Проект системы электроснабжения оборудования для группы цехов "Челябинского тракторного завода – Уралтрак"

Расчет электрических нагрузок промышленного предприятия. Выбор числа, мощности и типа трансформаторов цеховых трансформаторных подстанций предприятия. Технико-экономическое обоснование схемы внешнего электроснабжения. Расчет токов короткого замыкания.

Рубрика Физика и энергетика
Вид дипломная работа
Язык русский
Дата добавления 13.03.2010
Размер файла 1,2 M

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

Кабельные линии

Uн, кВ

Iр, А

Iутяж, А

Iпо, кА

Iу, кА

Тип выключателя

Тип ТА

ГПП-ТП1

10

36,54

80,83

8,79

20,00

VF 12.08.16

ТЛК-10-100-0,5/10Р

ГПП-ТП3

10

129,97

202,07

8,79

20,00

VF 12.08.16

ТЛК-10-300-0,5/10Р

ГПП-ТП4

10

129,97

202,07

8,79

20,00

VF 12.08.16

ТЛК-10-300-0,5/10Р

ГПП-ТП5

10

130,04

202,07

8,79

20,00

VF 12.08.16

ТЛК-10-300-0,5/10Р

ГПП-ТП7

10

260,05

404,15

8,79

20,00

VF 12.08.16

ТЛК-10-450-0,5/10Р

ГПП-ТП9

10

130,03

202,07

8,79

20,00

VF 12.08.16

ТЛК-10-300-0,5/10Р

Расчетные и каталожные данные на выключатель приведены в таблице 7.8.

Таблица 7.8 -Проверка выключателей на отходящих линиях 10 кВ

Расчётные данные

Условия выбора

Каталожные данные

VF 12.08.16

U, кВ

10

Uуст < Uном

12

Iраб утяж, А

404,15

Iмах < Iном

800

Iп,о=Iп,ф, А

8,79

Iпо < Iдин

16

Iуд, кА

20,00

Iуд < iдин

40

Iat, кА

0,62

Iа,ф < Iа ном

16,0

Bk, кА^2 • с

44,85

Bк < Iтер^2•tтер

768

6.5 Выбор коммутационной аппаратуры на стороне высшего и низшего напряжения трансформаторных подстанций

В цеховых ТП применяем комплектные трансформаторные подстанции. КТП-630 и КТП-1000 комплектуются выключателями нагрузки типа ВНПу-10 с пружинным приводом со встроенными предохранителями ПК. Результаты выбора сводены в таблицу 7.9.

Таблица 7.9 - Выключатели нагрузки и предохранители

№ ТП

Uн, кВ

Iр, А

Iутяж, А

Iк, кА

Тип выключателя нагрузки

Тип предохранителя

ТП 1,2

10

34,75

80,83

8,79

ВНПу-10/100-10зУ3

ПН2-10-100-31,5У3

ТП 3,4

10

122,69

202,07

8,79

ВНПу-10/400-10зУ3

ПН2-10-400-31,5У3

ТП 5,6

10

122,69

202,07

8,79

ВНПу-10/400-10зУ3

ПН2-10-400-31,5У3

ТП 7,8,9,10

10

122,69

202,07

8,79

ВНПу-10/400-10зУ3

ПН2-10-400-31,5У3

По величине тока короткого замыкания в точке К-4 производится выбор только вводных выключателей, установленных на стороне низшего напряжения.

На стороне низшего напряжения цеховых трансформаторных подстанций выбираем автоматические выключатели для низковольтных распределительных устройств. Принимаем к установке распределительное устройство КТП общепромышленные (собственных нужд), представляющее собой трансформаторные подстанции внутренней (У3) установки c автоматическими выключателями серии "Электрон", предназначенные для приема электрической энергии трехфазного переменного тока частотой 50 гц, напряжением 10 кВ, преобразования в электроэнергию напряжением 0,4 кВ и ее распределения.

Выбор оборудования низковольтных распределительных пунктов (0,4 кВ) осуществляется по токам нагрузки в нормальном и утяжеленном режимах. Результаты выбора сведены в таблицу 7.10.

Таблица 7.10 Выбор оборудования низковольтных распределительных пунктов

№ ТП, РПН

Место установки выключателя

Iр, А

Iутяж, А

Тип выключателя

КТП 1000-10/0,4

Вводной

1226,87

2020,73

Э25МВ; Iном = 2500 А; Iо = 65 кА

КТП 630-10/0,4

Вводной

772,93

1273,06

Э25МВ; Iном = 2500 А; Iо = 65 кА

6.6 Разработка принципиальной схемы электроснабжения прессового цеха

6.6.1 Выбор схемы питания 10 кВ

Питание цеховой подстанции осуществляем от двух ячеек на разных секциях шин РП - 10кВ по двум кабельным линиям (обусловлено требованиями надежности электроснабжения) по схеме блок трансформатор - магистраль с выключателями нагрузки на вводе. Такая схема обладает простотой, достаточной надежностью, позволяет быстро отключать трансформаторы и питающие линии. Защита питающих линий и трансформаторов от перегрузок и коротких замыканий обеспечивается двухступенчатой релейной защитой на РП-30, а применение выключателей нагрузки позволяет осуществить отключение трансформаторов при внутренних повреждениях посредством газовой защиты.

