Проектирование адиабатной выпарной установки термического обессоливания воды

Обзор существующих методов деминерализации и выбор типа установки для получения обессоленной воды. Экономические показатели схемы получения деминирализованной воды и целесообразность её внедрения в производство на АО "Акрон" взамен существующей.

Рубрика Физика и энергетика
Вид дипломная работа
Язык русский
Дата добавления 29.10.2009
Размер файла 904,5 K

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

- возможность одновременного прикосновения человека к имеющим соединение с землей металлоконструкции зданий, технологическим аппаратам, механизмам, с одной стороны, и к металлическим корпусам электрооборудования с другой стороны.

6.4.3 Категории пожароопасности производства устанавливаются в соответствии с НБП 105-95 в зависимости от характеристики применяемых в производстве веществ и материалов.

Согласно нбп помещение оператора выпарной установки относится к категории ''Д'' - несгораемые вещества и материалы в холодном состоянии.

6.4.4 Согласно СанПиН 2.2.1/2.1.1.131-01 (санитарные нормы и правила) предприятия, их отдельные здания и сооружения необходимо отделять от жплой застройки санитарно-защитными зонами - СЗЗ. По ширине СЗЗ делятся на пять классов. Ширина СЗЗ зависит от технологического процесса производства, вредных и пахучих выделений в окружающую среду, их количества, выделяемого предприятием шума, вибрации, ультразвука и других опасных и вредных производственных факторов.

Проектируемая установка располагается на территории АО “Акрон” и потому класс санитарно-защитной зоны устанавливается по классу предприятия в целом. И так как АО“Акрон” является химическим предприятием с выбросом вольшого количества вредных дамовыхгазов и веществ, то для него согласно CанПиН устанавливается класс СЗЗ - 1. Такой же класс присваивается и установке термического обесоливания. Расстояние санитарно-защитной зоны при этом составляет не менее 1000 м.

6.4.5 Классификация производственных процессов по санитарному обеспечению санитарно-бытовыми помещениями осуществляется согласно СНиП - 2.09.04-87 и зависит от санитарной характеристики производственных процессов. В связи с этим различают четыре группы производственных процессов, каждой из которых соответствуют свои специальные санитарно-бытовые помещения и устройства.

Согласно СНиП 2.09.04-87 помещения персонала проектируемой установки относится к 2 группе санитарного обеспечения санитарно-бытовыми помещениями. В них необходимо проектировать душ, туалет, раздевалку.

6.4.6 Степень огнестойкости зданий и сооружений регламентируется СНиП II-2.80.

Здания и сооружения по огнестойкости подразделяются на пять степеней. Каждая степень характеризуется группой возгораемости и пределом огнестойкости их основных конструкций.

Все строительные конструкции и материалы делятся на три группы: несгораемые, трудносгораемяе и сгораемые.

По СНиП 2.01.02-85 степень огнестойкости помещений установки термического обессоливания II - трудносгораемые здания (под действием огня и высокой температуры тлеют, обугливаются, горят, но при устранении источника зажигания горение прекращается).

6.5 Разновидности опасных и вредных факторов

6.5.1 Электрическая опасность. Согласно ГОСТ 12.1.009-75 под электроопасностями понимают воздействие на человека электрического тока, электрической дуги, электромагнитного поля и статического электричества.

В помещении проектируемой установки располагаются электроустановки напряжением 380 и 6000 В и частотой рабочего тока 50 Гц. Рабочие параметры тока и напряжения оборудования превышают установленные нормы для помещений с повышенной электроопасностью. Поэтому необходимо проводить ряд мероприятий по обеспечению необходимой степени электробезопасности помещений проектируемой установки.

По ГОСТ 12.1.019-75 для обеспечения электробезопасности должны применяться отдельно, или в сочетании друг с другом следующие технические способы и средства:

- защитное заземление (ГОСТ 12.1.030-81);

- зануление (ГОСТ 12.1.030-81);

- выравнивание потенциалов;

- малое напряжение;

- электрическое разделение сетей;

- защитное отключение;

- изоляция токоведущих частей (рабочая, дополнительная, усиленная, двойная);

- компенсация токов замыкания на землю;

- оградительные устройства;

- предупредительная сигнализация, блокировка, знаки безопасности;

- средства защиты и предохранительные устройства.

Кроме того, при ремонтных работах электроустановок необходимо применять средства индивидуальной защиты, какие как: резиновые перчатки, сапоги, каски; и только инструмент с токоизолирующими рукоятками. Крупный ремонт электроустановок должен проводиться в специализированных цехах.

