаторами мощностью 2500ква

Вариант с трансформаторами мощностью 6300ква

Капитальные вложения, руб

1664,03

2528.61

Эксплуатационные издержки, руб

368,42

459,42

Стоимость потерь электроэнергии, руб

256,90

292,56

Приведенные затраты, руб

534,82

712,28

Суммарная годовая экономия, руб

126,67

Суммарный годовой экономический эффект, руб

213,12

Таким образом, замена трансформаторов мощностью 6300 кав на трансформаторы мощностью 2500 ква позволит получить ежегодную экономию 126,67 т.руб.

9 Экономическое обоснование целесообразности замены масляных выключателей на вакуумные

Замена масляных выключателей на вакуумные на подстанции «Байдарка позволит снизить потери электроэнергии и повысить надежность электроснабжения производственных и сельскохозяйственных потребителей.

Экономическая эффективность замены масляных выключателей на вакуумные определяется по следующим показателям:

- Капитальные вложения

- Годовая экономия

- Годовой экономический эффект

- Срок окупаемости

Расчет для масляных выключателей

Капитальные вложения определяем по формуле:

(9.1)

Где Ц - цена приобретения масляных выключателей, руб.

Т - расходу на доставку, руб

М - затраты на монтаж и пуско-наладочные работы, руб

Цена на один масляный выключатель составляет 95,2 т.руб, их согласно схемы подстанции 15 штук соответственно цена на приобретение масляных выключателей будет:

Ц=СЧN (9.2)

Где С - цена одного масляного выключателя, руб

N - число выключателей на подстанции, шт

Ц=95,2Ч15=1428 т.руб

Расходы на доставку составляют 12% от стоимости оборудования.

Т=ЦЧ0,12 (9.3)

Т=1428Ч0,12=171,36 т.руб

Затраты на монтаж и пуско-наладочные работы с учетом сложности составляют 40% от стоимости оборудования

М=ЦЧ0,4 (9.4)

М=1428Ч0,4=571,2 т. руб

По формуле (9.1) определяем капитальные вложения

КВ=1428+171,36+571,2=2170,56 т.руб

Расчитываем годовой фонд заработной платы

ЗП=ТФ+Кдопотч (9.5)

Где ТФ - тарифный фонд заработной платы ,руб

Кдоп - премиальные составляют 75%

Котч - Коэффициент отчислений составляет 26%

Тарифный фонд заработной платы определяется

ТФ=Чт.сЧЗТ (9.6)

Где Чтс - часовая тарифная ставка, руб/час

ЗТ - затраты труда, челЧчас

Для обслуживания масляного выключателя необходим электромонтер 4 разряда его оклад 4412 рублей

Чтс=оклад/176 (9.7)

Где 176 - среднее число часов работы в месяц

Чтс=4412/176=25 руб/час

Затраты труда определяем по формуле

ЗТ=у.е. Ч18,6 (9.8)

Где у.е.=5,4 - переводной коэффициент при обслуживании масляного выключателя [1]

18,6 - трудоемкость обслуживания одной условной единице, челЧчас

ЗТ=5,4Ч18,6=100,44 челЧчас

Тогда тарифный фонд определяется как

ТФ=25Ч100,44=2511 руб

По формуле (9.5) определяем фонд заработной платы

ЗП=2278Ч1,75Ч1,26=5022 руб

Расчитываем эксплуатационные затраты

ЭЗ=ЗП+Аотор (9.9)

Где Ао - Амортизационные отчисления, руб

Рто - расходы на ремонт и техническое обслуживание, руб

Пр - прочие расходы, руб

Расходы на амортизацию составляют 3,5% от капитальных вложений

Ао=КВЧ0,035 (9.10)

Ао=2170,56Ч0,035=75,97 т.руб

Расходы на ремонт и техническое обслуживание для масляных выключателей составляют 40% от капитальных вложений

Рто=КВЧ0,4 (9.11)

Рто=2170,56Ч0,4=868,224 т.руб

Прочие расходы составляют 1% от капитальных вложений

Пр=КВЧ0,001 (9.12)

Пр=2170,56Ч0,001=2,17 т.руб

Тогда эксплуатационные затраты будут

ЭЗ=5,022+75,97+868,224+2,14=951,356 т.руб

Рассчитываем приведенные затраты

З=КВЧЕн+ЭЗ (9.13)

Где Ен =0,10 нормативный коэффициент экономической эффективности

ЭЗ - эксплуатационные затраты, руб

З=2170,56Ч0,1+951,356=1168,412 т.руб

Расчет для вакуумных выключателей

11.5 Капитальные вложения определяем по формуле 9.1

(9.1)

Где Ц - цена приобретения вакуумных выключателей, руб.

Цена на один вакуумный выключатель составляет 101 т.руб, их согласно схемы подстанции 15 штук соответственно цена на приобретение масляных выключателей будет определяться по формуле (9.2)

Ц=СЧN

Где С - цена одного вакуумного выключателя

Ц=101Ч15=1515 т.руб

Расходы на доставку составляют 12% от стоимости оборудования определяются по формуле (9.3)

Т=1515Ч0,12=181,44 т.руб

Затраты на монтаж и пуско-наладочные работы вакуумных выключателей составляют 20% от стоимости оборудования и определяются по формуле (9.4)

М=1515Ч0,2=303 т. руб

По формуле (9.1) определяем капитальные вложения

КВ=1515+181,44+303=1999 т.руб

Расчитываем годовой фонд заработной платы

Тарифный фонд заработной платы определяется по формуле (9.6)

Так как для обслуживания масляного выключателя необходим электромонтер 4 разряда его оклад 4412 рублей то соответственно и часовая тарифная ставка его составит 25 руб/час

Затраты труда определяем по формуле (9.8)

Где у.е.=3,1 - переводной коэффициент при обслуживании масляного выключателя [1]

ЗТ=3,1Ч18,6=57,66 челЧчас

Тогда тарифный фонд определяется по формуле (9.6)