6.6.2 Выбор схемы распределения электроэнергии

В цехе используется магистральная схема распределения электроэнергии. На ее выбор повлияли следующие факторы: 1. Электроприемники расположены в цехе равномерно. 2. На машиностроительных заводах рекомендуется применять магистральные схемы распределения электроэнергии. Магистральную схему выполняем шинопроводами типа ШРА - 4, которые подключаются к шинам КТП посредством кабелей проложенных в каналах в полу или вдоль стен в монтажных лотках. Электроприемники запитываются непосредственно от шинопровода через автоматические выключатели поставляемые комплектно. Подключение выполнено проводом ПВ 3 в трубах в полу или кабелем ВВГ в каналах пола. Схема представляет собой 4 магистрали, от которых запитываются электроприемники. Группы мелких электроприемников подключаются к групповым силовым распределительным пунктам ШР1 - ШР4 запитанным от шинопровода. Размещение распределительных пунктов осуществляем исходя из минимальной длины кабельных линий, удобства подключения и обслуживания в период эксплуатации, а также возможности дальнейшего развития схемы. Сами распределительные пункты подключаются к шинопроводам посредством кабеля. Питание освещения осуществляется от 4 распределительных пунктов. Пункты подключены к шинам НН КТП кабелем ВВГ проложенным в каналах пола и по кабельным конструкциям.

6.6.3 Расчет нагрузок по отдельным узлам схемы

Расчет нагрузок по отдельным узлам схемы проводится аналогично расчету нагрузок отделений цеха (смотри пункт 1.1). Группы небольших по мощности силовых технологических приемников подключаем через силовые распределительные пункты ШР-1 - ШР-4. Расчетную нагрузку каждого пункта определяем по такой же методике, что и для участков цеха. Расчет сводим в таблицу 7.11.

Силовые пункты и остальные технологические приемники подключаем к распределительным шинопроводам и рассчитываем их расчетную нагрузку вышеизложенным методом.

Наиболее мощные приемники присоединяются кабелем непосредственно к ячейкам РУНН КТП.

Принимаю к установке магистральные шинопроводы типа ШМА 4 - 1250 - 44 - 1У3 на 1250 А ( ТУ 36.18.29.01 - 22 - 88 ) распределительные шинопроводы ШРА 4 - 250 - 32 - 1У3 и шкафы распределительные марки: ШР 11 Шкаф рассчитан на номинальные токи до 400 А и номинальное напряжение до 380 В с глухозаземленной нейтралью трехфазного переменного тока частотой 50 Гц и с защитой отходящих линий предохранителями НПН2-60 (до 63А), ПН2-100 (до 100 А), ПН2-250 (до 250 А), ПН2-400 (до 400А).

7. Компенсация реактивной мощности

Оптимальный выбор средств компенсации реактивной мощности является составной частью построения рациональной системы электроснабжения промышленного предприятия. Распределительное устройство 10 кВ ГПП имеет четыре системы сборных шин. К секции СШ подключены кабельные линии, питающие трансформаторы цеховых ТП и высоковольтных РП. На рисунке 8.1 приведена схема замещения СЭС для расчета компенсации реактивной мощности. В таблице 8.1 приведены исходные данные для схемы электроснабжения, показанной на рисунке 8.1. Здесь обозначено: Sнтi - номинальная мощность трансформатора i-ой ТП; Q1i и Qтi - реактивная нагрузка на один трансформатор i-ой ТП и потери реактивной мощности в нем; Rтрi - активное сопротивление трансформатора i-ой ТП, приведенное к напряжению 10 кВ; Rлi - активное сопротивление i-ой кабельной линии.

Сопротивление трансформатора определяем по формуле:

Rтрi = . (8.1)

Сопротивление кабельной линии определим по формуле:

Rл = Rу · l, (8.2)

где l - длина кабельной линии, км;

Rу - удельное сопротивление кабеля, Ом/км.

Результаты расчётов приведены в таблице 8.1.

Рисунок 8.1 - Схема замещения СЭС

Таблица 8.1 - Расчёт сопротивлений

Трансформаторная подстанция

Sтн, кВА

Q1i, квар

ДQтi, квар

Rтi, Ом

Rлi, Ом

число тр-ров ТП

ТП1

1000

478,92

33,92

1,22

0,38

1

ТП2

1000

478,92

33,92

1,22

0,46

1

ТП3

2500

1 672,50

142,41

0,38

0,21

1

ТП4

2500

1 672,50

142,41

0,38

0,24

1

ТП5

2500

1 697,41

142,41

0,38

0,18

1

ТП6

2500

1 697,41

142,41

0,38

0,23

1

ТП7

2500

1 693,02

142,41

0,38

0,01

1

ТП8

2500

1 693,02

142,41

0,38

0,13

1

ТП9

2500

1 693,02

142,41

0,38

0,20

1

ТП10

2500

1 693,02

142,41

0,38

0,33

1

ИТОГО

14 469,75

1 207,09

Параметры синхронных двигателей приведены в таблице 8.2.

Таблица 8.2 - Параметры синхронных двигателей

Обознач. в схеме

Тип двигателя

Uном, кВ

Рсд.нi, кВт

Qсд.нi, квар

Ni, шт

ni, об/мин

Д1i, кВт

Д2i, кВт

СД 3200

СТД

10

3200

1600

2

3000

7,16

10,1

Располагаемая реактивная мощность СД:

Qсд.мi = , (8.3)

где бмi - коэффициент допустимой перегрузки СД по реактивной мощности, зависящий от загрузки всдi по активной мощности и номинального коэффициента мощности соsцнi.

Примем, что все синхронные двигатели имеют всд = 0,9, тогда бм = 0,58.

Результаты расчета приведены в таблице 8.2.

Определение затрат на генерацию реактивной мощности отдельными источниками.

