Органическое топливо

Возрастание уровня потребления энергоносителей в развитых странах. Теплогенератор украинского ученого и изобретателя Потапова. Физические основы процесса. Технические предложения по реконструкции системы теплоснабжения музея-заповедника "Витославицы".

Рубрика Физика и энергетика
Вид дипломная работа
Язык русский
Дата добавления 29.10.2009
Размер файла 3,8 M

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

Еще одним существенным стимулятором протекания химических реакций является, как говорилось выше, кавитация, возникающая вблизи тормозных устройств.

3. Ядерные реакции.

Фоминский предположил, что результатом действия торсионного поля в теплогенераторе Потапова является ядерная реакция:

(6)

Откуда же берутся два протона и электрон?

Молекула воды хорошо изучена (рис.10). Электроны атомов водорода занимают вакантные места в наружной электронной оболочке атома кислорода и становятся общими электронами атомов кислорода и водорода. Они большую часть времени проводят между ядром атома кислорода и ядром атома водорода.

В результате атом водорода, имеющий всего один электрон, с противоположной стороны оказывается как бы оголенным от "электронного облака". Поэтому молекула воды выглядит как пушистый (из-за электронных облаков) шарик, на поверхности которого имеется два маленьких положительно заряженных бугорка - ядер атомов водорода (рис.7. Угол между прямыми линиями, соединяющими ядра атомов водорода с ядром атома кислорода в молекуле воды, составляет 104,5 °.

Рисунок 10 - Ковалентные связи в молекуле воды.

У одного атома кислорода и двух атомов водорода появляются общие электроны, в результате чего их электронные оболочки заполняются до конца и образуется прочная молекула Н2О.

Рисунок 11 - Водородная связь.

Положительно заряженный бугорок одной молекулы воды и отрицательно заряженный край (изолированная электронная пара) другой молекулы устанавливаются строго напротив друг друга. В результате наличия положительных зарядов на поверхности молекулы, расположенных не напротив друг друга, а с одной её стороны, молекула воды является электрическим диполем, и вода обладает наибольшей среди всех веществ диэлектрической проницаемостью е 81.

Каждая молекула воды своими положительно заряженными бугорками-протонами притягивается к той стороне соседней молекулы воды, с которой нет таких бугорков и которая заряжена отрицательно из-за наличия там электронных облаков. В результате такого притяжения между молекулами воды и возникает связь, которую называют водородной связью из-за того, что она обусловлена ядрами атомов водорода - протонами, находящимися на этой связи. Ну а поскольку бугорки-протоны во всех молекулах воды расположены под одним и тем же определенным углом, то вода в твердом состоянии имеет строго упорядоченную (кристаллическую) структуру льда.

Рисунок 12 - Образование ориентационных дефектов. Перескок протона на соседнюю водородную связь приводит к возникновению пары ориентационных дефектов. Такой перескок протона можно рассматривать как поворот молекулы воды на 120°.

Но иногда и в строгом мире кристаллов, а тем более в жидкой воде с её квазикристаллической структурой, случаются осечки, и в силу той или иной причины (флуктуации, удара фотоном иди др.) протон выбивается с водородной связи и оказывается на соседней. В результате на последней оказываются сразу два протона, занимающих обе разрешенные позиции. Такие водородные связи называют "ориентационно дефектными".

Для протекания ядерной реакции необходима параллельная ориентация спинов обоих протонов. Но параллельная ориентация спинов двух протонов на одной водородной связи запрещена принципом Паули. По мнению Л.П. Фоминского переворачивание спина осуществляется торсионным полем. При этом принцип Паули не нарушается, так как торсионное поле сообщает протону дополнительную энергию, в результате чего протон оказывается на другом энергетическом уровне.

Когда спины обоих протонов на ориентационно-дефектной водородной связи оказываются параллельными, уже ничто не мешает этим протонам вступить в ядерную реакцию.

Но откуда взять электрон? Здесь на помощь Фоминскому пришла гипотеза Л.Г. Сапогина, предлагающая новое объяснение туннельного эффекта. Сапогин объясняет туннелирование следующим образом. Заряд элементарной частицы не постоянен во времени, а периодически изменяется (осциллирует) с чудовищно большой частотой, то возрастая до максимума, то уменьшаясь до нуля по гармоническому закону. В добавок к предыдущей идее он предположил, что и масса электрона тоже осциллирует во времени по гармоническому закону в пределах от нуля до максимума. Автор гипотезы утверждает, что находясь на ближайшей к ядру атома К-орбитали, электрон совершает квантовые скачки в пределах орбитали не беспорядочно, как думали физики, а сквозь ядро атома, каждый раз туннелируя сквозь него. Благополучно электрон туннелирует благодаря тому, что в это мгновение значение заряда и массы электрона близки к нулю, а потому он, в силу закона сохранения импульса, в это время должен развивать очень большую скорость движения сквозь ядро атома.

Таким образом в одной точке пространства оказываются протон и электрон, фигурирующие в уравнении ядерной реакции. При этом суммарный электрический заряд протона и электрона оказываются близким к нулю, и если в этот момент к ним приближается еще один протон, то ему уже не придется преодолевать высокий кулоновский барьер. Потому такие трехчастичные столкновения могут случаться даже чаще, чем столкновения с двумя протонами, ведущие к сближению их на ядерные расстояния.

Реакция (8) ведет к наработке дейтерия, который в свою очередь участвует в других ядерных реакциях:

(9) (10)

И хотя унос львиной доли теплоты нейтрино и - квантом лишает нас надежд достичь в теплогенераторе Потапова высоких выходов дополнительного тепла за счет ядерных реакций, полученные результаты вселяют надежды на использование установки в качестве генератора дейтерия, гелия-3 и особенно трития, производство которого другими способами весьма сложно, дорого и опасно.

Конечно, все это настоятельно требует чтобы было обращено самое серьезное внимание на дальнейшие исследования вихревого теплогенератора Потапова.

3. Технические предложения по реконструкции системы теплоснабжения музея-заповедника "Витославицы"

Котельная № 48 находится на балансе предприятия МУП "Теплоэнерго". Она обеспечивает теплом и горячей водой музей-заповедник деревянного зодчества "Витославицы". План котельной приведен ниже.

Установленная мощность: 21,21 = 2,42 ГДж/час.

Подключенная нагрузка: всего 0,66 ГДж/час, из них

на отопление - 0,38 ГДж/час;

на горячее водоснабжение - 0,280 ГДж/час.

График работы котельной - 95/70.

На котельной в данный момент установлено два чугунных котла типа "Универсал-6" (рис.13) 1973 года выпуска. Эти котлы уже полностью выработали свой ресурс и поэтому, в ближайшем будущем, планируется реконструкция котельной с заменой старых, малоэффективных котлов на новые, более экономичные и имеющие высокий КПД теплогенераторы. Режимная карта на водогрейный котел типа "Универсал-6" приведена в таблице 1.