Технические способы и средства защиты должны быть указаны в нормативно-технической документации на электроустановки.

Исправность на физический и электрический износ средств защиты должна проверяться осмотром перед каждым применением, а также через каждые 6-12 месяцев в зависимости от условий эксплуатации.

6.5.2 Излучения. Из всех перечисленных типов излучений в установке термического обессоливания присутствует только теловое излучение от нагретых открытых кчастков оборудования, трубопроводов и паропроводов. Однако так как все части теплового оборудования выполняются с тепловой изоляцией и температура рабочих потоков не превышает 100-110 оС то рассматривать этот опасный фактор мы не будем.

6.5.3 Механические опасности. К механическим опасностям вообще следует относить опасности, которые могут возникнуть у любого объекта, способного причинить травму в результате неспровацированного контакта объекта или его части с человеком. Такой контакт может наблюдаться при взаимодействии человека с объектом в трудовом процессе и при случайном нахождении человека в пределах действия объекта.

К ним относятся:

- шум;

- вибрация;

- движущиеся части машин и механизмов.

6.5.3.1 Шум. Шум - всякий неблагоприятно действующий на человека звук различной частоты и интенсивности. Параметром звука является уровень шума, Дб.

Уровень шума нормируется по ГОСТ 12.1.003-83. Для рабочего места оператора установки термического обессоливания уровень шума не должен превышать 65 дБ.

Источниками шума в проектируемой установке являются:

- насосное оборудование;

- камеры испарения;

- эжектор.

Для защиты от шума необходимо предусматривать следующие мероприятия:

- при разработке технологических процессов, проектировании, изготовлении и эксплуатации машин, производственных зданий и сооружений, а также при организации рабочего места, следует принимать все необходимые меры по снижению шума до значений, не превышающих допустимые по ГОСТ 12.1.003-83

- разработка шумобезопастной техники;

- применение средств индивидуальной защиты по ГОСТ 12.4.051-78;

- применение средств и методов коллективной защиты по ГОСТ 12.1.029-80;

- контроль уровня шума на рабочем месте не реже одного раза в год.

В проектируемой установке всё насосное оборудование располагается в помещении насосной на нулевом уровне и огорожено дополнительными конструкциями. Эжектор и камеры испарения изолируются тепловой изоляцией, что одновременно снижает производимый им уровень шума. Всё оборудование находится в помещении, где нет постоянного присутствия персонала.

6.5.3.2 Вибрация. Вибрация - механические колебания твёрдого тела. Основным её параметром является частота вибрации, Гц.

По характеру действия на человека вибрация делится на общую - передаётся на всё тело, местную - передаётся на органы, соприкасающиеся с источником вибрации, комбинированную.

Предельно-допустимые уровни вибрации нормируются по ГОСТ 12.012-90. Для рабочего места оператора установки термического обессоливания уровень вибрации не должен превышать 85 Гц/мм (кратковременно).

Источниками вибрации являются:

- насосное оборудование;

- трубопроводы и паропроводы;

- эжектор.

Для защиты от вибрации в проектируемой установке предусматриваются следующие мероприятия:

- жесткая установка насосного оборудования на фундамент;

- трубопроводы и паропроводы также имеют жесткое крепление;

- эжектор устанавливается на опорной конструкции имеющей фундамент;

- всё основное и вспомогательное оборудование автоматизируется, управление осуществляется со щита.

Действительные замеры уровня вибрации показывают, что он не превышает 65 Гц/мм.

6.5.3.3 Падение предметов с высоты

Основной причиной возникновения данного опасного фактора в проектируемой установке является наличие крупногабаритного оборудования.

Для устранения опасности поражения данным опасным фактором применяют такие методы, как: установка ограждений мест вероятного падения предметов, рациональное размещение крупногабаритного оборудования в помещении, дистанционность управления процессами. Применяются и другие коллективные средства, обеспечивающие защиту всех работников на участке согласно ГОСТ 12.0.002-80.

К средствам индивидуальной защиты относятся защитные каски, использование которых в помещении установки обязательно.

6.5.3.4 Движущиеся части машин и механизмов

Во вспомогательном оборудовании установки термического обессоливания установлены электродвигатели, которые при помощи вращательных моментов приводят в движение насосы и вакуум-насосы.