Определение удельной стоимости потерь активной мощности от протекания реактивной мощности производим по формуле:

С0 = д, (8.4)

где д - коэффициент, учитывающий затраты, обусловленные передачей по электрическим сетям мощности для покрытия потерь активной мощности:

б - основная ставка тарифа, руб/кВт;

в - стоимость 1 кВт•ч электроэнергии (дополнительная ставка тарифа);

Для 110 кВ: б = 2165,76 руб/кВт год; в= 0,941 руб/кВ•ч

Км = ?Рэ/?Рм = 0,93 - отношение потерь активной мощности предприятия ? Рэ в момент наибольшей активной нагрузки энергосистемы к максимальным потерям ?Рм активной мощности предприятия;

ф - время использования максимальных потерь, ч.

С0 = 1,02Ч(2165,76Ч0,93 + 1,04Ч2198,77) = 4205,69 руб/кВт.

Непосредственное определение затрат на генерацию реактивной мощности:

- для низковольтных БК (0,4 кВ)

З1г.кн = Е·КБКН + С0·ДРБКН , (8.5)

З1г.кн = 0,223·360000+4205,69·4 = 93502,78 руб/Мвар

- для высоковольтных БК (10 кВ)

З1г.кв = З10 = Е•КБКВ Кпр.ц + С0•ДРБКв , (8.6)

З1г.кв = 0,213·180000+4205,69·4 = 46751,39 руб/Мвар

- для синхронных двигателей

З1г.сдi = С0•; З2г.сдi = С0• . (8.7)

Результаты расчета затрат для СД приведены в таблице 8.3.

Таблица 8.3 - Расчёт затрат для СД

Обозначение СД на схеме

Qсд.мi, Мвар

З1г.сдi, руб/Мвар

З2г.сдi, руб/Мвар2

Rэ.сдi, Ом

Qсдi, Мвар

СД 3200

4,15

18820,48

8296,39

0,21

1,56

Итого:

4,15

-

-

-

1,56

Определение эквивалентных активных сопротивлений ответвлений с ТП, подключенных к 1-ой секции СШ ГПП. Для расчета оптимальной реактивной мощности, генерируемой низковольтными БК, необходимо знать эквивалентные сопротивления соответствующих ТП.

Эквивалентные сопротивления для СД:

Rэ.сд = , (8.8)

Результаты расчётов приведены в таблице 8.4.

Таблица 8.4 - Выбор конденсаторных установок

Место установки БК

Rэi, Ом

Qсi, Мвар

Qкi, квар

Qкi+ Qсi, квар

Тип принятой стандартной БК

Qстi, квар

Расчетное

Принятое

ТП1

1,60

0,16

0,16

0,00

164,61

УК9-0,4-112,5 У3 УКМ58М-0,4-50-25 У3

162,5

ТП2

1,68

0,18

0,18

0,00

181,79

УКМ58М-0,4-150-37,5 У3 УК1(2)-0,4-37,5 У3

187,5

ТП3

0,59

0,87

0,87

907,75

1773,55

2хУКМ58М-0,4-603-67 У3 УКМ58М-0,4-536-67 У3 УК1(2)-0,4-37,5 У3

1779,5

ТП4

0,62

0,91

0,91

907,75

1822,18

2хУКМ58М-0,4-603-67 У3 УКМ58М-0,4-300-50 У3

1826

ТП5

0,55

0,84

0,84

618,76

1457,07

2хУКМ58М-0,4-603-67 У3 УКМ58М-0,4-250-50 У3

1506

ТП6

0,61

0,92

0,92

618,76

1540,15

2хУКМ58М-0,4-603-67 У3 УКМ58М-0,4-300-50 У3 УК2-0,4-66,7 У3

1543,5

ТП7

0,39

-0,23

0,00

2065,6

2065,6

3хУКМ58М-0,4-603-67 У3 УКМ58М-0,4-200-50 У3

2009

ТП8

0,50

0,23

0,23

2065,6

2158,6

4хУКМ58М-0,4-536-67 У3

2144

ТП9

0,57

0,23

0,23

348,87

2297,5

4хУКМ58М-0,4-603-67 У3

2412

ТП10

0,71

0,41

0,41

348,87

2479,5

4хУКМ58М-0,4-603-67 У3

2415

ГПП

-

4,64

4,64

-

-

УКЛ-10,5-4500

4500

ИТОГО

-

-

64,625

11316

20541,8

-

20482

Эквивалентные сопротивления для ТП 1-4,5,6, питающихся по радиальной линии (рисунок 8.2, а), определим по формуле:

Rэ = Rл + Rтр. (8.9)

Для питающихся по магистральной линии ТП 7,8, введем обозначения:

r01 = Rл1 ; r12 = Rл2 ;

r1 = Rтр1 ; r2 = Rтр2 ;

Эквивалентная проводимость точки 1 схемы (рисунок 8.2,б) определяется по формуле:

, (8.10)

С учетом полученного, эквивалентные сопротивления присоединений указанных ТП определяются по формулам:

Rэ1 = , (8.11)

Rэ2 =. (8.12)

Значения эквивалентных сопротивлений записываем в таблицу 8.4.

Определение реактивной мощности источников, подключенных к 1-ой секции СШ 10 кВ ГПП. Оптимальные реактивные мощности низковольтных БК, подключенных к ТП, определяем в предположении, что к этим шинам ГПП подключена высоковольтная БК (при этом коэффициент Лагранжа л = З10):

Qсi = Q1i + ДQтi +Q1i + ДQтi +, (8.13)

где а = 1000/=1000/10 = 10 кВ-2

Мвар•Ом.