Достоинствами чугунных котлов являются небольшие габариты и легкая транспортабельность, почти полное отсутствие обмуровки, удобство очистки от наружных загрязнений, простота монтажа при установке и замене секций, возможность набирать необходимую величину поверхности нагрева. Чугунные котлы значительно меньше подвержены кислородной коррозии, так как на литых чугунных поверхностях образуется плотная литейная корка, содержащая кремнезем и обладающая весьма высокими защитными свойствами.

К недостаткам чугунных котлов относятся: малая надежность в работе (растрескивание одной или нескольких секций) и частые остановки на ремонт. Основной причиной растрескивания секций является превышение допустимого предела прочности металла в эксплуатационных условиях вследствие ухудшения отвода тепла от стенки из-за появления на ее внутренней поверхности слоя накипи и недостаточной скорости циркуляции воды.

Рисунок 13 - Чугунный секционный котел "Универсал": 1 - штуцер для присоединения трубопровода горячей воды; 2 - ниппеля: 3 - средние секции; 4 - стяжной болт; 5 - задняя лобовая секция; 6 - штуцер присоединения обратного трубопровода; 7 - поворотные колосники; 8 - зольная дверка; 9 - привод поворотных колосников; 10 - шуровочная дверка; 11 - кирпичный свод в топке; 12 - боковые дымоходы.

Таблица 1 - Режимная карта на водогрейный котел типа "Универсал-6"

Наименование параметров

Тепловые нагрузки,%

40

83

Производительность, ГДж/час

0,490

1,005

Давление воды на котле, МПа

0,14

0,14

Давление воды до котла, МПа

0,16

0,16

Низшая теплота сгорания газа, кДж/м3

33513

33513

Число газовых горелок, шт

2

3

Давление газа перед горелками, МПа

0,015

0,025

Разрежение в топке, мм в. ст.

1,2

2,0

Температура воздуха перед горелками, °С

20

20

Температура уходящих газов, °С

121

149

Разрежение за котлом, мм в. ст.

1,9

2,5

Состав уходящих газов,%:

СО2

О2

8,8

5,3

10

3,2

Расход газа на котел, м3/час

18,4

35

Коэффициент избытка воздуха

1,34

1,18

Потери тепла,%:

с уходящими газами

в окружающую среду

5,38

15,22

6,16

8,00

Температура газа, °С

23

21

КПД

79,40

85,84

Удельный расход топлива, м3/ГДж

157,3

145,8

Удельный расход условного топлива, кг/ГДж

179,8

166,7

Нормальную работу котельной круглосуточно контролируют 4 машиниста, что является дополнительным стимулом для ее реконструкции: заработная плата машинистов больше суммарной стоимости произведенного на котельной тепла.

Не менее важными причинами для проведения реконструкции так же являются:

отсутствие на котельной автоматики регулирования. Температура горячей воды, идущей на отопление и горячее водоснабжение музея не зависит от температуры наружного воздуха. Регулирование осуществляется периодически, что приводит к дополнительным потерям тепла, а, следовательно, к бесцельному сжиганию топлива, что резко снижает экономическую эффективность котельной.

регулярное обслуживание газового оборудования. Сюда входит:

проверка исправности газорегуляторной установки (ГРУ) без разборки;

техническое обслуживание ГРУ с разборкой оборудования;

техническое обслуживание, ремонт и проверка газового счетчика;

техническое обслуживание и ремонт автоматики и газового оборудования;

ремонт и проверка контрольно-измерительных приборов.

Текущий ремонт (техническое обслуживание газорегуляторной установки) и техническое обслуживание автоматики необходимо проводить раз в месяц, техническое обслуживание газовых счетчиков - раз в три месяца, а плановый ремонт ГРУ - раз в год. Все это требует не малых финансовых затрат.

планово-предупредительные ремонты основного и вспомогательного оборудования котельной. Так как данные котельные агрегаты проработали уже 28 лет (при нормативном сроке службы в 20 лет), они требуют более частых и тщательных текущих и капитальных ремонтов, более внимательного повседневного обслуживания.

экология. Котельная находится в музее-заповеднике, где собраны ценнейшие образцы народного деревянного зодчества. Их необходимо сохранить для будущих поколений. При таких условиях вредные выбросы, естественно, крайне не желательны.

Для теплоснабжения музея-заповедника "Витославицы" предлагается установить два теплогенератора "Юсмар-1М", технические характеристики которого приведены в таблице 2.

Таблица 2 - Технические характеристики теплогенератора "Юсмар - 1М"

Наименование параметра

Значение параметра

Мощность электродвигателя насоса, кВт

2,8

Напряжение сети, В

380

Число оборотов электродвигателя, об/мин

2900

Рекомендуемые марки водяного насоса

ЦГ 12,5/50-К-4-2

КМ-20-30

Напор, м

32 - 50

Подача, м3/час

8,0 - 12,5

Обогреваемая площадь, кв. м

90-100

Средний расход электроэнергии на обогрев помещения с заданной в п.4 площадью, кВт/ч

1,4

Теплопроизводительность, ккал/ч

3498

Масса установки (с бойлером), кг

130

Объем воды в отопительной системе (ориентировочно), л

70-100

Стоимость полного комплекта (теплогенератор, насос, бойлер, система управления), $

1300

Номинальная температура нагрева системы, °С

40 - 60

Максимальная температура жидкости на малом круге циркуляции, °С

98

Диаметр по осям отверстий фланца, мм

110

Длина теплогенератора, мм

620

Диаметр трубы, мм

53

Масса теплогенератора, кг

6,5

В установке "ЮСМАР-М" вихревой теплогенератор в комплекте с погружным насосом помещены в общий сосуд-бойлер с водой (рис.14) для того, чтобы потери тепла со стенок теплогенератора, а также тепло, выделяющееся при работе электродвигателя насоса, тоже шли на нагрев воды, а не терялись. Габариты сосуда-бойлера: диаметр 650 мм, высота 2000 мм. Автоматика периодически включает и отключает насос теплогенератора, поддерживая температуру воды в системе (или температуру воздуха в обогреваемом помещении) в заданных потребителем пределах. Снаружи сосуд-бойлер покрыт слоем теплоизоляции, которая одновременно служит звукоизоляцией и делает практически неслышимым шум теплогенератора даже непосредственно рядом с бойлером.

Установки "ЮСМАР-М" питаются от промышленной трёхфазной сети 380 В, полностью автоматизированы, поставляются заказчикам в комплекте со всем необходимым для их работы и монтируются поставщиком "под ключ".

На эти установки, рекомендуемые для использования как в промышленности, так и в быту (для обогрева жилых помещений путем подачи горячей воды в батареи водяного отопления), имеются технические условия ТУ У 24070270, 001-96 и сертификат соответствия РОСС КиМХОЗ. С00039.

Рисунок 14 - Схема теплоустановки "ЮСМАР-М": 1 - вихревой теплогенератор, 2 - электронасос, 3 - бойлер, 4 - циркуляционный насос, 5 - вентилятор, 6 - радиаторы, 7 - пульт управления и блок автоматики, 8 - датчик температуры.