Для предотвращения травмирования рабочего персонала согласно ГОСТ 12.0.002-80 необходимо устанавливать ограждения, защитные кожухи, предупреждающие знаки и соблюдать правила техники безопасности. Кроме того, необходимо регулярно проводить инструктаж рабочего персонала по технике безопасности при работе с вращающимися частями машин и механизмов.

6.5.4 Тепловые опасности

К тепловым опасностям в проектируемой установке относят нагретые части оборудования, соприкосновение с которыми может вызвать ожоги. Поэтому необходимо соблюдать правила ТБ и своевременно устранять дефекты оборудования и восстанавливать тепловую изоляцию.

Источниками тепловых опасностей являются:

- трубопроводы и паропроводы;

- конденсаторы;

- камеры испарения;

- запорная, регулирующая арматура.

Мерами по защите персонала является выполнение тепловой изоляции трубопроводов, конденсаторов, камер испарения. Кроме того, применяются индивидуальные средства защиты работников - куртки и рукавицы.

6.5.5 Химические опасности. Вредное вещество - это вещество, которое при контакте с организмом человека в случае нарушения требования безопасности может вызвать травмы, профессиональные заболевания или отклонения в состоянии здоровья, обнаруживаемые современными методами, как в процессе работы, так и в отдалённые сроки жизни настоящего и последующих поколений.

По степени воздействия на организм человека вредные вещества подразделяются на четыре класса опасности:

1-й - вещества чрезвычайно опасные;

2-й - вещества высоко опасные;

3-й - вещества умеренно опасные;

4-й - вещества мало опасные.

Пути попадания в организм - через кожу, через слизистые, через желудок, через лёгкие.

Химическая опасность в помещении установки термического обессоливания может возникнуть от утечек газов на соседних производствах. И так как установка находится на площадке производства “Аммиак-2” то основным вредным веществом, которое может попадать в рабочую зону является аммиак.

Аммиак - бесцветный горючий газ с резким специфическим запахом, токсичен, вызывает острое раздражение и ожоги слизистых оболочек, дыхательных путей, слезотечение, удушье; при попадании в глаза возможна потеря зрения; жидкий аммиак или струя газа вызывает сильные ожоги при вдыхании больших количеств аммиака наступает отёк лёгких; при высоких концентрациях возбуждает ЦНС, вызывает судороги; при острых отравлениях может наступить смерть от отёка лёгких и сердечной недостаточности. Класс опасности 4.

Содержание аммиака в воздухе рабочей зоны не должно превышать ПДКр.з.=20 мг/м3 и нормируется по ГОСТ 12.1.005-88.

Для обеспечения необходимых мер по защите персонала от возможного воздействия аммиака применяются средства индивидуальной защиты - фильтрующие противогазы. Они располагаются в помещении персонала или носятся с собой.

Кроме того, в помещении проектируемой установки присутствует органическая пыль, которыя получается при использовании изоляционных материалов и различной производственной деятельности. ПДК органической пыли в воздухе рабочей зоны составляет 10 мг/м3, класс опасности 4.

Основные меры по снижению запылённости заключаются в герметизации источников пыли и регулярное проветривание помещений персонала..

К индивидуальным средствам защиты относят применение рабочей одежды и респираторов в случае необходимости.

6.6 Пожарная безопасность

По ГОСТ 12.1.004-85 мероприятия по пожарной безопасности разделяются на: организационные, технические, режимные и эксплутационные.

Организационные мероприятия предусматривают правильную эксплуатацию оборудования, соблюдение противопожарной безопасности.

К техническим мероприятиям относится соблюдение норм противопожарных правил.

Эксплутационными мерами являются своевременные профилактические осмотры, ремонты технологического оборудования.

Для предотвращения возникновения пожара необходимо выполнять следующие основные правила:

- соблюдение техники безопасности;

- наличие средств пожаротушения: огнетушители ОУ-8 из расчета один огнетушитель на 50 м2 площади помещения, ящики с песком, лопаты, багры ведра топоры;

- правильное хранение горюче-смазочных материалов;

- противопожарная профилактика.

Приведённых выше мер противопожарной безопасности достаточно для обеспечения безопасного режима эксплуатации проектируемой установки термического обессоливания с точки зрения пожарной безопасности.

6.7 Возможная причина возникновения взрыва

Взрыв характеризуется резким повышением давления и выделением большого количества энергии. Взорваться может любой сосуд, находящийся под давлением.