ТФ=25Ч57,66=1441,5 руб

По формуле (9.5) определяем фонд заработной платы

ЗП=1441,5Ч1,75Ч1,26=3178,51 руб

Рассчитываем эксплуатационные затраты по формуле (9.9)

Расходы на амортизацию составляют 3,5% от капитальных вложений и определяются по формуле (9.10)

Ао=1999,44Ч0,035=69,98 т.руб

Расходы на ремонт и техническое обслуживание для вакуумных выключателей составляют 15% от капитальных вложений и определяются по формуле (9.11)

Рто=1999,44Ч0,4=299,9 т.руб

Прочие расходы составляют 1% от капитальных вложений и определяются по формуле (9.12)

Пр=1999,44Ч0,001=1,99 т.руб

Тогда эксплуатационные затраты будут

ЭЗ=3,178+69,98+299,9+1,99=375,048 т.руб

Рассчитываем приведенные затраты по формуле (9.13)

З=1999,44Ч0,1+375,048=574,992 т.руб

11.9 Определяем суммарную годовую экономию

Гэ=ЭЗмв-ЭЗвв (9.14)

Где ЭЗмв - эксплуатационные затраты на масляные выключатели

ЭЗвв - эксплуатационные затраты на вакуумные выключатели

Гэ=951,356-375,048=576,308 т.руб

11.10 Определяем суммарный годовой экономический эффект

Эгмввв (9.15)

Где Змв - приведенные затраты на масляные выключатели

Звв - приведенные затраты на ваккумные выключатели

Эг=1168,412-574,992=593,42 т.руб

11.11 Определяем срок окупаемости капитальных вложений

Т= (9.16)

Т= года

Результаты расчетов сводим в таблицу 9.1

Таблица 9.1 Экономическая эффективность замены масляного выключателя на вакуумный выключатель

Показатели

Значение

Масляный выключатель

Вакуумный выключатель

Капиталовложения, т. руб.

2170,56

1999,44

Эксплуатационные затраты, т.руб.

951,36

375,05

Приведенные затраты, т.руб.

1168,41

574,99

Годовая экономия, т.руб.

576,31

Годовой экономический эффект, т.руб.

593,42

Срок окупаемости капиталовложений, лет

3,5

Таким образом, замена масляного выключателя на вакуумный выключатель позволяет получить ежегодную экономическую экономию576,31 т. рублей. Это объясняется снижением затрат на эксплуатацию. Дополнительные капитальные вложения окупятся за 3,5 года.

10 Расчет токов короткого замыкания

Расчет токов короткого замыкания (к.з.) необходим для выбора аппаратуры и проверки элементов электроустановок (шин, изоляторов, кабелей и т. д.) на электродинамическую и термическую устойчивость, проектирования и наладки релейной защиты, выбора средств и схем грозозащиты, выбора и расчета токоограничивающих и заземляющих устройств. [14]

10.1 Изобразим схему электроснабжения подстанции «Байдарка»

Рисунок 10.1 - схема электроснабжения подстанции «Байдарка»

10.2 По схеме электроснабжения составляем расчетную схему, в которую входят все участвующие в питании короткого замыкания источники питания и все элементы схемы электроснабжения. При выборе расчетной схемы учитываем режимы работы данной установки . На расчетной схеме расставляем характерные точки короткого замыкания.

Рисунок 10.2 - расчетная схема

10.3 По расчетной схеме составляем схему замещения и определяем значения сопротивлений входящих в эту схему. Схему замещения составляем для одной фазы.

Рисунок 10.3 - схема замещения

Х1 - сопротивление системы

Х2 - сопротивление стороны 110 кВ на подстанции «Восточная II»

Х3 - сопротивление стороны 35 кв на подстанции «Восточная II»

Х4 - сопротивление линии 35 кВ на участке с проводом АС-150

Х5 - сопротивление линии 35 кВ на участке с проводом АС-95

Х6 - сопротивление трансформатора на подстанции «Байдарка»

10.4 Данные для расчета на подстанции «Восточная II» предоставлены региональным диспетчерским управлением

Еэкв=125,99 кВ

Х1=6,561 Ом

Iк.з.=10,598 кА

Трансформатор на подстанции «Восточная II» имеет следующие напряжения короткого замыкания:

Uк В-С=10,5% - напряжение короткого замыкания между сторонами высокого и среднего напряжения

Uк В-Н=17% - напряжение короткого замыкания между сторонами высокого и низкого напряжения

Uк С-Н=6% - напряжение короткого замыкания между сторонами среднего и низкого напряжения

10.5 Определяем напряжение короткого замыкания на высокой стороне

Uк В=0,5Ч( Uк В-Н+ Uк В-С - Uк С-Н) (10.1)

Uк В=0,5Ч(17+10,5 - 6)=10,75 %

10.6 Определяем напряжение короткого замыкания на стороне среднего напряжения

Uк С=0,5Ч( Uк В-С+ Uк С-Н - Uк В-Н) (10.2)

Uк С=0,5Ч(10,5+6 - 17)=-0,25 %

10.7 Так как активное сопротивление более чем в три раза меньше индуктивного то в расчетах им пренебрегаем и учитываем только индуктивное сопротивление [7]. Трансформатора на подстанции «Восточная II» имеет напряжения 115/38,5/11

10.8 Определяем индуктивное сопротивление высокой стороны трансформатора на подстанции «Восточная II»

(10.3)

Где - напряжение на высокой стороне трансформатора, ква

S - мощность трансформатора, мва

Ом

10.9 Определяем индуктивное сопротивление средней стороны трансформатора на подстанции «Восточная II»

(10.4)

Ом

10.10 Определяем результирующее индуктивное сопротивление в точке К1

Хк1=Х1+Х2+Х3 (10.5)

Хк1=6,56+56,86+1,32=64,74 Ом

10.11 Определяем индуктивное сопротивление линии 35 кВ на участке с проводом АС-150

Х4=ХудЧL (10.6)

Где Худ - индуктивное сопротивление линии 35 кВ с проводом АС-150, Ом [8].