Результаты расчета мощностей Qсi низковольтных БК сводим в таблицу 8.4.

Реактивные мощности СД:

Qсд = .

Результаты расчётов приведены в таблице 8.3.

Определение мощности высоковольтной БК, подключаемой к СШ 10 кВ ГПП, производим из условия баланса реактивных мощностей на СШ 10 кВ ГПП:

Q0 = , (8.14)

Q'эс = б • Рр , (8.15)

Q'эс = 0,31 · 22,8 = 6,94 МВар,

Qр = 2 · Qр1 = 2 · +Qад+ Qэту, (8.16)

Qр = 2 ·((13,143+1,207)+1,26) = 27,7 МВар,

Q''эс = Qр ? , (8.17)

Q''эс = 27,72 ?= 20,89 МВар,

Qэс1 = МВар,

Qр1= МВар,

Qсi=4,625 МВар.

Подставим все найденные значения в формулу (8.14):

Q0 = 13,86 ?4,625 ? 1,17 ? 3,47 = 4,6 Мвар > 0

Баланс реактивной мощностей на сборных шинах 10 кВ главной понизительной подстанции проверятся как равенство генерируемых Qг и потребленных Qр реактивных мощностей:

Qрi = , (8.18)

Qг1 =, (8.19)

Qг1 =( 4,625 + 1,17 + 4,5+3,47)= 13,76 МВар,

Qр = 13,76 МВар.

Погрешность составляет 0,73%

Значение коэффициента реактивной мощности tgцэ, заданного предприятию энергосистемой:

tgцэ = , (8.20)

tgцэ =

Зная величины мощностей конденсаторных компенсирующих устройств, определяем расчетный коэффициент реактивной мощности на вводе главной понизительной подстанции:

tgцр = , (8.21)

tgцр =.

Резерв реактивной мощности:

Qрез% =

8. Релейная защита синхронного эл. двигателя 10кВ мощностью Р=3200 кВт

Исходные данные:

Тип СТД - 3200/10000 напряжение Uн = 10000 В ток Iн = 208 А пусковой коэф. Кпуск = 5,0 КПД = 97,3 % Коэф. мощности cos = 0,89 Тип ТТ ТЛК-10 коэф. тр-ции 300/5 соединение тр-ров тока в полную звезду Сердечник типа «Р»

Согласно ПУЭ на электродвигателях устанавливаются следующие виды защит:

защита от многофазных и витковых замыканий в обмотке статора;

защита от перегруза;

защита от однофазных замыканий на землю;

защита минимального напряжения;

защита от асинхронного режима.

Для обеспечения выполнения функций релейной защиты, автоматики, а также управления и сигнализации применяю устройство микропроцессорной защиты «Сириус-21-Д»

Устройство «Сириус-21-Д» является комбинированным микропроцессорным терминалом релейной защиты и автоматики.

Применение в устройстве модульной микропроцессорной архитектуры наряду с современными технологиями поверхностного монтажа обеспечивает высокую надежность, большую вычислительную мощность и быстродействие, а также высокую точность измерения технических величин и временных интервалов, что позволяет снизить ступени селективности и повысить ступени терминала.

8.1 Защита от многофазных и витковых замыканий в обмотке статора (первая ступень МТЗ)

Многофазные и витковые повреждения происходят довольно редко, и как правило, являются результатом развития замыкания на корпус, из-за местных перегревов изоляции, дефектов активной стали статора. Двойные замыкания возникают при уже имеющимся замыкании на землю в сети, при этом второй пробой чаще всего происходит в коробке выводов или на первых витках обмотки. Многофазные короткие замыкания могут быть на выводах обмотки статора или внутри электродвигателя. Опасность внутренних повреждений заключается в том, что токи, протекающие в месте повреждения, могут многократно превышать токи в обмотке статора при повреждении на линейных выводах. Мощная дуга, возникающая в месте КЗ, приводит к пожару в электродвигателе, уничтожающему значительную часть обмотки. Многофазные КЗ, происходящие в близи линейных выводов статорной обмотки, вызывают резкое снижение напряжения на зажимах всех электродвигателей, питающихся от тех же шин, и могут вызвать значительные динамические воздействия на обмотки статоров неповрежденных электрических машин.

Определение токов внутренних КЗ достаточно сложно, т.к. внутри машины образуются несколько контуров, электрически и магнитно-связанных друг с другом. По этому в условиях эксплуатации чувствительность защит от многофазных КЗ определяется при повреждениях на линейных выводах электродвигателя и должна быть, как для основной защиты, больше 2,0 при минимально возможном токе двухфазного КЗ.

Токовая отсечка

В соответствии с ПУЭ для защиты электродвигателей от многофазных КЗ в случаях, когда не применяются предохранители, должна предусматриваться токовая отсечка без выдержки времени, отстроенная от пусковых токов при выведенных пусковых устройствах, с реле прямого или косвенного действия, выполненная: для электродвигателей мощностью менее 2000 кВт в виде одно-релейной отсечки, включенной на разность токов двух

фаз; для электродвигателей мощностью от 2000 кВт до 5000 кВт в виде двух релейной отсечки при условии, что на этих электродвигателях установлена защита от однофазных или двойных замыканий на землю с действием на отключение.

При отсутствии защиты от замыкания на землю или защиты от двойных замыканий на землю токовая отсечка выполняется трех релейной с тремя трансформаторами тока.