Как уже говорилось ранее, для теплоснабжения музея предлагается установить два теплогенератора "Юсмар-1М". Первая установка предназначена для отопления зданий музея. Расход горячей воды в системе отопления не подвержен резким изменениям, поэтому потребитель подключается непосредственно к бойлеру теплогенератора (рис.15).

Рисунок 15 - Схема подключения тепловой установки "Юсмар-1М" к системе отопления: 1 - теплоустановка "Юсмар-1М"; 2 - циркуляционный насос; 3 - пульт управления и автоматики; 4 - термодатчик; 5 - радиаторы.

Второй теплогенератор необходим для обеспечения музея-заповедника горячей водой. В этом случае расход воды потребителем колеблется во времени. Поэтому, теплогенератор "Юсмар-1М" подключается к системе горячего водоснабжения не напрямую, а через теплообменник (рис.16).

Рисунок 16 - Схема подключения тепловой установки "Юсмар-1М" к системе горячего водоснабжения: 1 - теплоустановка "Юсмар-1М"; 2 - циркуляционный насос; 3 - пульт управления и автоматики; 4 - термодатчик; 5 - теплообменник; 6 - бак-аккумулятор; 7 - кран горячей воды.

Санитарными нормами установлено, что температура воды, идущей на горячее водоснабжение, должна быть не менее 55?С. Для того чтобы вода в баке-аккумуляторе 6 нагревалась до этой температуры надо подобрать необходимую площадь поверхности теплообменника 5.

Пусть данный теплообменник выполнен в виде змеевика из латунной трубки, наружный и внутренний диаметры которой равны dВ / dН = 14/16 мм. Рассчитаем необходимую длину этого змеевика.

Расход воды на горячее водоснабжение (нагреваемый теплоноситель) составляет: Gг. в. = 0,530 кг/с; расход воды через змеевик (греющий теплоноситель) принимаем равным G'г. в. =0,720 кг/с (G'г. в. равно расходу воды на отопление).

Объем V бойлера-аккумулятора принимаем исходя из следующего условия: запаса горячей воды в нем должно хватить на бесперебойное снабжение потребителей в течение 8 часов.Т.о.

V = Gг. в. · 8 · 3,6 = 0,53 · 8 · 3,6 15 м3. (4.1)

Отсюда следует: диаметр бака - D = 1,5м; высота бака - L = 2 м.

Температуры греющего теплоносителя: на входе - t11 = 95 °С, на выходе - t12 = 60 °С.

Температуры нагреваемого теплоносителя: на входе - t21 = 20 °С (принимаем из условия, что 1/3 горячей воды возвращается с температурой 50?С, а 2/3 добавляем из водопровода с температурой 5?С), на выходе - t22 = 55 °С.

Определим скорости движения теплоносителей в змеевике W1 и в баке-аккумуляторе W2:

(4.2)

(4.3)

(4.4) (4.5)

Для расчета коэффициента теплоотдачи б необходимо знать среднюю температуру воды в змеевике t1СР и в баке-аккумуляторе t2СР:

Для того, чтобы определить режим течения жидкости по змеевику и в баке, найдем числа Рейнольдса, Re1 и Re2 соответственно:

(4.6) (4.7)

Где: н1 = 0,00000038 м2/с - кинематическая вязкость воды при температуре t1CР;

н2 = 0,00000049 м2/с - кинематическая вязкость воды при температуре t2CР;

Так как Re1 > 10000 - режим течения воды в змеевике - турбулентный. Коэффициент теплоотдачи от внешней поверхности греющих труб к омывающей их воде б1 в бойлере рассчитывается с использованием уравнения подобия:

(4.8) (4.9)

Где: Pr1=2,55 и Pr1СТ=2,64 - критерии Прандтля при температуре воды t1СР=69,21°С и tСТ = t1СР - 2 = 67,21°С соответственно;

л1 = 0,686 Вт/м· К - коэффициент теплопроводности воды при t1СР.

Так как скорость течения воды в баке очень мала, можно предположить, что теплообмен между горячим змеевиком и омывающей его водой происходит благодаря свободной конвекции. Она представляет собой обычно подъемное течение, обусловленное подъемной силой, действующей на нагретые на поверхности слои жидкости. Соответственно на холодной стенке устанавливается опускное течение. В качестве безразмерного критерия подобия для свободной конвекции используется число Гразгофа, Gr2

(4.10)

где: L - высота бака-аккумулятора;

g - ускорение свободного падения;

И0 - температура наружной поверхности трубы;

V - температура жидкости вне узкой области свободноконвективного движения;

н - кинематическая вязкость жидкости.

Таким образом, для нашего случая:

(4.11)

Теплоотдачу при свободной конвекции от нагретого змеевика к жидкости можно рассчитать по уравнению:

(4.12) (4.13)

Во всех аппаратах периодического действия происходит нестационарный теплообмен. Уравнение теплопередачи при нестационарном режиме работы имеет вид:

Q = k · F · t · ф, (4.14)

где: ф - время работы аппарата;

t - средний температурный напор за время ф.

Уравнение теплопередачи и теплового баланса для всей поверхности теплообмена F за интервал времени dф имеет вид:

dQ = kF t dф = G1c (t11 - t1) dф = G2c dt2, (4.15)

где: t - средняя разность температур между теплоносителями в момент времени ф;

t1 - текущее значение температуры греющего теплоносителя;

dt2 - изменение температуры нагреваемой воды за время dф.

Температурный напор t в момент времени ф рассчитывается как среднелогарифмическая разность температур:

(4.16)

Так как температуры t1 и t2 со временем изменяются, то t является функцией времени. Подставляя t в (15), получаем:

(4.17)

откуда:

(4.18) (4.19)

Таким образом, подставляя известные величины, получим:

(4.20)

откуда: kF = 1865Вт/мК. (4.21)

Коэффициент теплопередачи определим по формуле:

(4.22)

Определим площадь поверхности теплообмена F и длину змеевика l:

(4.23) (4.24)

Таким образом из расчета видно, что для обеспечения потребителей горячей водой с температурой tГВ = 55?С, необходимая длина змеевика теплообменника составляет 37 м. Диаметр змеевика можно принять равным DЗМ = 1,2 м.

4. Экономическая часть

Сравним экономический эффект котельной при ее реконструкции с установкой теплогенераторов фирмы Юсмар и при условии, что будут устанавливаться водогрейные котлы типа ТГ-120 (Гейзер-01), режимная карта которого приведена в таблице 3.

Таблица 3 - Режимная карта на водогрейный котел типа ТГ-120

Наименование параметров

Тепловые нагрузки,%

40

83

Производительность, ГДж/час

0,172

0,343

Давление воды на котле, МПа

0,14

0,155

Давление воды до котла, МПа

0,17

0, 19

Низшая теплота сгорания газа, кДж/м3

33513

33513

Число газовых горелок, шт

1

1

Давление газа перед котлом, МПа

20

16

Разрежение за котлом, мм в. ст.