L - длина линии 35 кВ с проводом АС-150, км

Х4=0,395Ч2,8=1,106 Ом

10.12 Определяем индуктивное сопротивление линии 35 кВ на участке с проводом АС-95 по формуле 6

Х5=0,414Ч0,7=0,289 Ом

10.13 Приводим результирующее индуктивное сопротивление в точке К1 к среднему напряжению 38,5 кВ.

ХК138,5К1 (10.7)

ХК138,5=64,74 Ом

10.14 Определяем результирующее индуктивное сопротивление в точке К2

ХК2К138,5+Х4+Х5 (10.8)

ХК2=7,25+1,106+0,289=8,645 Ом

10.15 Определяем сопротивление трансформатора на подстанции «Байдарка» по формуле (10.3)

Ом

10.16 Определяем результирующее индуктивное сопротивление в точке К3

ХК3К2+Х6 (10.9)

ХК3=8,645+15,06=23,705 Ом

10.17 Приводим результирующее индуктивное сопротивление в точке К3 к низшему напряжению на подстанции «Байдарка»

(10.10)

Ом

10.18 Определяем ток 3-х и 2-х фазного короткого замыкания и ударный ток в точке К1

(10.11)

Где UФ - фазное напряжение, кВ

кА

(10.12)

кА

(10.13)

Где КУ - ударный коэффициент [7]

кА

10.19 Определяем ток 3-х и 2-х фазного короткого замыкания и ударный ток в точке К2

(10.14)

кА

(10.15)

кА

(10.16)

кА

10.20 Определяем ток 3-х и 2-х фазного короткого замыкания и ударный ток в точке К3

(10.14)

кА

(10.15)

кА

(10.16)

кА

11 Выбор и проверка электрических аппаратов подстанции

Аппараты, изоляторы и проводники первичных цепей должны удовлетворять следующим общим требованиям:

- необходимая прочность изоляции для надежной работы в длительном режиме и при кратковременных перенапряжениях.

Для выбора экономически целесообразного уровня изоляции необходимо учитывать условия ее работы, номинальное и наибольшие рабочие напряжения электроустановки и рассмотреть средства защиты изоляции от перенапряжения.

- допустимый нагрев токами длительных режимов.

Расчетные рабочие токи присоединения в нормальном и форсированном режимах не должны превышать номинальный длительный ток аппарата.

- устойчивость в режиме короткого замыкания.

В установках напряжением выше 1000 В по режиму короткого замыкания следует проверять: электрические аппараты, проводники, опорные и несущие конструкции для них. Проверка проводится на термическую и динамическую устойчивость к воздействию токов короткого замыкания.

- Технико-экономическая целесообразность;

- Соответствие окружающей среде и роду установки;

- Достаточная механическая прочность.[8]

11.1 Выбор выключателей

Выключатель - это коммутационный аппарат, предназначенный для включения и отключения тока.

Выключатель является основным аппаратом в электрических установках, он служит для отключения и включения в цепи в любых режимах: длительная нагрузка, перегрузка, короткое замыкание, холостой ход, несинхронная работа. Наиболее тяжелой и ответственной операцией является отключение токов короткого замыкания и включение на существующее короткое замыкание.

Проверяем правильность выбора вакуумного выключателя ВБУЭЗ-10-20/1000У2 (технические данные смотри раздел сравнение технических характеристик вакуумных выключателей).

Высоковольтные выключатели выбираются по номинальному напряжению, номинальному току, и по току отключения, кроме того высоковольтные выключатели проверяют на электродинамическую и термическую устойчивость. Таким образом, должны соблюдаться условия: [8].

Uн.а ? Uн.уст. (11.1)

Где Uн.а - номинальное напряжение выключателя

Uн.уст. - номинальное напряжение установки

Iн.а. ?Iр.форс (11.2)

Где Iн.а. - номинальный ток выключателя

Iр.форс - ток в цепи в форсированном режиме

Iр.форс=1,5Iн=1,5Ч229=343,5 А

Iн.от. ? Iот. (11.3)

Где Iн.от - номинальный ток отключения выключателя

Iот. - расчетный ток отключения равный току короткого замыкания

iуд.3 ? iмах (11.4)

Где iуд.3 - ударный ток трехфазного короткого замыкания в месте установки выключателя

iмах - амплитудное значение сквозного тока короткого замыкания, гарантированное заводом изготовителем

Вк ? Iт.н.2Чt т.н. (11.5)

Где Вк - тепловой импульс тока, характеризующий количество теплоты, выделенное в аппарате за время короткого замыкания

Вк=(Iк(3))2Чtк=4,73Ч1,4=6,622 кА2Чс

Iт.н. - номинальный допустимый ток термической устойчивости выключателя в течении времени t т.н

t т.н - номинальное время термической устойчивости выключателя при протекании тока Iт.н.

Iт.н.2Чt т.н.=202Ч3=1200 кА2Чс

Таблица 11.1 Результаты выбора вакуумного выключателя

Условия выбора

Расчетные данные сети

Каталожные данные вакуумного выключателя

Uн.а ? Uн.уст.

6,3 кВ

10 кВ

Iн.а. ?Iр.форс

343,5 А

1000 А

Iн.от. ? Iот.

4,73 кА

20 кА

iуд.3 ? iмах

10,03 кА

52 кА

Вк ? Iт.н.2Чt т.н.

6,622 кА2Чс

1200 кА2Чс

Выбранный выключатель подходит по всем условиям

Аналогично проверяем правильность выбора установленных на стороне 35 кВ разъединителей РЛНДЗ-35/600 результаты проверки сводим в таблицу 11.2

Таблица 11.2 Результаты выбора разъединителей

Условия выбора

Расчетные данные сети

Каталожные данные разъединителя РЛНД-35/600

Uн.а ? Uн.уст.

35 кВ

10 кВ

Iн.а. ?Iр.форс

61,8 А

600 А

Iн.от. ? Iот.

2,33 кА

25 кА

iуд.3 ? iмах

5,93 кА

31 кА

Вк ? Iт.н.2Чt т.н.

3,26 кА2Чс

25 кА2Чс

Установленные разъединители подходят по всем условиям.

