Единая квантовая теория: матричное моделирование элементарных частиц

Структуры и свойства материй первого типа. Структуры и свойства материй второго типа (элементарные частицы). Механизмы распада, взаимодействия и рождения элементарных частиц. Аннигиляция и выполнение зарядового запрета.

Рубрика Физика и энергетика
Вид реферат
Язык русский
Дата добавления 20.10.2006
Размер файла 38,4 K

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

Величину странности частиц можно определить,как количество тор-матриц образую-щих зацепы,так например: нуклоны не обладают зацепами совсем (S=0),ламбда- и сигма-гипероны состоят из одной тор-матрицы с самозацепами (S=1),кси-гипероны состоят из двух торматриц соединенных зацепом (S=2),омега-гиперон состоит из одной тор-матрицы и одной необратимо завернутой в "восьмерку" (две мнимых тор--матрицы) -в сумме три геометрических окружности (S=3).Каоны обладают страннос-тью по определению,иные частицы странностью не обладают.Величину странности можно также получить по формуле: S = d * e, где d-количество составных тор-матриц (числитель величины D),e-количество зацепов (знаменатель величины E). Рождение странных частиц связано со столкновением пионов и нуклонов,общее в структурах этих частиц являются тор-матрица и "восьмерка",вероятно они и взаимодействуют.В поперечном сечении тор-матрица имеет две окружности с разнонаправленным вращением,его отличает от "восьмерки" пионов только отсутст-вие перекреста -это является причиной подобия тор-матрицы и пионов.Вероятно "восьмерка" пиона поперек встраивается в тор-матрицу нуклона и образует две сцепки (так как в минус-пионе матрицы соразмерны,то круговая матрица считается сцепленной с точкой перекреста,однако тор-матрица превышает по размерам "вось-мерку" и потому ее витки образуют сцепки с каждой окружностью "восьмерки" - в итоге имеются две сцепки).Формируется промежуточное состояние имеющее две сцепки и нарушающая запрет,поэтому в положенный срок (см.ранее в тексте) происходит распад.Распад не может произойти в центральной части (перекрест) с образованием двух круговых матриц,но обе матрицы будут сцеплены с тор-матрицей образуя две сцепки с сохранением нарушенного запрета.

Поэтому распад структуры происходит по диаметральным участкам -распадаются витки торматриц,которые по "восьмерке" формирует s-матрицы,которые в свою очередь переходят на диаметрально противоположный участок тор-матрицы и соединяя витки позволяют построить соединение их по типу зацепа.

Второй вариант подобного сценария распада наблюдается при расхождении перекре-ста на две отдельные траектории -две s-матрицы,по которым уже распадаются витки.При диаметральном распаде тор-матрица распадается на две половины, которые затем вновь замыкаются,образуя две дочерние тор-матрицы и соответст-венно две частицы -так образуются гипероны.

При столкновении двух протонов их витки соединяются формируя уже готовый зацеп и соответственно образуется гиперон, остаточным продуктом становятся каоны по далее приведенным механизмам. При меньшей энергии двух столкнувшихся протонов образуются протон, нейтрон и плюс-пион - в данном случае формирование пиона происходит в точке контакта протонов по причине «подобия матриц», формирование же в продуктах протона и нейтрона происходит по причине перераспределения заряда при его сохранении - таким образом не наблюдается асимметричности в механизмах взаимодействий (5 правило взаимодействий ).

Возможен случай распада одновременного разрыва витков в диаметральных участках тор-матрицы и расхождения траекторий в перекресте, при этом вероятно образуется четыре s-матрицы, которые по принципу матричности (наибольшая степень симмет-рии) образуют соответственно две m-матрицы и одну s-матрицу, именно из m-матриц происходит построение нуль-каонов. Две окружности поперечного сечения тор-матрицы, две окружности "восьмерки" и один ее перекрест могут сформировать трехпетлевую с оставшимся от пиона перекрестом структуру -плюс-каон. Доминирование образования плюс-каона в сравнении с минус-каоном связано с ориентировкой заряда формирующегося каона по высоко интенсивной тор-матрице, находясь с ней в единой избранной плоскости (единой она становится для пере-ходной частицы пион-протон).По аналогичной причине при столкновении минус--пиона и протона,рождается каон:каон состоит из трех симметрично расположенных петель с зарядами два "+"(по бокам) и один "-"(в центре),но при распаде нуль--каона и анти-нуль-каона,благодаря оси аномальной симметрии результат сходный. Так как в процессах рождения и структурах странных частиц отсутствуют о-мат-рицы,соответственно гипероны и каоны не способны распадаться на нейтрино,элек-троны и мюоны.