Для электродвигателей мощностью 5000 кВт и более, а также для электродвигателей мощностью менее 5000 кВт, если установка токовых отсечек не обеспечивает выполнения требуемой чувствительности и выведены нулевые вывода, должна предусматривается продольная дифференциальная токовая защита в двухфазном исполнении при наличии защиты от замыкания на землю или в трехфазном исполнении с тремя ТТ при невозможности установки защиты от замыкания на землю.

Чувствительность защит и отсечек определяется при КЗ на линейных выводах электродвигателя и должна бить не менее 2,0 в минимальных условиях работы сети.

Ток срабатывания реле выбирается по условию отстройки от максимального тока в режиме пуска электродвигателя при номинальном напряжении сети

,

где котс = 1,2 - коэффициент отстройки, учитывающий погрешности ТТ и защиты;

Ксх = 1 - коэффициент схемы, для ТТ соединённых по схеме полной звезды;

I”max - наибольшее действующее значение периодической составляющей тока внешнего трехфазного металлического КЗ или тока, протекающего через ТТ защиты в режиме самозапуска.

Для двагателя мощностью более 2МВт

А.

Ток срабатывания реле:

А.

Так как уставка (МТЗ-1) может быть выбрана в диапазоне от 2 до 200 А с дискретностью 0,01 А, то принимаем Iуст = 20,8 А.

Коэффициент чувствительности:

.

Выбранная уставка проходит по коэффициенту чувствительности.

8.2 Защита от перегруза, асинхронного хода (вторая ступень МТЗ)

Увеличение тока в обмотках электродвигателей вызывает перегрев изоляции обмоток, сердечников статора и ротора. Увеличение температуры изоляции, т.е. уменьшение разницы между фактической ее рабочей температурой и предельно допустимой, вызывает снижение срока службы изоляции, а быстрый дополнительный нагрев обмоток может привести к опасным деформациям.

Перегрузки делятся на кратковременные, когда температура обмотки не успевает достичь установившегося значения, и длительные, когда температура обмотки достигает установившегося значения, соответствующего величине перегрузочного тока.

В качестве допустимого тока Iдоп следует принимать максимальный длительный ток статора, соответствующий номинальной мощности.

В соответствии с ПУЭ защита от перегруза устанавливается не на всех электродвигателях, а только на тех, которые подвержены перегрузке по технологическим причинам и на двигателях с тяжелыми условиями пуска и самозапуска (длительность прямого пуска непосредственно от сети 20 сек. и более), перегрузка которых возможна при чрезмерном увеличении длительности пускового периода вследствие понижения напряжения в сети.

На электродвигателях подверженных перегрузке по технологическим причинам, защита должна выполнятся с действием на сигнал и автоматическую разгрузку, при невозможности разгрузки или отсутствии дежурного персонала допускается действие защиты на отключение.

Если отключение электродвигателя не приводит к нарушению технологического процесса или имеют место тяжелые условия пуска и самозапуска, то защита от перегрузки также действует на отключение.

Расчет защиты от перегруза.

Защита (МТЗ-2) работает сначала на сигнал, а с выдержкой времени на отключение ,так как сразу отключение электродвигателя приводёт к нарушению технологического процесса,

Первичный ток срабатывания защиты от перегрузки выбирается по условию отстройки от номинального тока электродвигателя:

, (9.3)

где:

котс - коэффициент отстройки, равен 1,05;

кв - коэффициент возврата равный 0,95, для микропроцессорной защиты «Сириус21Д»;

Iдлит.доп. - длительно допустимый ток электродвигателя.

В соответствии с ПУЭ номинальная мощность электродвигателей должна сохранятся при отклонении напряжения до 10%, т.е.

А.

Тогда:

А.

Ток срабатывания реле:

А.

Принимаем уставку по току Iуст = Iср / 3 = 4,2 / 3 = 1,4 А по кривой характеристики (аналог РТВ-1)

Так как уставка (МТЗ-2) может быть выбрана в диапазоне от 0.4 до 200 А с дискретностью 0,01 А, то принимаем Iуст = 1.4 А.

Защита работает с выдержкой времени t = 5 секунд.

Данное значение выдержки времени установить возможно так как выдержка времени (МТЗ-2) может быть выбрана в диапазоне от 0,1 до 100 с, дискретностью 0,01 с.

Проведем выбор выдержки времени для МТЗ-2 с действием на отключение и АГП:

Выдержка времени защиты от перегрузки выбирается из условия надежного несрабатывания защиты при пуске и самозапуске:

,

где: кзап - коэффициент запаса, принимаемый равным 1,3;

tпуск - время пуска для электродвигателей, не подлежащих самозапуску, или время самозапуска для двигателей, которые участвуют в самозапуске;

время самозапуска t = 10 сек.

Тогда:

сек.

Выбираем время срабатывания защиты с момента запуска tс.з. = 13 сек

Защита от асинхронного хода сработает на отключение через 3 с

после 10 с выдержки на самозапуск

Данное значение выдержки времени срабатывания защиты установить возможно, так как она может быть выбрана в диапазоне от 0,1 до 100 с, дискретностью 0,01 с.

8.3 Защита от однофазного замыкания на землю в обмотке статора

Повреждаемость электродвигателя в 84% происходит из-за пробоя изоляции при перенапряжениях, связанных с операциями включения и отключения электродвигателей или при замыканиях на землю в сети. Большинство повреждений изоляции обмотки статора приводит к замыканию фазы на корпус и, как правило, через электрическую дугу.