12 Безопасность и экологичность проекта

12.1 Решения правительства Российской Федерации по безопасности труда и экологическим аспектам

Федеральный закон об основах труда в российской федерации принят Государственной Думой 23 июня 1999 года. Настоящий Федеральный закон устанавливает правовые основы регулирования отношений в области охраны труда между работодателями и работниками и направлен на создание условий труда, соответствующих требованиям сохранения жизни и здоровья работников в процессе трудовой деятельности.

Государственными нормативными требованиями охраны труда, содержащимися в федеральных законах и иных нормативных правовых актах субъектах Российской Федерации об охране труда, устанавливаются правила, процедуры и критерии, направленные на сохранение жизни и здоровье работников в процессе трудовой деятельности.

Основными направлениями государственной политики в области охраны труда являются:

-обеспечение приоритета сохранения жизни и здоровья работников;

-принятие и реализация федеральных законов и иных нормативных правовых актов об охране труда;

-государственное управление охраной труда;

-государственный надзор и контроль за соблюдение требований охраны труда;

-содействие общественному контролю за соблюдением прав и законных интересов работников в области охраны труда;

-расследование несчастных случаев на производстве и профессиональных заболеваний;

-защита законных интересов работников;

-установление компенсаций за тяжёлую работу и работу с вредными или опасными условиями труда;

-распределение передового отечественного опыта в области охраны труда;

подготовка специалистов по охране труда;

-обеспечение функционирования единой информационной системы охраны труда и др.

В настоящее время изданы межотраслевые правила техники безопасности и пожарной безопасности, которыми пользуются и выполняют требования указанные в правилах, весь электротехнический персонал.

Основным требованием является выполнение организационных и технических мероприятий. [9]

Организационные мероприятия:

-оформление работ нарядом, распоряжением или перечнем работ выполняемых в порядке текущей эксплуатации;

-допуск к работе;

-надзор во время работы;

-оформление перерывов в работе, перевод на другое рабочее место и окончание работы;

Технические мероприятия:

-произвести необходимые отключения и принять меры препятствующие подаче напряжения на место работы , в следствии ошибочного или самопроизвольного включения коммутационных аппаратов;

-вывешивание запрещающих плакатов;

-проверка отсутствия напряжения на токоведущих частях, которые должны быть заземлены;

-наложено заземление;

-вывешены указательные плакаты;

Все работы на подстанции (кроме оперативных переключений) выполняются с оформлением наряда-допуска, либо распоряжения, с выполнением необходимых организационных и технических мероприятий обеспечивающих безопасность выполнения работ.

Весь персонал (оперативный и ремонтный) допущенный к производству работ по обслуживанию оборудования подстанции должен иметь соответствующие квалификационные группы по электробезопасности. Ремонтные бригады должны иметь соответствующие защитные средства, набор которых регламентируется правилами техники безопасности и местными инструкциями. Все защитные средства должны правильно хранится и испытываться в установленные сроки.

Основное условие соблюдения безопасности при проектировании предприятий _предотвращение воздействия вредных и опасных производственных факторов на работающих, а также предупреждение негативного влияния этих факторов на окружающую среду. Это условие учтено в соответствующих разделах СниП и СН, в которых изложены требования по проектированию.

12.2 Анализ условий труда и анализ состояния производственного травматизма в «Центральных электрических сетей»

за 2004-2006 года

Все энергетические объекты относятся к особо опасным объектам. На таких объектах, как и в других отраслях промышленности, происходят нарушения техники безопасности, что приводит к различным видам несчастных случаев. В большинстве несчастных случаев, по статистике, погибают или получают различные травмы работники, которые только что устроились на работу или работники с большим стажем работы. Первые получают травмы по незнанию, по неопытности. А вторые, уверенные в себе чаще по невнимательности.

В Центральных электрических сетях для предотвращения и профилактики несчастных случаев создана служба охраны труда и промышленной безопасности. В ее состав входит начальник службы и три инженера.

На предприятии составлен коллективный договор, то есть правовой акт регулирующий социально-трудовые отношения. В организации он заключается между работодателем и профсоюзом, представляющим интересы работника. Кроме того в центральных электрических сетях с каждым работником заключен трудовой договор в соответствии с которым работодатель обязуется предоставить работнику работу, обеспечивать условия труда, предусмотренные трудовым кодексом, своевременную выплату заработной платы. А работник обязуется выполнять свою трудовую функцию и выполнять трудовую дисциплину.

Так как у многих работников Центральных электрических сетей имеет место быть разъездной характер работы на предприятии организованы предрейсовые медицинские осмотры водительского состава.

Все работники предприятия согласно коллективного договора обеспечиваются спец одеждой. Кроме того, работники на вредных участках (например, сварочный пост) получают молоко, сок и дополнительные дни к отпуску. Так же работники, которым это необходимо по условиям работы обеспечены индивидуальными средствами защиты. На каждого работника в Центральных электрических сетях заведены личные карточки, где указываются сроки получения и наименование той спецодежды и средств индивидуальной защит, которые получил работник.

В Центральных электрических сетях проводятся все положенные инструктажи: вводный, для всех работников, устроившихся на данное предприятие. Его проводит инженер по охране труда с регистрацией инструктажа в журнале; первичный проводится инженером в структурном подразделении с регистрацией в журнале по специально разработанной программе для данного вида работ; повторный проводится ежемесячно в структурных подразделениях с записью в журнал по программе утвержденной начальником структурного подразделения; внеплановый - проводится в структурных подразделениях при нарушения техники безопасности, при длительных перерывах в работе и по требованию вышестоящих органов, при изменении правил и инструкций; целевой - проводится при оформлении нарядов допусков и распоряжений. Кроме того, в Центральных электрических сетях еженедельно в структурных подразделениях проводится час охраны труда, где подводятся итоги недели, прорабатываются те нарушения, которые имели место быть, при необходимости проводятся дополнительные инструктажи, прорабатываются обзоры травматизма в электроэнергетике. На предприятии ведется так же трехступенчатый контроль за состоянием охраны труда на предприятии.