0,5

1,5

Температура уходящих газов, °С

95

145

Состав уходящих газов,%:

СО2

О2

4,4

13,2

4,4

13,2

Расход газа на котел, м3/час

5,7

11,8

Коэффициент избытка воздуха

2,51

2,51

Потери тепла,%:

с уходящими газами

в окружающую среду

6,60

2,5

10,98

2,7

КПД

90,90

86,32

Удельный расход топлива, м3/ГДж

139,0

143,9

Удельный расход условного топлива, кг/ГДж

159,0

164,5

Определение себестоимости вырабатываемого тепла находится по выражению:

(5.1)

где УЭ - годовые эксплуатационные затраты в руб.;

Qгод - годовой отпуск тепла в ГДж.

Годовой отпуск тепла подсчитывают по формуле:

(5.2)

где Q = 0,66ГДж/час - производительность котельной в час;

m = 220 - количество дней отопительного периода;

tв = +18?С - внутренняя температура в помещении;

tср = - 2,6?С - наружная средняя температура отопительного периода;

tно = - 27?С - наружная температура для проектирования системы теплоснабжения;

Годовые эксплуатационные затраты определяют по уравнению:

УЭ=Этоп+Ээл. эн. +Эвод+Эзар+Эамор+Этек. рем. +Эобщ. расх., руб/год (5.3)

где: Этоп - затраты на топливо;

Ээл эн - затраты на электроэнергию;

Эвод - затраты на используемую воду;

Эзар - затраты на заработную плату;

Эамор - амортизационные отчисления;

Этек. рем - затраты на текущий ремонт;

Эобщ. расх - затраты общекотельные и прочие расходы.

Определим затраты на эксплуатацию котлов ТГ-120.

1 затраты на топливо:

Этоп = kпот · B · hгод · Стоп, руб/год (5.4)

где kпот = 1,055 - коэффициент, учитывающий складские, транспортные и прочие потери; В = 11,8 м3/ч - часовой расход топлива на один котел при максимальной нагрузке; n =2 - количество установленных котлов (без резервных); hгод - число часов использования установленной мощности котельной в год: hгод = 24 · тот +24 · тг. в. = 8760часов, где тот - количество дней отопительного периода; тг. в. - количество дней летнего периода;

Стоп = 49коп/м3 - стоимость газа;

Этоп = 1,055 · (11,8 · 2 · 220 + 11,8 · 145) · 24 · 0,49 = 85644 руб/год, (5.5)

2 затраты на потребляемую электроэнергию:

Ээл. эн = N · hгод · Сэл. эн. руб/год, (5.6)

где N - установленная мощность электродвигателей в кВт:

Nот = 5,5кВт - мощность электродвигателя насоса системы отопления,

Nг. в. = 4,5кВт - мощность электродвигателя насоса системы горячего водоснабжения;

hгод - число часов использования установленной мощности котельной в год:

hот = 220 часов,

hг. в. = 365 часов;

Сэл. эн =0,72 руб/кВт·ч - стоимость электроэнергии за 1 кВт · ч потребляемой мощности;

Ээл. эн. = 24· (220· (5,5+4,5) +145·4,5) ·0,72 = 49291 руб/год. (5.7)

3 затраты на используемую воду:

Эвод = Dмакс · hгод · Свод, (5.8)

где Gмакс = 2/3 · Gг. в. ·= 2/3 · 3,34 = 2,23 м3/час - максимальный часовой расход добавочной воды;

Свод = 7,61 руб/м3 - стоимость 1м3 добавочной воды;

Эвод = 24 · 365 · 2,23 · 7,61 = 148660 руб/год. (5.9)

4 затраты на заработную плату:

Так как котлы ТГ-120 полностью автоматизированы, в обслуживающем персонале нет необходимости. Достаточно того, чтобы система управления и сигнализации котлов была выведена на диспетчерский пульт МУП "Теплоэнерго".

Эзар = 0 руб/год.

5 затраты на амортизационные отчисления:

Эамор = Р1 · Сстр + Р2 · Соб, руб/год, (5.10)

где P1 = 0,032 - процентные отчисления от стоимости общестроительных работ;

Сстр = 0 - сметная стоимость общестроительных работ в руб;

P2 = 0,082 - процентные отчисления от стоимости оборудования с монтажом;

Соб = СТГ-120 + Смонт = 2 · 64000 + 20000 =148000 руб -

сметная стоимость оборудования и его монтажа;

Эамор = 0,032 · 0 + 0,082 · 148000 = 12136 руб/год. (5.11)

6 затраты на текущий ремонт принимают в размере 20 - 30% затрат на амортизацию и, следовательно, подсчитывают по выражению:

Этек. рем = (0,2 ч 0,3) Эамор = 0,25 · 12136 = 3034 руб/год. (5.12)

7 затраты на общекотельные и прочие расходы принимают в размере 30% суммы амортизационных отчислений, годового фонда зарплаты и затрат на текущий ремонт, т.е.

Эобщ. расх = 0,3 (Эамор + Этек. рем + Эзар) = 0,3 · (12136+3034) = = 4551 руб/год. (5.13)

Таким образом, годовые затраты на эксплуатацию котлов ТГ-120 составят:

УЭ = 85644 + 49291 + 148660 + 12136 + 3034 + 4551 = 303316 руб/год, (5.14)

а себестоимость 1 ГДж тепла будет равна:

(5.15)

Рассчитаем затраты на эксплуатацию теплогенераторов "Юсмар-1М".

1 затраты на топливо:

Этоп = 0.

2 затраты на потребляемую электроэнергию:

Ээл. эн = N · hгод · Сэл. эн. = ( (5,5+2·2,8+4,5) ·220+ (2,8+4,5) ·145) ·24·0,72 = = 77596 руб/год, (5.16)

3 затраты на используемую воду:

Эвод = Dмакс · hгод · Свод = 2,23 · 365 · 7,61 = 148660 руб/год. (5.17)

4 затраты на заработную плату:

Так как теплогенераторы "Юсмар-1М", как и котлы ТГ-120 полностью автоматизированы, в обслуживающем персонале нет необходимости. Достаточно того, чтобы система управления и сигнализации теплогенераторов была выведена на диспетчерский пульт МУП "Теплоэнерго".

Эзар = 0 руб/год.

5 затраты на амортизационные отчисления:

Эамор = Р1 · Сстр + Р2 · Соб, руб/год =, (5.18)

где P1 = 0,032 - процентные отчисления от стоимости общестроительных работ; Сстр = 0 - сметная стоимость общестроительных работ в руб; P2 = 0,082 - процентные отчисления от стоимости оборудования с монтажом;

Соб = СЮсмар-1М + Смонт = 2 · 39000 + 20000 =98000 руб -

сметная стоимость теплогенератора "Юсмар-1М" и его монтажа;

Эамор = 0,032 · 0 + 0,082 · 98000 = 8036 руб/год. (5.19)

6 затраты на текущий ремонт принимают в размере 20 - 30% затрат на амортизацию и, следовательно, подсчитывают по выражению:

Этек. рем = (0,2 ч 0,3) Эамор = 0,25 · 8036 = 2009 руб/год. (5.20)

7 затраты на общекотельные и прочие расходы принимают в размере 30% суммы амортизационных отчислений, годового фонда зарплаты и затрат на текущий ремонт, т.е.