В установке термического обессоливания основным источником возникновения взрыва может служить паропровод высокого давления.

Для предотвращения аварийных ситуаций подобного рода применяется различная предохранительная арматура (клапана). Кроме того, персонал должен регулярно проходить аттестацию на знание правил эксплуатации сосудов работающих под давлением и инструктаж по технике безопасности. Паропровод высокого давления должен быть соответствующим образом маркирован.

Причины возникновения взрыва, связанные с взрывоопасными веществами, отсутствуют.

7. Экологическая справка

В настоящее время обессоленную воду на АО “Акрон” получают в цехе химводоподготовки ионообменным способом в насыпных фильтрах. В результате деятельности этого цеха регулярно образуется большое количество отходов в виде отработанных ионообменных смол и стоков в виде кислот и щелочей, используемых в технологии для регенерации фильтров.

Проектируемая адиабатная выпарная установка устанавливается на территории АО “Акрон” на площадке производства “Аммиак-2” и предназначена для выработки обессоленной воды термическим способом в количестве 750 т/час для нужд предприятия. При этом предполагается полностью отказаться от производства деминерализованной воды в существующем цехе химводоподготовки. Это позволит уменьшить количество вредных стоков на предприятия в целом, так как в установке термического обессоливания не предполагается использование химических реагентов, а сточные воды производства не содержат особо опасных или токсичных веществ.

В качестве сырья в установке используется вода из реки Волхов прошедшая предварительную очистку в корпусе 174 в количестве 1136 т/час. В качестве греющего пара используется низкопотенциальный пар отработанный в турбинах привода основного оборудования производства “Аммиак-2”, в настоящий момент конденсируемый в воздушных холодильниках, и пар 40. Кроме того, в схему установки включён водооборотный цикл, необходимый для охлаждения теплоотводящих ступеней.

Установка выполняется из листовой стали и металлопроката. Отдельные узлы выполняются из латуни и нержавеющей стали. При проектировании использована схема с рециркуляцией рассола, что позволяет сократить выбросы концентрированной продувочной воды и уменьшить затраты теплоты на производство обессоленной воды. В ходе теплового расчёта было установлено, что такая схема обеспечит наилучшие показатели экологичности и материалозатрат. Затраты теплоты на производство одной тонны деминерализованной воды при такой схеме составляют 565 МДж.

Потери теплоты в окружающую среду происходят через наружные поверхности камер испарения и перепускные трубопроводы. Для сокращения этих потерь и для обеспечения необходимого температурного режима установка располагается в помещении, а отдельные узлы установки и трубопроводы покрываются тепловой изоляцией, выполненной из минераловатных мат по ГОСТ 21880-86 и плит из минеральной ваты на синтетическом связующем по ГОСТ 9573-82.

Часть воды оборотного цикла предполагается охлаждать в воздушных холодильниках производства “Аммиак-2”, высвобождающихся вследствие использования отработанного пара в выпарной установки. Продувочную воду с температурой tк=40 оС в количестве 378 т/час можно использовать для отопления производственных помещений в зимний период.

Насосное оборудование располагается в специальном помещении - насосной на нижней отметке. Это облегчает эксплуатацию и обеспечивает необходимую защиту от шума, уровень которого за пределами помещения насосной не превышает допустимого.

В результате работы установки образуются сточные воды и жидкие и твёрдые отходы, перечень которых представлен в таблицах 10 и 11. Сточные воды сбрасываются в промливневую общезаводскую канализацию, где затем очищаются на биологических очистных сооружениях предприятия. Содержание вредных веществ в сточных водах значительно ниже ПДК.

Из вышеприведённых экологических характеристик следует, что проектируемая установка не будет оказывать существенного влияния на окружающую природную среду при соблюдении требуемых условий эксплуатации и необходимых мер по защите окружающей среды. Получаемая продукция в виде деминерализованной воды является экологически чистой, в производство - безопасным с точки зрения экологии.