Ежегодно каждый работник сдает экзамен по охране труда, пожарной безопасности и правилам технической эксплуатации. По результатам экзаменов ему выставляется оценка и производится запись в его личном квалификационном удостоверении с указанием группы по электробезопасности. Оценка может быть выставлена отлично, хорошо, удовлетворительно или неудовлетворительно. При неудовлетворительной оценке работник временно отстраняется от работы, готовится и пересдает экзамен. При удовлетворительной оценке срок следующей сдачи экзамена устанавливается не через один год, а через шесть месяцев.

Все работы в действующих электроустановках проводятся по наряду - допуску, распоряжению или по перечню работ выполняемых в порядке текущей эксплуатации. Но на предприятии имеется список работ. Который можно проводиться только по наряду - допуску.

На предприятии Центральных электрических сетей проводится ежемесячно, во вторую среду каждого месяца, день техники безопасности с привлечением лиц из вышестоящих организаций. В ходе проверки проверяются все структурные подразделения, по результатам проведения дня техники безопасности разрабатываются мероприятия. Ежегодно проводится внеочередной день техники безопасности, по его результатам так же разрабатывается мероприятия. Кроме того в структурных подразделениях начальниками еженедельно проводятся внезапные проверки рабочих мест с оформлением протоколов и с указанием виновных в нарушениях, если такие имели место.

Таблица 12.1 - Несчастные случае за 2004-2006 года

Центральные электрические сети 2004 - 2006 года

№ п/п

Профессия, должность пострадавшего.

Дата несчастно- го случая

Классификация (тяжёлый, смертельный, групповой, легкий).

Последствия

Количе-

ство дней нетрудо-

способно сти

Выплачено

по листку

нетрудоспо-

со бности

1

Электромонтер по эксплуатации распределительных сетей

29.07.04

тяжелый

102

28,8

2

Машинист бурильно-крановой машины

13.01.06

тяжелый

237

119,89

Таблица 12.2 - Анализ производственного травматизма

Наименование

показателя.

Формула.

Годы.

2004

2005

2006

Среднесписочная числен-

ость работающих, чел.

Р

435

595

609

Показатель (коэффициент)

частоты травматизма.

2,2

0

1,64

Показатель(коэффициент)

тяжести травматизма.

102

0

237

Показатель (коэффициент)

потерь рабочего времени

234,5

0

389,2

Число пострадавших.

П1, П2

1

0

1

Средства на охрану труда,

Тыс.Руб.

880

3912,15

6430,33

Израсходовано

Расход средств на одного работника.

2,02

6,57

10,55

где П12- число пострадавших, с утратой трудоспособности на срок более одного рабочего дня соответственно со смертельным исходом;

Дт- число человеко- дней нетрудоспособности у всех пострадавших за отчётный период;

Анализируя статистику несчастных случаев на предприятии произошедших в период с 2004 по2006 год можно сделать вывод, что работа по охране труда на предприятии «Центральные электрические сети» проводиться в целом удовлетворительно. С увеличением численности работников увеличиваются средства выделяемые на охрану труда. Для улучшения состояния охраны труда рекомендуется серьезней подходить к проведению инструктажей.

12.3 Характеристика опасных и вредных факторов, технологических процессов и устройств, разрабатываемых в проекте

С требованиями ПУЭ реконструируемая подстанция не относится к вредным в эксплуатации объектам, но является особо опасным объектом в обслуживании.

Обслуживающий персонал производит различные переключения по 35кВ, 10кВ, и при ошибке в переключениях может произойти авария. Для предупреждения такого рода ошибок на подстанции предусмотрены блокировки безопасности. Различают два основных вида блокировок: блокировки безопасности и оперативные блокировки.

Например дверь в ячейку распределительного устройства напряжением выше 1000 В снабжена электромагнитным замком, позволяющим только тогда открыть дверь, когда отключены выключатели и разъединители, через которые внутрь ячейки подается напряжение.

Существуют также блокировки, предотвращающие операции разъединителями под нагрузкой (при включенном выключателе), что может сопровождаться не только аварией, но и несчастным случаем. В сельских электроустановках для этого часто применяют механические блокировки с непосредственной рычажной связью между приводами выключателя и разъединителей. Но могут быть и замковые блокировки, например механическая блокировка системы Гинодмана (МБГ). На каждом приводе разъединителей и выключателя установлены блокирующие замки, оборудованные запорным стержнем для механического застопаривания блокируемого элемента.

На двух трансформаторных подстанциях вместо МБГ применяют электромагнитную блокировку при помощи одинаковых блок-замков типа ЗБ-1 и одного общего электромагнитного ключа КЭЗ-1. Электромагнитный замок одновременно служит розеткой, а электромагнитный ключ вилкой. Для того чтобы ключ открыл замок, его вставляют в штепсельную розетку данного замка, а напряжение в розетку подается автоматически при помощи сигнальных контактов, замыкающихся или размыкающихся в зависимости от положения привода выключателя или разъединителя. Положение этих контактов выбирают таким образом, чтобы напряжение в розетки блок-замков разъединителей данного присоединения попадало только при отключенном выключателе, а в розетку-замок двери ячейки - при отключенных разъединителях.