Эобщ. расх = 0,3 (Эамор + Этек. рем + Эзар) = 0,3 · (8036 + 2009) = = 3014 руб/год. (5.21)

Таким образом, годовые затраты на эксплуатацию теплогенераторов "Юсмар-1М" составят:

УЭ = 77596 + 148660 + 8036 + 2009 + 3014 = 239315 руб/год, (5.22)

а себестоимость 1 ГДж тепла будет равна:

(5.23)

Таким образом, себестоимость вырабатываемого 1 ГДж тепла на котельной с теплогенераторами фирмы Юсмар (159 руб/ГДж) на 21,3% меньше себестоимости тепла, выработанного на котельной, где установлены котлы ТГ-120 (202 руб/ГДж).

Экономический эффект котельной с установками "Юсмар-1М" составляет:

Э = (202 - 159) * 1501 = 64543 руб/год. (5.24)

5. Экология

При сжигании топлива входящие в его состав горючие элементы соединяются с кислородом воздуха. При этом происходит преобразование химической энергии топлива в тепловую, идущую на нагрев продуктов сгорания топлива.

Природный газ, сухое беззольное высокоценное топливо, имеет следующий состав, считая по объему:

метан СН4 от 85 до 98,3%;

тяжелые углеводороды СnHm от 2 до 6%;

двуокись углерода СО2 от 0,1 до 1,0%;

азот N2 от 1 до 5%.

Теплота сгорания сухого природного газа колеблется в пределах от 30,6 до 36,9 МДж/м3.

Продуктами полного сгорания топлива является двуокись углерода СО2, сернистый газ SО2 и водяные пары Н2О. Кроме того, компонентами продуктов сгорания топлива являются азот N2, содержавшийся в топливе и атмосферном воздухе, и избыточный кислород О2, который содержится в продуктах сгорания топлива, потому что процесс горения протекает не идеально и связан с необходимостью подачи большего, чем теоретически необходимо, количества воздуха.

В котельной №48 в настоящее время тепло получают путем сжигания газообразного топлива.

Согласно режимным картам на водогрейные котлы типа "Универсал-6", установленных на котельной, состав уходящих газов следующий: СО2 - 9,8%; О2 - 3,6%; СО - отсутствует. Для того, чтобы определить количество выбросов оксидов азота, произведем следующий расчет. Суммарное количество оксидов азота NOx в пересчете на NO2 (в г/с), выбрасываемых в атмосферу с дымовыми газами, рассчитывается по формуле:

МNOx = Bp · Qгi · КгNO2 · вк · вt · вб, (6.1)

где: Вр - расчетный расход топлива; при работе котла в соответствии с режимной картой с достаточной степенью точности может быть принято Вр = В = 0,01м3/с - фактическому расходу топлива на котел; Qгi = 33,441МДж/м3 - низшая теплота сгорания топлива; КгNO2 - удельный выброс оксидов азота при сжигании газа, г/МДж. Для водогрейных котлов:

КгNO2 =0,013 vQт + 0,03 = 0,013 · v0,3344 + 0,03 = 0,0375г/МДж, (6.2)

где Qт - фактическая тепловая мощность котла по введенному в топку теплу, МВт, которое определяется по формуле:

Qт = Вр · Qгi = 0,01 · 33,44 = 0,3344 г/МДж. (6.3)

вк = 1 - безразмерный коэффициент, учитывающий принципиальную конструкцию горелки. вt - безразмерный коэффициент, учитывающий температуру воздуха, подаваемого для горения:

вt = 1 + 0,002 · (tгв - 30) = 1 + 0,002 · (20 - 30) = 0,98, (6.4)

где tгв = 20?С - температура горячего воздуха. вб = 1,225 - безразмерный коэффициент, учитывающий влияние избытка воздуха на образование оксидов азота. Таким образом, суммарное количество оксидов азота будет равно:

МNOx = 0,01 · 33,44 · 0,0375 · 1 · 0,98 · 1,255 = 0,015 г/с. (6.5)

При реконструкции котельной №48 с заменой старых котлов типа "Универсал-6" на теплогенераторы "Юсмар-1М" этих нежелательных выбросов можно будет избежать, так как в данной установке процесс выработки тепла происходит без участия какого-либо вида органического топлива. Получение тепла с помощью теплогенератора Потапова - абсолютно экологически чистый способ.

6. Безопасность жизнедеятельности

Целью данного раздела дипломного проекта является проведение анализа условий труда на рабочем месте. В данном разделе следует выявить и рассмотреть опасные и вредные производственные факторы, а также произвести их идентификацию, оценку и дать рекомендации по их устранению.

В качестве рассматриваемого объекта выступает реконструируемая котельная №48 музея-заповедника "Витославицы".

В котельной размещено следующее оборудование:

2 теплогенератора фирмы "Юсмар";

сетевые, питательные, рециркуляционные насосы;

коллекторы сетевой воды;

КИПиА.

Вопросы охраны труда подразделяются на общие для любых типов производства (освещение, вентиляция и т.п.) и на специальные (тепловая и электрическая опасность, вибрация, излучение, вредные вещества). Охрана труда на производстве - один из наиболее важных для успешной безаварийной работы предприятия.

Рабочее место обслуживающего персонала (оператора котельной) - постоянное, то есть место, на котором работающий находится большую часть (более 50% или более 2 часов непрерывно) своего рабочего времени.

В помещении котельной были выявлены следующие опасные и вредные факторы:

повышенный шум;

опасность термического ожога;

опасность поражения электрическим током;

вращающееся оборудование котельной (насосы, вентиляторы, дымососы);

Типовую характеристику санитарно-гигиенических условий труда, опасных и вредных факторов в фактических условиях и по проекту сводим в таблицу 4, которая приведена ниже и в которой приняты следующие сокращения:

"о" - опасное;

"н" - неопасное

Таблица 4 - Характеристика санитарно-гигиенических условий труда, опасных и вредных производственных факторов на рабочих местах в фактических условиях по проекту

Оценка условий труда

Визуальная

Инструментальная

По проекту

I

II

III

IV

Наименование рабочего места

оператор котельной

1. Санитарно-гигиенические условия труда

Микроклимат:

Температура, °С

н

21-23

22-24

21-23

23-24

Относительная влажность

н

60

40-60

Скорость движения воздуха, м/с

н

0,1

0,1-0,2

Освещение:

Естественное (боковое) КЕО,%

н

н

1,5

Комбинированное КЕО,%

-

-

-

Искусственное

Общее, лк

н

н

200

Местное, лк

н

н

н

Комбинированное, лк

н

н

400

Аварийное

н

10

10

Естественная вентиляция:

Приточно-вытяжная, Кко

н

3

3

Инфильтрация, Ккр

н

н

н

Искусственная вентиляция:

Приточная, Ккр

-

-

-

Вытяжная, Ккр

-

-

-

Аварийная, Ккр

-

-

-

2. Характеристика помещения

Класс по взрывоопасности

-

В-1а

В-1а

Класс по электроопасности

-

п/о

п/о

Категория по пожароопасности

-

г

г

Класс санитарно-защитной зоны

-

IV

IV

Группа санитарного обеспечения

-

1

1

Степень огнестойкости здания

-

II

II

I

II

III

IV

3. Разновидность опасных и вредных факторов

Электрические опасности:

Род тока

0

~

~

Напряжение, В

0

380

380

Частота, Гц

н

50

50

Излучения:

Радиочастотные

-

-

-

Инфракрасные

н

н

н

Ультрафиолетовые

-

-

-

Рентгеновские

-

-

-

Радиоактивные

-

-

-

Механические опасности:

Вибрация, мм

0

0,8

0,7

Шум, Дб

0

80

80

Падение предметов с высоты, м

0

5

5

Движущиеся части машин

н

н

н

Ультразвук, Гц

-

-

-

Отлетающие части инструментов и материалов

-

-

-

Тепловые опасности:

Открытое пламя, °С

-

-

-

Расплавленный металл,°С

-

-

-

Нагретые детали, °С

0

70

70

Химические опасности:

Жидкости

-

-

-

Пары, газы мг/м3

-

-

-

Пыль, мг/м3

Органическая

-

-

-

Металлическая

-

-

-

Минеральная

-

-

-

Токсичная

-

-

-

Возникновение пожара:

Горючее вещество

0

0

0

Горючие газы

-

-

-

Источники воспламенения

0

0

0

Возникновение взрыва:

Парогазосмеси

-

-

-

Импульс взрыва

-

-

-

Избыточное давление

-

-

-

7. Санитарно-гигиенические факторы условий труда

Микроклимат.

Трудовая деятельность человека всегда протекает в определенных метеорологических условиях, которые определяют производственные материалы.

Производственный микроклимат - это совокупность метеорологических параметров: температуры, влажности и скорости движения воздуха, характерных для данного производственного участка. Микроклимат оказывает существенное влияние на самочувствие, работоспособность, здоровье человека. В одних случаях сочетание метеорологических факторов создает благоприятные условия для нормального протекания жизненных функций организма, а в других случаях - неблагоприятные, что может привести к нарушению терморегуляции организма.

Поэтому очень важным является поддержание в производственных помещениях оптимальных микроклиматических условий, которые бы обеспечили ощущение теплового комфорта и создали бы наиболее благоприятные условия для высокой работоспособности.

Санитарно-гигиенические факторы труда определяются по ГОСТ 12.1 005-88 исходя из категории тяжести труда, которая в свою очередь зависит от количества затрачиваемых человеком килокалорий в процессе выполнения работ.

В зависимости от энергозатрат организма, ГОСТ 12.1 005-88 предусматривает три категории работ. Согласно ГОСТ 12.1 005-88, рабочее место оператора котельной относится к категории работ 1б (работы, производимые сидя, стоя или связанные с ходьбой и сопровождающиеся некоторым физическим напряжением).

Согласно ГОСТ 12.1 005-88 для категории работ Iб предусмотрены следующие параметры микроклимата:

температура воздуха в холодный и переходный период года - 22-24°С, в теплый период - 21-23°С;

относительная влажность воздуха 40 - 60%;

скорость движения воздуха 0,1-0,2м/с.

Для нормализации метеорологических условий на котельных объектах проводится ряд мероприятий:

механизация тяжелых и трудоемких работ, выполнение которых сопровождается избыточным теплообразованием в организме человека;

рациональное размещение и теплоизоляция оборудования, аппаратов, коммуникаций и других источников, излучающих на рабочие места тепло;

правильно организованная система вентиляции, отопления и кондиционирования;

устройство тамбуров (перегородок) у входа в объект для предупреждения переохлаждения и простудных заболеваний работающих.

Нормализация параметров микроклимата осуществляется проектированием системы вентиляции, отопления и кондиционирования.

Освещение.

Правильное освещение помещений и рабочих мест всегда важно.

При этом повышается производительность труда, улучшаются условия безопасности, снижается утомляемость. Неправильное или недостаточное освещение может привести к созданию опасных ситуаций.

Требуемый уровень освещенности определяется степенью точности зрительных работ. Согласно СНиП 23-05-95 существует восемь разрядов зрительных работ от наивысшей до общего наблюдения за ходом производственного процесса. По СНиП 23-05-95 для данного рабочего места установлен IV разряд зрительных работ (0,5ч1мм - размер объекта различения). Работы высокой точности.

Освещенность в котельных должна быть не ниже следующих величин, лк:

шкалы измерительных приборов, водоуказательные стекла, тепловые щиты, пункты управления - 50;

фронт котлов, дымососное, вентиляторное и насосное отделение - 20;

площадки обслуживания котлов и места за котлами - 10;

коридоры и лестницы - 5.

Должно быть предусмотрено также аварийное электрическое освещение от источников питания, не зависимых от общей электроосветительной сети котельной, для освещения в необходимых случаях фронта котлов, пультов управления, водоуказательных и измерительных приборов.

Освещение может быть:

естественное;

искусственное;

совмещенное.

Естественное освещение осуществляется через окна (боковое освещение), световые фонари (верхнее) или одновременно через фонари и окна (комбинированное). Естественное освещение является наиболее гигиеничным и предусматривается для помещений, в которых постоянно пребывают люди.

Основной величиной для расчета и нормирования естественного освещения внутри помещений служит коэффициент естественной освещенности (КЕО), выраженного в процентах.

При совмещенном освещении недостаточное естественное освещение дополняется искусственным.

Искусственное освещение по функциональному назначению делится на рабочее, дежурное, аварийное, эвакуационное и охранное.

Искусственное освещение может быть общим (все производственные помещения освещаются однотипными светильниками) и комбинированным (к общему добавляется местное освещение рабочих мест).

Для искусственного освещения нормируемый параметр - освещенность. Величина освещенности при искусственном освещении должна быть: на рабочем месте оператора котельной не ниже 200 лк для систем общего освещения и 400 лк при комбинированном освещении.

Аварийное освещение составляет 5% от нормируемого, то есть 10 лк.

Освещение в помещении котельной должно быть во взрывобезопасном исполнении.

Освещение рабочих помещений также должно удовлетворять следующим условиям:

должны быть обеспечены равномерность и устойчивость уровня освещенности в помещении, отсутствие резких контрастов между освещенностью рабочей поверхности и окружающего пространства;

в поле зрения не должно создаваться блеска источниками света и другими предметами;

искусственный свет, используемый на предприятиях, по своему спектральному составу должен приближаться к естественному.

Для рациональной организации освещения и повышения видимости производственные помещения и оборудование целесообразно окрашивать в светлые тона.

Недостаточное освещение может привести к ухудшению зрения. Для предотвращения этого необходимо применять местное освещение.

Превышение же световых норм может также привести к ослеплению. Если причиной этого может послужить естественный свет, следует использовать шторы или жалюзи на окнах. Если искусственный, то следует использовать затемняющие светофильтры на источниках света.

Вентиляция.

Системы вентиляции, отопления и кондиционирования воздуха должны соответствовать требованиям СНиП 2.04.05-95.