Значение опасного для электродвигателя тока замыкания на корпус определяют по объему повреждения активной стали статора и возможности устранения его простыми средствами. В мировой практике не существует единого мнения о конкретном значении опасного тока замыкания. В России считается опасным ток более 5 А, критерий который был установлен еще в довоенные годы, хотя проведенные в последние десятилетия исследования показали, что токи замыкания в 1-1,5 А могут привести к значительным местным нагревом с последующим переходом однофазного замыкания в витковое. В то же самое время было показано, что замыкания на корпус через дугу с токами не превышающими 10А могут самоустранятся в течении первых 0,2 сек.

Принимая во внимание большое количество электродвигателей малой мощности, ПУЭ предлагает для электродвигателей мощностью до 2000 кВт устанавливать защиту от однофазных замыканий на землю только при токах замыкания 10 А и более при отсутствии компенсации, а при наличии компенсации - если остаточный ток в нормальных условиях превышает это значение.

Для электродвигателей мощностью более 2000 кВт защита от замыканий на землю должна предусматриваться при токах 5 А и более.

Первичный ток срабатывания защит от замыкания на землю должен быть не более:

для электродвигателей мощностью до 2000 кВт - 10А;

для электродвигателей мощностью свыше 2000 кВт - 5А.

Рекомендуются меньшие значения токов срабатывания, если это не усложняет выполнение защиты.

Защиту следует выполнять без выдержки времени с использованием трансформаторов тока нулевой последовательности и с действием на отключение электродвигателя. В зону действия защиты должен входить и питающий кабель.

Чувствительность защиты разрешается не проверять. Если по условию отстройки от переходного режима потребуется значительное загрубление защиты, то следует ввести в защиту выдержку времени, но для обеспечения быстрого отключения двойного замыкания на землю необходимо установить в цепи трансформатора тока нулевой последовательности дополнительное токовое реле с первичным током срабатывания 50100 А.

Первичный расчетный ток срабатывания защиты от замыкания на землю в обмотке статора электродвигателя определяется по условию отстройки от броска собственного емкостного тока присоединения при внешнем замыкании на землю:

,

где:

котс - коэффициент отстройки равный 1,2;

кб- коэффициент, учитывающий бросок собственного емкостного тока присоединения в начальный момент внешнего замыкания на землю. кб = 2 3.

Iс? - утроенное значение собственного емкостного тока.

Iс? = Ic.дв + Iс.л

где:

Iс.дв - собственный емкостный ток электродвигателя;

Iс.л. - собственный емкостный ток кабельной линии, входящей в зону защиты.

Утроенное значение собственного емкостного тока электродвигателя определяется:

,

где:

f - частота сети;

сдв - емкость фазы статора электродвигателя, Ф;

Uном - номинальное линейное напряжение сети, В.

Ориентировочно емкость электродвигателя можно рассчитать по формуле:

,

где:

Sном.дв. - полная номинальная мощность электродвигателя, МВА;

Uном - номинальное напряжение электродвигателя, кВ.

Для двигателей 10 кВ.:

Фа.

.

Утроенный емкостный ток двигателя 10 кВ:

А или 0,72 мА.

Утроенное значение собственного емкостного тока кабельной линии, входящей в зону защиты, определяется по выражению:

где:

Iс.уд. - утроенное значение собственного емкостного тока одного километра кабельной линии 10 кВ.;

l - длинна линии, км;

m - число кабелей в линии.

Тогда:

А;

Iс? = 0.204+0.72·10-3 = 0,20472 А;

Iпер.с.дв..= 0,20472 ·1.2 ·2 = 0,4913 A.

Вторичный ток трансформаторов тока нулевой последовательности зависит от величины вторичной нагрузки и от числа трансформаторов тока, подключенных к реле, поэтому коэффициент трансформации таких трансформаторов не является постоянным.

По (Л7, табл. 6.2) находим минимальное значение первичного тока срабатывания реле при подключении к одному трансформатору тока нулевой последовательности типа ТЗЛ.

Iс.з.min = 0,49 А.

Принимаем ток срабатывания защиты Iс.з. = 0,5 А.

В сетях с изолированной нейтралью чувствительность земляной защиты не рассчитывается

Принятое значение первичного тока срабатывания защиты удовлетворяет условию чувствительности к однофазным замыканиям на землю и в линии к электродвигателю, и в обмотке статора:

Iпер.с.з.. ? Iс.з ? Iс?

4 ? 0,5 ? 0,20472

В схеме предусмотрено замедление земляной защиты для отстройки от переходных процессов. tс.з = 0,5 сек. Защита работает на отключение с выдержкой времени 0,5 сек.

Данное значение уставок тока срабатывания реле установить возможно так как значение тока может быть выбрана в диапазоне от 0,05 до 2,5 А, с дискретностью 0,001 А.

Защита работает с выдержкой времени t = 5 секунд

Значение выдержек времени срабатывания реле устанавливается в диапазоне от 0,05 до 99 с, дискретностью 0,01 с.

8.4 Защита минимального напряжения

Защита минимального напряжения является общей для всех электродвигателей секции и устанавливается в релейном отсеке КРУ трансформатора напряжения. Защита имеет три ступени по напряжению и выдержкам времени.

Первая ступень отключает неответственные электродвигатели для обеспечения самозапуска электродвигателей ответственных механизмов. Уставки срабатывания этой ступени выбираются равными 70% номинального напряжения и выдержкой времени 0,5 1,0 сек.