Электромагнитный замок состоит из катушки, подпружиненного сердечника и запорного стержня с кольцом. При обтекании током катушки, внутрь ее втягивается сердечник, сжимая пружину и освобождая запорный стержень. Потянув за кольцо освобождают запор. В комплектных распределительных устройствах с выкатными элементами применяют и другие блокировки безопасности. Тележка с выключателем на ней включена в первичную цепь через мощное штепсельные контакты, выполняющие роль разъединителей, и имеет три фиксированных положения:

- рабочее (когда она полностью вкачена в ячейку КРУ и штепсельные контакты полностью замкнуты );

- испытательное ( когда штепсельные контакты разомкнуты, а контакты вторичных цепей, то есть измерительных, сигнальных, управления и защиты замкнуты );

- ремонтное (когда тележка с выключателем полностью выкачена из ячейки в проход РУ );

В общем случае оперативные блокировки должны предотвращать:

- включение выключателей, отделителей и разъединителей на заземляющие ножи и короткозамыкатели;

- отключение и включение отделителями и разъединителями тока нагрузки, если это не предусмотрено конструкцией аппарата;

- включение заземляющих ножей (ЗН) на участке схемы, не отделенной разъединителями или отделителями от участков находящихся под напряжением;

- подачу напряжения на участки схемы, заземленные включенными заземляющими ножами и отделенные от включенных заземляющих ножей только выключателями;

- включение заземляющих ножей шкафов присоединений КРУ, если выдвижной элемент с выключателем не выведен в испытательное или ремонтное положение, установку выдвижного элемента в рабочее положение при включенных заземляющих ножах, включение заземляющих ножей сборных шин, если выдвижные элементы с выключателями вводов рабочего и резервного питания не выведены в испытательное или ремонтное положение, установку выдвижных элементов в рабочее положение при включенном выключателе.

12.4 пожарная безопасность

Противопожарные мероприятия на подстанции запроектированы в соответствии с требованиями «Инструкции по проектированию противопожарной защиты энергетических предприятий Минэнерго СССР» (РД 34.49.101-87» для Ш группы.

Степени огнестойкости зданий и сооружений приняты в соответствии со СНиП 21-01-97 (ПС-Ш),а категории производств - по «Перечню категорий помещений и зданий по взрывопожарной и пожарной опасности» РД 34.03.350-98 в.4.

Разрывы между зданиями и сооружениями на площадке подстанции приняты в соответствии с противопожарными нормами и требованиями

На подстанции должны неукоснительно выполняться правила пожарной безопасности и проводиться мероприятия по предупреждению пожаров. Проведение всех противопожарных мероприятий должны соответствовать Правилам пожарной безопасности в Российской Федерации, введенных в действие с 1997года.

Подстанции относятся к категории пожарной опасности производств Д, а по классу пожара к Е и В

Все работники подстанции должны знать Правила пожарной безопасности, должны уметь пользоваться противопожарным инвентарем в случае возникновения пожара. Противопожарный инвентарь должен использоваться по прямому назначению.

Для тушения пожаров в электроустановках под напряжением надо применять порошковые или углекислотные огнетушители.

Так как большинство подстанций без дежурного персонала, то углекислотные или порошковые огнетушители должны находиться в бригадных машинах. Согласно табеля комплектации их должно быть четыре.

У каждого трансформатора и у ячеек КРУ (с двух сторон) должны быть установлены ящики с песком.

12.5 Экологичность проекта

Площадка проектируемой подстанции выбрана с учетом нанесения минимального ущерба окружающей среде.

Подстанция предназначена для передачи электроэнергии. Указанный технологический процесс является безотходным и не сопровождается вредными выбросами в атмосферу. Учитывая, что площадка подстанции удалена от жилой застройки и рассчитанные уровни шума, издаваемого работающими трансформаторами, менее допустимых 45 децибел, специальные мероприятия по защите от шума трансформаторов не предусматривается. Для исключения загрязнения территории вокруг подстанции, при аварийном выбросе трансформаторного масла и предотвращения распространения пожара, предусматривается сооружение под силовыми трансформаторами маслоприемников, закрытых маслопроводов из железобетонных конструкций и подземного металлического маслоуловителя. Очистка маслоуловителя от масла и скапливающихся дождевых вод предусматривается откачкой их в емкость «цистерну» с вывозом в места, согласованные с органными санитарной охраны.

Плодородный слой толщиной 0,1 - 0,3 м под площадкой подстанции в пределах ограждения, под сооружениями, подъездными дорогами и площадками снимается и вывозится в места, определяемые землепользователями, с целью использования его на восстановление и улучшение земельных угодий взамен изымаемых под строительство. В проекте произведена оценка воздействия проектируемой подстанции на окружающую природную среду в процессе ее строительства и дальнейшей эксплуатации. В результате оценки установлено, что проектируемая подстанция при строительстве и эксплуатации :

-не представляет угрозы для здоровья населения

-не приведет к необратимым или кризисным изменениям в природной среде.

12.6 Мероприятия по совершенствованию безопасности и экологических условий

При эксплуатации электроустановок в них осуществляется оперативное обслуживание и другие работы (профилактические испытания, ремонт). Оперативное обслуживание заключается в выполнении операций включения и отключения линий, трансформаторов, постоянном наблюдении за режимом работы и состоянием всего электрооборудования, подготовке рабочего места для ремонтных бригад, их допуск к работе, восстановление схемы работы электроустановки после окончания ремонта, выполнении по мере надобности небольших внеплановых работ по уходу за электроустановками. Оперативно-ремонтному персоналу разрешается производить переключения в электроустановках.

В соответствии с требованиями ПУЭ и санитарных норм о запрещении загрязнения окружающей среды, вредного или мешающего шума, вибрации и электрических полей реконструируемая подстанция не относится к экологически опасным объектам. На подстанции предусмотрен сбор и удаление отходов масла и исключена возможность попадания его в водоемы, систему отвода ливневых вод, а также на территории, не предназначенные для отходов.

Настоящий проект предусматривает аварийный маслосброс трансформаторного масла в специальные резервуары с последующим его удалением путём откачивания для регенерации.

Контроль за техническим состоянием и готовностью приёма аварийного маслосброса маслоприёмников возложен на руководителей технических служб.

Систематическое проведение инструктажей, повышение квалификации работников сетей, выполнение организационных и технических мероприятий, а также экологических мероприятий в целом считается удовлетворительным.