Таблица 10 - Сточные воды

Характеристика сброса

ПДК сбрасываемых вредных веществ

Кг/сутки

45,5

4,2

Мг/л

5

5

Состав сброса

(по

компонентам),

мг/л

Аммиак, не более

5 мг/л

Аммиак, не более

5 мг/л

Периодичность

сброса

постоянно

постоянно

Количество

стоков,

м3/сут

9089,3

836

Куда

Сбрасывается

В промливневую

канализацию

В промливневую

канализацию

Наименование

Стока

1 Продувочная

вода

2 Потери оборотной

воды

Таблица 11 - Жидкие и твёрдые отходы, образующиеся в результате работы установки термического обессоливания

Характеристика твёрдых и жидких отходов

Класс опасности

2

1

4

4

---

Физические показатели

Плотность

900 кг/м3

---

Плотность

7850 кг/м3

Плотность

8500 кг/м3

---

Химический состав

Масло турбинное

ТП-22-с

Ртуть

Ст.3

Латунь Л63

---

Периодичность образования

1 раз в год

периодически

периодически

периодически

Периодически

Куда складируется, транспорт, тара

Направляются на регенерацию масел

Направляются на переработку в МЭП “Меркурий”

Сдаётся на базу “Втормет”

Сдаётся на переработку в АО “Деймос”

Вывозится специализированным автотранспортом предприятия на на полигон, расположенный на 17 км Лужского шоссе

Наименование отхода

1 Отработанные масла насосного оборудования

2 Люминесцентные лампы дневного света

3 Лом чёрных металлов

4 Лом цветных металлов

5 Производственный мусор

Список использованных источников

1. Бакластов А.М. Проектирование, монтаж и эксплуатация теплоиспользующих установок. Учебное пособие для студентов специальности “Промышленная теплоэнергетика” высших учебных заведений. - М.: Энергия, 1970. - 568 с.

2. Водоподготовка. Процессы и аппараты. Под ред. О. И. Мартыновой. Учебное пособие для вузов. - М.: Атомиздат, 1977. - 352 с.

3. ГОСТ 12.1.003-83 Шум

4. ГОСТ 12.1.004-85 Пожарная безопасность

5. ГОСТ 12.1.005-88 Общие санитарно-гигиенические требования к воздуху в рабочей зоны.

6. ГОСТ 12.1.012-90 Вибрация

7. Идельчик И. Е. Справочник по гидравлическим сопротивлениям. - М.: Государственное энергетическое издательство, 1960.

8. Исаченко В. П. Теплообмен при конденсации. М.: Энергия, 1977. - 240 с.

9. Контактные теплообменники./Е. И. Таубман, В. А. Горнев, В. Л. Мельцер и др. - М.: Химия, 1987. - 256 с.

10. Липкин Б. Ю. Электроснабжение промышленных предприятий и установок: Учебник для учащихся техникумов. - М.: Высш. школа, 1981. - 376 с.

11. Малюшенко В.В., Михайлов А.К. Энергетические насосы: Справочное пособие. - М.: Энергоиздат, 1981. - 200 с.

12. Отчёт по НИР - Разработка технических приложений по созданию выпарной установки адиабатного вскипания для обезвреживания сточных вод цеха нитроаммофоски и оптимизация режимов её работы. - Новгород, 1989.

13. Павлов К.Ф., Романков П.Г., Носков А.А. Примеры и задачи по курсу процессов и аппаратов химической технологии. - Л.: Химия, 1976. - 552 с.

14. Пастушенко Б. Л. Повышение эффективности процессов концентрированных минерализованных вод и растворов в установках мгновенного вскипания. Диссертация на соискание учёной степени кандидата технических наук - Одесса, 1988.

15. Постоянный технологический регламент №24 агрегата №3 производства аммиака. Новгород, 1999 г.

16. Постоянный технологический регламент цеха ХВП.

17. Промышленная теплоэнергетика и теплотехника: Справочник. Под общ. Ред. В. А. Григорьева и В. М. Зорина. - М.: Энергоатомиздат, 1983. - 552 с.

18. Ривкин С. Л., Александров А. А. Теплофизические свойства воды и водяного пара. - М.: Энергия, 1980. - 424 с.

19. Сийрде Э. К., Теаро Э. Н., Миккал В. Я. Дистилляция. Издательство «Химия», 1971. - 216 с.

20. Слесаренко В. Н. Дистилляционные опреснительные установки. - М.: Энергия, 1980. - 248 с.

21. СНиП 2.04.05.-91 Вентиляция

22. СНиП 23-05-95 Освещение

23. Соколов Е.Я., Зингер Н.М. Струйные аппараты. - М.: Энергия, 1970. - 288 с.

24. Справочник по теплообменникам: В 2-х томах/ Пер. с англ. Под ред. О.Г. Мартыненко и др. - М.: Энергоатомиздат, 1987. - 352 с.

25. Справочная книжка энергетика. Сост. А.Д. Смирнов. - М.: Энергия, 1978. - 336 с.