Распад ламбда-нуль-гиперона,сигма-плюс-гиперона и сигма-минус-гиперона проис-ходит с образованием нуклона,так как у всех этих частиц тор-матрица одна, и пиона,который являются соответственно преобразованием зацепа по подобию матриц.Кси-гипероны построены из двух тор-матриц,поэтому освобождаясь от зацепа (зацеп переходит в пион по подобию матриц) две тор-матрицы соединяются образуя одну,которая формирует ламбда гиперон:если был кси-нуль-гиперон,то две противовращающиеся матрицы соединяясь формируют типичную "восьмерку", если был кси-минус-гиперон,то сохраняя восьмерчатую форму (только форма), ликвидируя зацеп происходит перекрещивание винтовых траекторий.

Распад омега-гиперон происходит в центре симметрии,где находятся зацепы, которые по подобию матриц преобразуются в каоны и пионы,сохраненные две тор-матрицы могут сформировать кси-гиперон,либо если распадается круговая тор-матрица,то соответственно остается структура ламбда-гиперона.

ЧАСТЬ 6.АННИГИЛЯЦИЯ И ВЫПОЛНЕНИЕ ЗАРЯДОВОГО ЗАПРЕТА.

Взаимодействия частицы и античастицы происходит в избранной плоскости. Совмещение круговых матриц электрона и позитрона с различным направлением вращения в этой плоскости приводит к появлению в точке их совмещения двух сонаправленных потоков расположенных по одну сторону от центра каждой частицы (в случае нуль-второго-каона сонаправленные потоки расположены по разные стороны центра симметрии определения заряда),так как не успевает сформироваться промежуточного состояния электрон-позитрон с центром в точке сонаправленных потоков,то согласно выполнению зарядового запрета,обе частицы, являясь линейными траекториями преобразуются в два фотона (по количествам центров симметрии) - формируются соответственно два направления движения фотонов по прямой соединяющей центры траекторий,что наблюдается на опыте , в случае наличия энергии у аннигилирующей частицы (скорость движения) -энергия полностью сохраняется в фотоне того же направления после аннигиляции.

Если аннигиляция происходит при наличии третьей более энергоемкой частицы, ее центр становится определяющим в плоскости аннигиляции и уже поэтому обе круговые траектории порождают один фотон.

В случае столкновения релятивистских электрона и позитрона зарядовый запрет не успевает реализоваться, в результате две окружности геометрически сцепляю-тся аккумулируя релятивистскую энергию, таким образом образуется мюон . Смешанным механизмом происходит образование мюонов из фотонов.

Совмещение двух тор-матриц с различным вращением при аннигиляции нуклонов не приводит к зарядовому запрету, так как нет линейных траекторий, то соответ-

ственно не образуются фотоны.При сближении двух тор-матриц поперечное сечение их становится подобными лемнискате, и потому аннигиляция нуклонов происходит по механизму странных частиц ,образуя пионы.

Зарядовый запрет в структуре нуль-сигма-гиперона сокращает существование частицы времени выполнения зарядового запрета и определяет 100% вариант распада при котором одна внутренняя линейная траектория преобразуется в фотон, а восьмиобразная торматрица (без закрутки), приобретая противоимпульс вращения от линейной траектории закручивается приобретая структуру ламбда-гиперона.

Зарядовый запрет в структуре эта-мезона определяет короткое существование частицы и путь распада с продуктами - фотонами, но на практике наблюдается также простой путь распада по описанным ранее принципам, то есть ось распада (или в данном случае плоскость) проходит по "экватору" частицы разделяя между собой перекресты, после замыкания разорванных траекторий в окружности, образуется соответственно шесть окружностей составляя затем три пиона (распад по принципу 2в,очень сходен с распадом второго-каона).

Использованная литература:

1. Бранский В.П. Теория элементарных частиц как объект методологического исследования. - Л., 1989. 

2. Айзенберг И. Микроскопическая теория ядра. - М.: Атомиздат, 1976;

3. Соловьев В.Г. Теория атомного ядра: ядерные модели. - М.: Энергоатомиздат, 1981;

4. Бете Г. Теория ядерной материи. - М.: Мир, 1987;

5. Бопп Ф. Введение в физику ядра, адронов и элементарных частиц. - М.: Мир, 1999.

6. Вайзе В., Эриксон Т. Пионы и ядра. - М.: Наука, 1991. 

7. Блохинцев Д.И. Труды по методологическим проблемам физики. - М.: Изд-во MГУ, 1993. 

8. Гершанский В.Ф. Философские основания теории субатомных и субъядерных взаимодействий. - СПб.: Изд-во С.-Петербург. ун-та, 2001.

9. Вильдермут К., Тан Я. Единая теория ядра. - М.: Мир, 1980. 

10. Кадменский С.Г. Кластеры в ядрах // Ядерная физика. - 1999. - Т. 62, № 7.

11. Индурайн Ф. Квантовая хромодинамика. - М.: Мир, 1986. 

12. Мигдал А.Б. Пионные степени свободы в ядерной материи. - М.: Наука, 1991. 

13. Гершанский В.Ф. Ядерная хромодинамика // MOST. - 2002. 

14. Барков Л.М. Роль эксперимента в современной физике // Философия науки. - 2001. - № 3 (11). 

15. Методы научного познания и физика. - М.: Наука, 1985. 