12.7 Расчет молниезащиты

Для защиты подстанции используем четыре стержневых молниеприемника высотой 14,5 метров. Молниеотводы расположены на порталах на открытом распределительном устройстве 35 кВ. Расстояние между молниеприемниками 14 метров. [10]

Рисунок 12.7.1 - Схема подстанции « Байдарка» и зоны защиты

r 0 - зона защиты на уровне земли

r х - зона защиты на уровне высоту силового трансформатора

rx1 - зона защиты на уровне КРУН 6 кВ

12.7.1 Определяем высоту молниеприемника с учетом понижающего коэффициента

h 0=0.85Чh (12.7.1)

Где 0,85 - понижающий коэффициент

h - высота молниеотвода, м

h 0=0.85Ч14,5=12,3 м

12.7.2 Рассчитываем зону защиты на уровне поверхности земли

r 0=(1,1 - 0,002h) Чh (12.7.2)

r 0=(1,1 - 0,002Ч14.5) Ч14.5=15.5 м

12.7.3 Рассчитываем зону защиты на уровне защищаемого объекта

r х=(1,1 - 0,002Чh) Ч(h - hх/0,85) (12.73)

Где hх - высота на уровне защищаемого объекта (трансформатора высотой 4,05 м), м

r х=(1,1 - 0,002Ч14,5) Ч(14,5 - 4,05/0,85)=10,4 м

12.7.4 На рисунке 12.7.1 видим, что в зону защиты трансформатора попадает не все комплектное распределительное устройство (КРУН) 6 кВ, поэтому делаем расчет зоны защиты молниеотвода на уровне высоты КРУН. Высота КРУН составляет 2800 мм. Расчет производим по формуле (12.7.3)

r х=(1,1 - 0,002Ч14,5) Ч(14,5 - 2,80/0,85)=12 м

12.7.5 Делаем проверку, если сооружение защищено то должно выполняться условие [11]

L?3h

Где L - расстояние между молниеотводами, м

L=14 м

3h=3Ч14,5=43,5 м

14?43,5

Условие выполняется, следовательно выбранные молниеприемники подходят для защиты подстанции «Байдарка» от прямого попадания молнии. (смотри графическая часть лист 3)

13 Расчет заземления подстанции «Байдарка»

Заземляющее устройство ОРУ напряжением выше 1000 В с глухозаземленной нейтралью объединено с заземляющим устройством электроустановок до 1 кВ с глухозаземленной нейтралью. Сопротивление заземляющего устройства должно быть Rз=4 Ом в любоевремя года.[12] [13]. Грунты в нашем случае суглинок. Географическая зона № II Длина вертикальных заземлителей Lв=5 м (смотри графическая часть лист 3)

13.1 Определяем расчетные удельные сопротивления грунта для горизонтальных и вертикальных заземлителей с учетом повышающих коэффициентов (коэффициентов сезонности).

(13.1)

Где =100 ОмЧм - удельное сопротивление грунта [12]

=4 - повышающий коэффициент для горизонтальных заземлителеи для II климатической зоны [12]

ОмЧм

(13.2)

Где =1,25 - повышающий коэффициент для вертикальных заземлителей для II климатической зоны [12]

ОмЧм

13.2 Определяем сопротивление одного вертикального стержня

(13.3)

Где =1 - коэффициент для вертикальных заземлителей

=5 м - длина вертикального стержня, м

- коэффициент использования для вертикальных заземлителей для ориентировочного расчета принимаем равный 1

Ом

13.3 Определяем ориентировочное число стержней

(13.4)

шт

Принимаем 8 вертикальных стержней, для того чтобы получился квадрат, для удобства монтажа

13.4 Определяем отношение расстояния между стержнями, к их длине

(13.5)

м

13.5 Определяем действительный коэффициент использования [12]

13.6 Определяем расчетное сопротивление растекания вертикальных заземлителей

(13.6)

Ом

Сопротивление получилось больше нормы (4 Ом), поэтому учитываем сопротивление горизонтальных стержней

13.7 Определяем сопротивление горизонтальных заземлителей

(13.7)

Где =1,7 коэффициент для горизонтальных заземлителей [12]

- длина горизонтальных заземлителей, м

- коэффициент использования для горизонтальных заземлителей [12]

Ом

13.8 Определяем общее сопротивление

(13.8)

Ом

Принимаем к установке 8 вертикальных заземлителей соединенных полосовой сталью 4х40 мм., расположенных по контуру электроустановки.

Рисунок 13.1 -Заземляющее устройство подстанции «Байдарка»

14 Разработка схемы дуговой защиты КРУН 6 кВ подстанции «Байдарка»

14.1 Список сокращений

БССДЗ - устройство быстродействующей селективной световой защиты

ЦБ - центральный блок

БП - блок питания

БВР - блок входных реле

БФ - блок фильтров

УИР - устройство индикации и регистрации

ПС - преобразователь световой

«АВАРИЯ» - состояние системы при наличии дугового разряда и сигнала МТЗ хотя бы одного из питающих присоединений секции КРУН

«НС» - несоответствие. Состояние системы при наличии сигнала от ПС и отсутствие сигнала МТЗ всех питающих присоединений секции КРУН

МТЗ - максимальная токовая защита

ЛС - линия связи

РИ - разрешения исполнения

Кн - канал

14.2 Замечания по эксплуатации различных видов устройств дуговой защиты и рекомендации

Существует несколько схем дуговой защиты. Принцип работы для них неизменен, а вот техническая реализация может быть разной. Дуговая защита обязательно включает в себя систему датчиков реагирующих на возникновение дуги внутри ячеек КРУН или в отсеке системы шин. Кроме самых первых вариантов реализации дуговой защиты, где в качестве датчиков использовались конечные выключатели, в схему дуговой защиты так же входит блок управления сигналами с датчиков, реализованных на реле или с помощью микропроцессорной техники.

Рассмотрим преимущества и недостатки трех различных схем дуговой защиты:

14.2.1 Дуговая защита, где в качестве датчиков используются конечные выключатели

Принцип работы: при возникновении дуги в шинном отсеке КРУН 6-10 кВ крышка шинного отсека под действием сил возникающих при коротком замыкании приподнимается и замыкает конечный выключатель Q1. В токовых цепях ввода 6-10 кВ потечет ток короткого замыкания. При этом без выдержки времени срабатывает реле К1 и своими контактами замыкает цепь отключения вводного выключателя.