Под вентиляцией понимают систему мероприятий и устройств, предназначенных для обеспечения на постоянных рабочих местах, в рабочей и обслуживаемой зонах помещений метеорологических условий и чистоты воздушной среды, соответствующих гигиеническим и техническим требованиям.

Рационально спроектированные и правильно эксплуатируемые вентиляционные системы способствуют улучшению самочувствия работающих и повышению производительности труда.

Систему вентиляции необходимо предусматривать согласно СНиП 2.04.05-91.

Системы вентиляции классифицируют по способу перемещения воздуха, направлению потока воздуха, зоне действия, времени работы.

В зависимости от способа перемещения воздуха различают естественную и механическую вентиляцию. Существуют и смешанные системы.

В зависимости от направления потока воздуха вентиляция бывает приточной и вытяжной. В производственных помещениях вентиляцию обычно выполняют приточно-вытяжной.

Интенсивность вентиляции характеризуется кратностью воздухообмена, которая определяется по формуле:

К = L / V,

где L - объем воздуха, подаваемого или удаляемого из помещения, м3/ч;

V - объем вентилируемого помещения, м2

Количество воздуха, необходимого для вентиляции производственного помещения, следует определять расчетом и только в редких случаях допускается его устанавливать по кратности воздухообмена.

В соответствии с характером технологического процесса воздухообмен нужно рассчитывать по:

избыткам явной теплоты (тепловыделения);

избыткам влаги и скрытой теплоты (влаго- и тепловыделения);

количеству выделяющихся вредных веществ (выделение вредных паров, газов, пыли).

При одновременном выделении теплоты, влаги и вредных веществ следует рассчитывать воздухообмен для каждого из этих факторов и принимать наибольшее из полученных значений.

Объем Lподаваемого в помещение свежего воздуха, необходимого для удаления избыточной теплоты, определяется по формуле:

где: QИЗБ - избыточная теплота, Дж/с; СР - удельная теплоемкость воздуха при постоянном давлении, Дж/кг·К; S - плотность воздуха, кг/м3; Ту - температура удаляемого воздуха, К; Тп - температура подаваемого воздуха, К.

Санитарными нормами СН 235-11 регламентируется также минимальное количество воздуха, подаваемого в производственное помещение в расчете на одного работающего.

Это количество зависит от объема помещения, приходящегося на одного человека. Если объем помещения, приходящегося на одного человека меньше 20м2, то следует предусматривать подачу наружного воздуха в количестве не менее 30м3/ч на каждого работающего.

В помещениях, где имеются окна, и на одного рабочего приходится более 40м3 при отсутствии вредных и неприятно пахнущих веществ, допускается предусматривать периодически действующую естественную вентиляцию (проветривание).

Правильный выбор систем вентиляции имеет большое санитарно-гигиеническое и экономическое значение. Следовательно, при выборе и проектировании систем вентиляции следует руководствоваться следующими общими положениями: необходимо максимально использовать местные вытяжные системы с целью предотвращения распространения вредных веществ по всему объему помещения; механическую вентиляцию следует применять только в тех случаях, когда требуемые параметры воздушной среды не могут быть обеспечены естественной вентиляцией; при проектировании механической вентиляции необходимо предусматривать установку резервных вентиляторов или сооружать не менее двух приточных и двух вытяжных установок, обеспечивающих при включении одной из них объем соответственно вытяжки или притока не меньше 50% требуемого воздухообмена и необходимость в любом случае поддерживать температуру в помещении не ниже +5°С; приточную вентиляцию целесообразно совмещать с воздушным отоплением; температуру воздуха, выходящего из воздухораспределителей, расположенных в пределах рабочей зоны, следует принимать не более +45°С и не менее +5°С.

Для вентиляции помещения котельной установлены дефлекторы на крыше и стене, которые могут регулироваться заслонками из помещения, кроме того, могут открываться рамы оконных переплетов.

8. Характеристика помещений, зон

Класс по взрывоопасности.

По взрывоопасности помещения делятся на два класса, которые в свою очередь делятся на подклассы. Данная классификация производится с учетом наличия взрывоопасных смесей паров или газов и их распространения в помещении.

Помещения по взрывоопасности нормируются СНиП 11-35-76.

Согласно "Правил устройства электроустановок" (ПУЭ) помещение котельной не взрывоопасно. Класс по взрывоопасности В1-а.

Класс по электрической опасности.

Согласно ГОСТ 12.1 009 - 5 под электробезопасностью понимают систему организованных, технических мероприятий и средств, обеспечивающих защиту людей от вредного и опасного воздействия электрического тока, электрической дуги, электромагнитного поля и статического электричества.

Влияние электрического тока на организм человека характеризуется следующими воздействиями:

химическое

термическое

биологическое

Виды электротравм:

электроудар - нарушение физиологических процессов в организме человека, судорожное сокращение мышц.

местные травмы - ожоги, электрические знаки, металлизация кожи.

По характеру воздействия электрический ток подразделяется на:

неощутимый

ощутимый

неотпускающий

фибриляционный

смертельный

Классификация помещений по электроопасности:

1. Помещения с повышенной опасностью характеризуются наличием одного из ниже приведенных факторов:

относительная влажность > 75%;

температура воздуха > +35°С;

наличие токопроводящей пыли;

возможность одновременного прикосновения к имеющим соединение с землей металлическими элементами технологического оборудования или металлоконструкциями здания и металлическим корпусом электрооборудования.

2. Особоопасные помещения - наличие одного из трех факторов:

относительная влажность 100%;

присутствие химически активной среды;

наличие двух или более условий повышенной опасности.

3. Без повышенной опасности - характеризуются нормальной температурой, влажностью, отсутствием пыли.

По ГОСТ 12.1 009-76 электробезопасность должна обеспечиваться:

конструкцией электроустановок;

техническими способами и средствами защиты;

организационными мероприятиями.

По электроопасности помещения нормируются СНиП 11-35-76.

Согласно нормам помещение котельной относится к помещениям с повышенной опасностью поражения людей электрическим током. Опасность обусловлена применением на объекте насосов, напряжение которых составляет 380В и наличием токопроводящих частей оборудования. А так же потому, что в котельной токопроводящий железобетонный пол.

4. Категория по пожароопасности

Пожар (ГОСТ 12.1 004-85) - это неконтролируемое горение, вне специального очага, наносящее материальный ущерб.

Пожаробезопасность - состояние объекта, при котором исключена возможность возникновения пожара, а если произойдет, то обеспечивается своевременная эвакуация людей и материальных ценностей.

ОВПФ при пожаре:

открытый огонь и искра;

повышенная температура воздуха и поверхностей;

дым;

пониженная концентрация кислорода;

токсичные продукты сгорания;

обрушивающиеся конструкции зданий;

взрыв

Согласно ОНТП-24-86 помещение котельной относятся к категории Г - не пожароопасные; к этой категории относятся производства в которых образуются негорючие вещества и материалы в горячем, расплавленном состоянии, а также вещества, которые сжигаются в качестве топлива.

Для предотвращения возникновения пожаров необходимо выполнять следующее:

соблюдение техники безопасности;

наличие средств пожаротушения;

правильное хранение горючих веществ;

противопожарная профилактика.