26. Справочник по проектированию электрических сетей и электрооборудования./ Под ред. В. И. Круповича, Ю.Г. Барыбина, М. Л. Самовера. - М.: Энергоиздат, 1981. - 408 с.

27. Таубман Е. И. Выпаривание. - М.: Химия, 1982.

28. Теплотехнические свойства технически важных газов при высоких температурах и давлениях: Справочник/ В. Н. Зубарев, А. Д. Козлов, В. М. Кузнецов и др. - М.: Энергоатомиздат, 1989. - 232 с.

29. Теплотехнический справочник. - Изд. 2-е, перераб. Под ред. В. Н. Юренева и П. Д. Лебедева. 2 тома. - М.: Энергия, 1975.

30. Фраас А., Оцисик М. Расчёт и конструирование теплообменников. Перев. с англ. М.: Атомиздат, 1971.

31. Энергосбережение в химических производствах. Сборник научных трудов. Под ред. С. С. Кутателадзе и Б. И. Псахиса. - Новосибирск, 1986.


Подобные документы

  • Выбор источника водоснабжения, анализ показателей качества исходной воды. Расчет предочистки и декарбонизатора. Анализ расхода воды на собственные нужды. Методы коррекции котловой и питательной воды. Характеристика потоков конденсатов и схемы их очистки.

    курсовая работа [447,6 K], добавлен 27.10.2011

  • Выбор источника водоснабжения ТЭС. Анализ показателей качества воды. Расчёт производительности и схемы водоподготовительных установок. Способы и технологический процесс обработки исходной воды. Характеристика потоков конденсатов и схемы их очистки.

    курсовая работа [234,7 K], добавлен 13.04.2012

  • Характеристика источника водоснабжения. Выбор типа предочистки и схемы умягчения водоподготовительной установки котельной. Расчетная площадь фильтрования. Расход воды на взрыхляющую промывку каждого осветительного фильтра. Расчет и выбор декарбонизатора.

    контрольная работа [251,2 K], добавлен 27.05.2012

  • Описание технологической схемы. Расчет выпарной установки: поверхности теплопередачи, определение толщины тепловой изоляции, вычисление параметров барометрического конденсатора. Расчет производительности вакуум-насоса данной исследуемой установки.

    курсовая работа [194,3 K], добавлен 13.09.2011

  • Технологические показатели качества воды. Расчет солесодержания и рН исходной среды. Масса осадка после термического умягчения воды. Количество реагентов, необходимых для умягчения методом осаждения. Солесодержание после катионирования и анионирования.

    контрольная работа [71,6 K], добавлен 05.08.2013

  • Принцип работы тахометрического счетчика воды. Коллективный, общий и индивидуальный прибор учета. Счетчики воды мокрого типа. Как остановить, отмотать и обмануть счетчик воды. Тарифы на холодную и горячую воду для населения. Нормативы потребления воды.

    контрольная работа [22,0 K], добавлен 17.03.2017

  • Принципиальная схема турбины К-150-130 для построения конденсационной электростанции. Расчёт параметров воды и пара в подогревателях, установки по подогреву воды, расхода пара на турбину. Расчёт регенеративной схемы и проектирование топливного хозяйства.

    курсовая работа [384,4 K], добавлен 31.01.2013

  • Обработка воды, поступающей из природного водоисточника на питание паровых и водогрейных котлов или для различных технологических целей. Термические методы обработки воды. Опреснение вымораживанием, химическое осаждение, ионный обмен, электроосмос.

    реферат [250,0 K], добавлен 09.04.2012

  • Основы ионного обмена в колонках. Обессоливание воды в установках с неподвижным слоем ионитов. Обезжелезивание как этап предварительной очистки воды, ее обескремнивание и умягчение. Принцип работы трехступенчатой ионитовой установки. Общая минерализация.

    курсовая работа [163,8 K], добавлен 14.05.2015

  • Расчёт принципиальной тепловой схемы как важный этап проектирования паротурбинной установки. Расчеты для построения h,S–диаграммы процесса расширения пара. Определение абсолютных расходов пара и воды. Экономическая эффективность паротурбинной установки.

    курсовая работа [190,5 K], добавлен 18.04.2011

Работы в архивах красиво оформлены согласно требованиям ВУЗов и содержат рисунки, диаграммы, формулы и т.д.
PPT, PPTX и PDF-файлы представлены только в архивах.
Рекомендуем скачать работу.