Вторая ступень предназначена для отключения ответственных электродвигателей при длительном отсутствии напряжения для обеспечения условий безопасности и в случаях, когда самозапуск механизмов после останова недопустим по условиям технологического процесса. Кроме этого, вторая ступень может быть использована для обеспечения надежного пуска АВР электродвигателей взаиморезервируемых механизмов и для последовательного пуска ответственных механизмов, если одновременный пуск не может быть осуществлен. Уставки срабатывания второй ступени выбираются равной 50% номинального напряжения и выдержкой времени 3 9,0 сек.

Список электродвигателей, отключаемых от первой и второй ступеней защиты минимального напряжения, должен быть утвержден главным инженером предприятия.

Третья ступень служит пусковым органом АВР с напряжением срабатывания равным 25% номинального напряжения и выдержкой времени, равной времени срабатывания защиты питающего секцию ввода.

Расчет групповой защиты минимального напряжения.

Расчет произведен согласно ПУЭ [п.п.5.352; 5.3.53].

I ступень

Время срабатывания: tс.з. = 0,5 сек.

II ступень.

Согласно (Л2), напряжение срабатывания II ступени отстраивается от напряжения самозапуска электродвигателей.

где:

Uсам. - напряжение самозапуска, равное напряжению срабатывания I ступени;

котс - коэффициент отстройки, равный 1,2;

кв - коэффициент возврата равный 1,06.

Время срабатывания:

tс.з. > tп.п.

где:

tп.п. - время перерыва питания.

Время срабатывания: tс.з. = 9 сек.

Данное значение напряжения срабатывания реле установить возможно так как это значение может быть выбрано в диапазоне от 5 до 99,9 В,

с дискретностью 0,1 В. С диапазоном уставок по времени срабатывания от 0,02 до 99,99 с, дискретностью 0,01 с.

Для рассматриваемого двигателя отключение происходит по второй ступени т.к. двигатель участвует в самозапуске (относится к ответственным механизмам).

9. Безопасность жизнедеятельности на ГПП

В данном проекте рассмотрены вопросы организационных и технических мероприятий, а также средства, обеспечивающие защиту людей от опасного воздействия электрического тока, электромагнитного поля, электрической дуги и электростатических зарядов.

К организационным мероприятиям относятся:

1. правильная организация и ведение безопасных методов работ;

2. обучение и инструктаж электротехнического персонала;

3. контроль и надзор за выполнением правил техники безопасности (ПТБ)

К техническим мероприятиям по электробезопасности относятся:

1. обеспечение нормальных метеорологических условий в рабочей зоне;

2. нормальное освещение;

3. применение необходимых мер и средств защиты;

4. применение безопасного ручного электроинструмента, а также применение ограждений, блокировок коммутационных аппаратов, спецодежды.

ГПП является одним из важных объектов и в то же время - это объект повышенной опасности поражения электрическим током, обслуживающего персонала. Исходя из этого, на ГПП уделяется особое внимание вопросам охраны труда и ПТБ.

Конструктивное выполнение главной понизительной подстанции

Согласно расчетам картограммы электрических нагрузок, ГПП нужно расположить в районе завода инженерных машин ( ЗИМ ). В соответствии с

[Л6, 4.2, 4.3] к ОРУ-110 кВ подведена автомобильная дорога и предусмотрен проезд вдоль трансформаторов. Расположение ГПП так же выбрано с учетом розы ветров, согласно которой преимущественное направление ветров северо-западное. Все источники загрязнения находятся с южной стороны по отношению к ГПП - 110.

Подстанция состоит из 3-х основных частей:

ОРУ-110 кВ

Трансформаторы 2ТРДН - 25000/110, ЗРУ-10 кВ.

Аппаратура ОРУ-110 кВ и трансформаторы установлены открыто. Территория ГПП ограждена сплошным внешним забором высотой 1,8 м [Л6, 4.2 39]. Металлические конструкции ОРУ-110 кВ, ЗРУ-10 кВ и трансформаторов, а также подземные части металлических и железобетонных конструкций для защиты от коррозии - окрашены. Трансформаторы для уменьшения нагрева прямыми лучами солнца окрашены в светлые тона маслостойкой краской [Л6, 4.2, 30]. Для предотвращения растекания масла распространения пожара под трансформаторами предусмотрены маслоприемники, закрытые металлической решеткой, поверх которой насыпан слой чистого гравия толщиной 0,25 м [Л6, 4.2. 70]. Все токоведущие части, доступные случайному прикосновению, ограждены металлической сеткой с окном 2525 мм [Л6, 4.2. 26]; на всем электрооборудовании ОРУ и ЗРУ выполнены надписи мнемосхемы, поясняющие назначение электрооборудования, а также предупреждающие плакаты. Токоведущие части окрашены в соответствии с [Л6, 1.1 29]

фаза А - желтым цветом;

фаза В - зеленым;

фаза С - красным.

В ЗРУ ячейки КРУ стоят в два ряда с центральным проходом 2 м,

ширина прохода между ячейкой и стеной - 1 м. Выкатные части КРУ имеют механическую блокировку, так что доступны к токоведущим частям, автоматически закрываются металлическими шторками при выкате тележки.

ЗРУ имеет две двери для выхода, которые открываются наружу и имеют самозапирающиеся замки [Л6, 4.2 92]. ЗРУ выполнено без окон [Л6, 4.2. 94].

Камеры трансформаторов собственных нужд оборудованы барьерами у входов. Барьеры установлены на высоте 1,2 м и съемные. Между дверью и барьером имеется промежуток шириной 0,5 м [Л6, 4.2 26].