Класс санитарно-защитной зоны.

Согласно СанПиН 2.2.1/2.1.1.567-96 предприятия и их отдельные здания и сооружения необходимо отделять от жилой зоны санитарно-защитными зонами. По ширине санитарно-защитных зон объекты делятся на V классов. Ширина санитарно-защитной зоны зависит от:

технологического процесса производства;

вредных выброс в окружающую среду;

выделяемого предприятием шума, вибрации, ультразвука и других ОВПФ.

Согласно СанПиН 2.2.1/2.1.1.567-96 котельная относится к разряду котельных санитарно - защитные зоны которых в зависимости от высоты дымовых труб (при высоте более 15 метров) можно отнести к предприятиям IV класса, для которого установлено минимальное расстояние до жилой зоны 300 метров.

Группа санитарного обеспечения.

Классификация производственных процессов по санитарному обеспечению санитарно-бытовых помещений определяется согласно СНиП 2.09.04-87 и зависит от санитарной характеристики производственных процессов.

Согласно СНиП 2.09.04-87 помещение котельной относится к I группе санитарного обеспечения санитарно-бытовыми помещениями. В них необходимо предусмотреть раздевалку, душ, санузел.

Степень огнестойкости зданий.

Огнестойкость строительных конструкций - это способность конструкции сопротивляться высокой температуре в условиях пожара.

Под воздействием огня строительные конструкции деформируются, теряют свои несущие способности.

Предел огнестойкости - время в часах от начала испытания конструкции на огнестойкость до появления одного из следующих признаков:

образование трещин при повышении температуры поверхности до 140°С;

потеря конструкции несущей способности.

Согласно СНиП 2.01.02-85 степень огнестойкости котельной принимаем - II, так как несущие стены и перегородки выполнены из несгораемых материалов (кирпич), а также перекрытия (бетон). Пределы огнестойкости конструкций приведены в таблице 5.

Таблица 5 - Минимальные пределы огнестойкости

Основные части зданий и сооружений

Минимальные пределы огнестойкости, ч

Стены несущие и стены лестничных клеток

2,5

Стены самонесущие

1,25

Стены наружные несущие

0,5

Перегородки внутренние несущие

0,5

Плиты, настилы и другие несущие конструкции

1

Элементы покрытий (плиты, настилы, балки, арки)

0,5

9. Разновидности опасных и вредных факторов

Электрическая опасность.

В котельной напряжение электротока составляет 220-380В, частота тока 50Гц, ток переменный. Для защиты от поражения электрическим током, согласно ГОСТ 12.1 019-79, используются следующие основные меры:

изоляция;

недоступность токоведущих частей оборудования;

защитное заземление и зануление по ГОСТ 12.1 030-81;

малое напряжение;

оградительные устройства;

изолирующие защитные и предохранительные сооружения;

предупредительная сигнализация, блокировка, знаки безопасности.

При работе необходимо строго соблюдать правила техники безопасности. Обслуживание электроустановок должно поручаться рабочим, прошедшим специальное обучение.

К изолирующим электрозащитным средствам относятся диэлектрические резиновые перчатки, галоши, коврики, инструменты с изолирующими рукоятками.

К ограждающим средствам защиты относятся временные переносные ограждающие щиты, ограждения-клетки, изолирующие накладки, предупредительные плакаты.

Исправность средств защиты должна проверяться осмотром перед каждым их применением, а также периодически через 6-12 месяцев.

Для устранения опасности поражения людей электрическим током при замыкании применяется защитное заземление (согласно ПУЭ), то есть специальное соединение металлических частей оборудования с землей, а также разделение сети на отдельные, электрически не связанные между собой участки с помощью специальных разделяющих трансформаторов.


Подобные документы

  • Расчет и анализ основных параметров системы теплоснабжения. Основное оборудование котельной. Автоматизация парового котла. Предложения по реконструкции и техническому перевооружению источника тепловой энергии. Рекомендации по осуществлению регулировки.

    дипломная работа [1,4 M], добавлен 20.03.2017

  • Эффективность водяных систем теплоснабжения. Виды потребления горячей воды. Особенности расчета паропроводов и конденсатопроводов. Подбор насосов в водяных тепловых сетях. Основные направления борьбы с внутренней коррозией в системах теплоснабжения.

    шпаргалка [1,9 M], добавлен 21.05.2012

  • Анализ работы источника теплоснабжения и обоснование реконструкции котельной. Выбор турбоустановки и расчет тепловых потерь в паропроводе. Расчет источников теплоснабжения и паротурбинной установки. Поиск альтернативных источников реконструкции.

    дипломная работа [701,1 K], добавлен 28.05.2012

  • Анализ существующей системы энергетики Санкт-Петербурга. Тепловые сети. Сравнительный анализ вариантов развития системы теплоснабжения. Обоснование способов прокладки теплопроводов. Выбор оборудования и строительных конструкций системы теплоснабжения.

    дипломная работа [476,5 K], добавлен 12.11.2014

  • Параметры наружного воздуха. Расчет нагрузок потребителей теплоты. Выбор системы теплоснабжения. Определение расходов сетевой воды. Построение пьезометрического графика. Температурный график регулирования закрытой независимой системы теплоснабжения.

    курсовая работа [321,4 K], добавлен 23.05.2014

  • Обследование и описание офиса, определение динамики потребления всех энергоносителей. Структура потребления энергоресурсов: электроприборы, освещение и холодное водоснабжение. Анализ тепловых потерь и поступлений. Расчёт энергосберегающих мероприятий.

    курсовая работа [2,2 M], добавлен 03.01.2011

  • Классификация и виды топлив. Происхождение, способы добычи и применение различных видов топлив. Основные современные виды и характеристика топлив. Ядерное и ракетное топливо. Твердое и жидкое топливо. Уровень мирового потребления различных видов топлива.

    курсовая работа [66,1 K], добавлен 16.05.2011

  • Характеристика системы электроснабжения промышленного предприятия. Проектирование и расчет автоматизированной системы контроля и учета энергоносителей. Анализ технических параметров и выбор электрических счетчиков, микроконтроллеров, трансформаторов тока.

    контрольная работа [858,7 K], добавлен 29.01.2014

  • Изучение опыта использования возобновляемых источников энергии в разных странах. Анализ перспектив их массового использования в РФ. Основные преимущества возобновляемых альтернативных энергоносителей. Технические характеристики основных типов генераторов.

    реферат [536,4 K], добавлен 07.05.2009

  • Характеристика теплового хозяйства предприятия. Расчет тепловых нагрузок и подбор теплогенераторов пара и горячей воды, вспомогательного теплотехнического оборудования. Себестоимость теплоэнергии. Расчет теплоизоляционных конструкций наружных проводов.

    курсовая работа [267,0 K], добавлен 23.02.2015

Работы в архивах красиво оформлены согласно требованиям ВУЗов и содержат рисунки, диаграммы, формулы и т.д.
PPT, PPTX и PDF-файлы представлены только в архивах.
Рекомендуем скачать работу.