Несомненным преимуществом этой схемы является простота, но эта схема имеет ряд существенных недостатков:

данный вид дуговой защиты может применяться не во всех видах КРУН. Она может быть использована в КРУН с верхним расположением сборных шин, там где имеется возможность применить конечные выключатели (например ячейки КРУН К-37).

наличие в схеме конечных выключателей и механических составляющих воздействующих на них. Эта дуговая защита требует особой осторожности в эксплуатации, так как возможно ложное срабатывание защиты при воздействии на конечный выключатель;

эта дуговая защита требует тщательной отладки механической части;

после каждого случая срабатывания защиты требуется ее проверка, и как показала практика ее наладка;

в некоторых случаях для того чтобы шторка отсека ячейки воздействовала на конечный выключатель приходится вносить изменения в конструкцию отсека (установка дополнительных пластин)

14.2.2 Дуговая защита, где в качестве датчиков используются фототиристоры, а система управления создана на реле

Принцип работы: при возникновении дуги в шинном отсеке или отсеке выключателя 6 кВ срабатывает фототиристор VS1 , он воздействует на выходное реле дуговой защиты КLD 12. А оно в свою очередь своими контактами дает сигнал на электронный блок «Сириус 2-В», который отключает вводной выключатель 6 кВ.

По сравнению с предыдущей схемой, данная защита имеет ряд серьезных преимуществ:

использование фототиристоров вместо конечных выключателей исключает из схемы всю механическую часть и соответственно снижает возможность ложного срабатывания.

значительно упрощается монтаж и обслуживание датчиков, так же снижаются затраты на эксплуатацию и трудоемкость во время обслуживания защиты.

наличие системы управления, где помимо сигналов с датчиков анализируется так же и сигнал пуска МТЗ ввода секции, что практически исключает ложное срабатывание.

Основным недостатком данной схемы дуговой защиты является большое количество элементов схемы управления и как следствие сложность этой схемы, что создает трудности в эксплуатации. Практика показала, что эту схему дуговой защиты трудно настроить первоначально.

14.2.3 Быстродействующая селективная световая защита - это система где в качестве датчиков используются фоторезисторы, а схема управления создана на микропроцессорной технике. (смотри приложение 7 и графическая часть лист 5)

Как и предыдущая защита может монтироваться в КРУН различных серий. Система управления в отличии от предыдущей обладает куда более высокой надежностью. Схема данной защиты более наглядна, надежна , проще в эксплуатации, хотя и дороже чем предыдущая. Основным недостатком данной схемы является то, что данная защита состоит из отдельных блоков, так называемых «черных ящиков» и при каких- либо неисправностях приходиться менять блок целиком.


Подобные документы

  • Реконструкция подстанции "Сенная 110/35/10 кВ", расчёт основных технико-экономических показателей подстанции, выбор числа и мощности трансформаторов, главной схемы электрических соединений и электрооборудования. Экономическое обоснование проекта.

    дипломная работа [241,2 K], добавлен 27.09.2012

  • Экономико-географическая характеристика республики Тыва. Краткая характеристика Тывинской энергосистемы. Реконструкция подстанции "Городская", связанная с увеличением мощности подстанции. Расчет релейной защиты трансформаторов. Анализ режимов системы.

    дипломная работа [2,0 M], добавлен 17.05.2011

  • Реконструкция подстанции 110/10 кВ "ГПП-2г" города Актау. Характеристики и параметры существующего основного оборудования. Схема главных электрических соединений ПС 110/10 кВ "ГПП-2Г". План и разрезы подстанции. Основные виды защиты трансформатора.

    дипломная работа [373,3 K], добавлен 20.04.2015

  • Реконструкция подстанции "Гежская" 110/6 кВ, находящейся в Соликамском районе ОАО "Березниковских электрических сетей" – филиала ОАО "Пермэнерго". Модернизация релейной защиты и автоматики, выполненная на базе современного микропроцессорного оборудования.

    дипломная работа [1,9 M], добавлен 21.06.2010

  • Характеристика действующей подстанции "Сорокино", ее положение в Единой энергетической системе. Анализ схемы электрических соединений, элементов подстанции и техническая решения по замене устаревшего оборудования. Выбор трансформаторов, расчет токов КЗ.

    дипломная работа [1,2 M], добавлен 09.06.2011

  • Существующее состояние подстанции и факторы, определяющие необходимость расширения и реконструкции подстанции. Экономическое обоснование реконструкции подстанции 110/35/6 кВ путем замены трансформатора. Расчет регулирование напряжения на подстанции.

    дипломная работа [4,1 M], добавлен 25.09.2012

  • Расчет электрических нагрузок. Выбор числа мощности и типа трансформатора, выбор местоположения подстанции. Расчет токов короткого замыкания, выбор высоковольтного оборудования. Расчет затрат на реконструкцию подстанции, схема заземления и молниезащиты.

    дипломная работа [1,2 M], добавлен 20.10.2014

  • Действующие схемы электроустановок и соединений. Токи короткого замыкания, выбор оборудования и ошиновки. Защита от перенапряжений, молниезащита, заземление. Решения по релейной защите и вторичным соединениям. Схема организации учета электроэнергии.

    отчет по практике [2,7 M], добавлен 12.01.2011

  • Характеристика понизительной подстанции и ее нагрузок. Расчет короткого замыкания. Схема соединения подстанции. Выбор силовых трансформаторов, типов релейной защиты, автоматики, оборудования и токоведущих частей. Расчёт технико-экономических показателей.

    курсовая работа [3,7 M], добавлен 30.05.2014

  • Реконструкция подстанции "Долбино" с первичным напряжением 110 кВ белгородской дистанции электроснабжения железной дороги. Ее структурная схема и состав. Выбор монтаж и обслуживание оборудования. Расчет уставок и параметров защит трансформаторов.

    дипломная работа [665,0 K], добавлен 12.09.2012

Работы в архивах красиво оформлены согласно требованиям ВУЗов и содержат рисунки, диаграммы, формулы и т.д.
PPT, PPTX и PDF-файлы представлены только в архивах.
Рекомендуем скачать работу.