16. Симанов А.Л. Методологические и теоретические проблемы неклассической физики // Гуманитарные науки в Сибири. - 1994. - № 1. 

17. Фейнман Р. Взаимодействие фотонов с адронами. - М.: Иностр. лит., 1975.

18. Слив Л.А. и др. Проблемы построения микроскопической теории ядра и квантовая хромодинамика // Успехи физ. наук. - 1985. - Т. 145, вып. 4. 

19 Бранский В.П. Философские основания проблемы синтеза релятивистских и квантовых принципов. - Л.: Изд-во Ленингр. ун-та, 1973. 

20. Гершанский В. Ф., Ланцев И. А. Релятивистская ядерная физика и квантовая хромодинамика. - Дубна: ОИЯИ РАН, 1996. 

21.Гершанский В.Ф., Ланцев И.А. Однонуклонное пион-ядерное поглощение при промежуточ-ных энергиях в кварковой модели // Сб. тезисов 48_й Международной конференции по физике ядра (16-18 июня 1998 г.). - Обнинск: ИАТЭ РАН, 1998. 

22. Гершанский В.Ф., Ланцев И.А.Новый подход к загадке (3,3) резонанса // Сб. тезисов 49_й Международной конференции по физике ядра (21-24 апреля 1999 г.). - Дубна: ОИЯИ РАН, 1999. 

23. Гершанский В.Ф. Изобары и кварковые кластеры в ядрах // Вестник Новгород. гос. ун-та. Сер. Естественные науки. - В. Новгород. - 2001. - № 17. 


Подобные документы

  • Основные понятия, механизмы элементарных частиц, виды их физических взаимодействий (гравитационных, слабых, электромагнитных, ядерных). Частицы и античастицы. Классификация элементарных частиц: фотоны, лептоны, адроны (мезоны и барионы). Теория кварков.

    курсовая работа [1,0 M], добавлен 21.03.2014

  • Свойства всех элементарных частиц. Связь протонов и нейтронов в атомных ядрах. Классификация элементарных частиц. Величина разности масс нейтрона и протона. Гравитационные взаимодействия нейтронов. Экспериментальное значение времени жизни мюона.

    реферат [24,3 K], добавлен 20.12.2011

  • Основные характеристики и классификация элементарных частиц. Виды взаимодействий между ними: сильное, электромагнитное, слабое и гравитационное. Состав атомных ядер и свойства. Кварки и лептоны. Способы, регистрация и исследования элементарных частиц.

    курсовая работа [65,7 K], добавлен 08.12.2010

  • Фундаментальные физические взаимодействия. Гравитация. Электромагнетизм. Слабое взаимодействие. Проблема единства физики. Классификация элементарных частиц. Характеристики субатомных частиц. Лептоны. Адроны. Частицы - переносчики взаимодействий.

    дипломная работа [29,1 K], добавлен 05.02.2003

  • Характеристика методов наблюдения элементарных частиц. Понятие элементарных частиц, виды их взаимодействий. Состав атомных ядер и взаимодействие в них нуклонов. Определение, история открытия и виды радиоактивности. Простейшие и цепные ядерные реакции.

    реферат [32,0 K], добавлен 12.12.2009

  • Энергетическое разрешение полупроводникового детектора. Механизмы взаимодействия альфа-частиц с веществом. Моделирование прохождения элементарных частиц через вещество с использованием методов Монте–Карло. Потери энергии на фотоядерные взаимодействия.

    курсовая работа [502,5 K], добавлен 07.12.2015

  • Элементарная частица — частица без внутренней структуры, то есть не содержащая других частиц. Классификация элементарных частиц, их символы и масса. Цветовой заряд и принцип Паули. Фермионы как базовые составляющие частицы всей материи, их виды.

    презентация [214,8 K], добавлен 27.05.2012

  • Виды фундаментальных взаимодействий в физике. Классификация, характеристика и свойства элементарных частиц. Несохранение чётности в слабых взаимодействиях. Структура и систематика адронов. Теория унитарной симметрии. Кварки как гипотетические частицы.

    реферат [24,3 K], добавлен 21.12.2010

  • Основные подходы к классификации элементарных частиц, которые по видам взаимодействий делятся на: составные, фундаментальные (бесструктурные) частицы. Особенности микрочастиц с полуцелым и целым спином. Условно истинно и истинно элементарные частицы.

    реферат [94,8 K], добавлен 09.08.2010

  • Один из важнейших приборов для автоматического счёта элементарных частиц - счётчик Гейгера, основанный на принципе ударной ионизации. Конденсация перенасыщенного пара с образованием капелек воды в камере Вильсона. Метод толстослойных фотоэмульсий.

    доклад [697,7 K], добавлен 28.05.2009

Работы в архивах красиво оформлены согласно требованиям ВУЗов и содержат рисунки, диаграммы, формулы и т.д.
PPT, PPTX и PDF-файлы представлены только в архивах.
Рекомендуем скачать работу.