В ЗРУ предусмотрены следующие защитные средства:

Изолирующая штанга - 2 шт на каждое напряжение;

Указатель напряжения - 2 шт. на каждое напряжение;

Изолирующие клещи - по 1 шт. на U = 10 кВ и U = 0,4 кВ;

Диэлектрические перчатки - не менее двух пар;

Диэлектрические боты (для ОРУ) - 1 пара;

Диэлектрически галоши - 2 пары (для 0,4 кВ);

Временные ограждения - не менее двух штук;

Переносные заземления - не менее двух штук на напряжение;

Диэлектрические коврики - по местным условиям;

Переносные плакаты и знаки безопасности;

Шланговый противогаз - 2 шт.;

Защитные очки - 2 пары;

Медицинская аптечка.

Анализ пожарной безопасности

Согласно НПБ 105-95 с СниП 21.01.97. С целью предупреждения возникновения пожара в распределительных устройствах 110 и 10 кВ на ГПП предусматриваются следующие технические мероприятия и решения:

Электрооборудование и сети в процессе эксплуатации не загружаются выше допустимых пределов, а при к.з. имеют достаточную отклоняющую способность и термическую стойкость.

В ЗРУ-10 кВ применены элегазовые выключатели типа VF 12.12.20.

Силовые масляные трансформаторы оборудованы газовой защитой, срабатывающей на сигнал и отключение.

Для предотвращения растекания масла при повреждениях маслонаполненных силовых трансформаторов выполнены маслоприемники, рассчитанные на прием 100 % масла, содержащегося в корпусе трансформатора. Удаление масла из маслоприемника предусмотрено переносным насосным агрегатом.

Фундаменты под маслонаполненные трансформаторы выполнены из несгораемых материалов. Так же для предотвращения растекания масла выполняется подсыпка гравия.

Помещение и здание ЗРУ и камеры трансформаторов собственных нужд выполнены по II степени огнестойкости.

ЗРУ, при длине 15 м, имеет 2 выхода по концам наружу, с самозапирающимися замками, открываемыми со стороны ЗРУ без ключа. Двери обиты железом с асбестовой подкладкой и имеют ширину не менее 0,75 м и высоту 1,9 м. Двери между помещениями ЗРУ разных напряжений открываются в сторону помещения низшего напряжения. Помещение РУ более высокого напряжения имеют ворота с железными створками для перемещения через них габаритного оборудования (например, ячеек КРУ). Ворота открываются наружу и расположены в конце ЗРУ.

Перекрытие кабельных каналов выполнены съемными плитами из несгораемых материалов в уровень с чистым полом помещения.

В целях своевременного извещения о пожаре в ЗРУ имеется пожарная сигнализация, непосредственно связанная с пожарной охраной. Сигнализация выполнена на основе датчиков типа АТИМ-3 и ДТЛ (70є С). Вблизи средств связи вывешены таблички о порядке действия при пожаре (подача сигнала, вызов пожарной охраны).

Для локализации очагов пожара на ГПП имеются первичные средства пожаротушения:

а) ЗРУ-10 кВ - огнетушители ОУ-10 - 2 шт.,

- ящик с песком - 2 шт. (вместимость 0,5 м);

б) щит управления 0,4 кВ - огнетушители ОУ-10 - 2 шт.;

в) камеры трансформаторов собственных нужд - огнетушители

ОХП-10 - 2 шт.,

г) ОРУ-110 кВ - пожарный щит с принадлежностями и ящик

с песком у каждого трансформатора.

Обеспечение электробезопасности

Для защиты оперативно-ремонтного персонала от поражения электрическим током в соответствии с ГОСТ 12.1.038-82 ССБТ И-1.04.88 все коммутационное оборудование ГПП оснащено заземляющими ножами. Разъединители 110 кВ имеют механическую блокировку с заземляющими ножами, что позволяет исключить неправильные действия электротехнического персонала в случае включения этих аппаратов из отключенного состояния, когда они были заземлены ножами.

В ЗРУ-10 кВ выключатели, установленные в ячейках КРУ, также имеют механическую блокировку с заземляющими ножами. С целью обеспечения допустимого уровня напряжения прикосновения конструкции ЗРУ и оборудование заземляется с контуром заземления, который выполнен с использованием естественных заземлителей - железобетонных колонн ЗРУ и металлических угольников обрамления кабельных каналов. Контур заземления ЗРУ соединен с заземляющим устройством ОРУ-110 кВ не менее, чем в двух точках. Для устройства заземления ОРУ-110 кВ выполняется расчет.

Выбор искусственных заземлителей

Согласно ГОСТ 12.1.030-81 ССБТ И-1.08.87 заземление ОРУ-110 кВ выполняется из сетки выравнивающих полос [1] из горизонтальных заземлителей - полос размером 40 4 мм.

Заземляющее устройство имеет сложную форму, поэтому ее заменяют расчетной квадратной моделью со стороной , где S = 2830 = 840 м2 - площадь заземления. = =29 м - сторона квадрата расчетной модели.

Определяется число ячеек m на стороне квадрата:

Принимаем m = 7.

Длина полос в расчетной модели:

L'r = 2(m + 1) = 229(7+1) = 464 м.

Длина стороны ячейки:

b = м.

Сопротивление растекания тока одной полосы продольной и поперечной:

Ом,

Где:

Sрасч = Кп100 = 3100 = 300 Ом • м,

Кп = 3 - повышающий коэффициент для климатической зоны [4, 8-2],

100 Ом • м - удельное сопротивление суглинка (2 категория) [4, 8-1],

l = - длина одной полосы,

d = 0,5 • b = 0.5 • 0.04 = 0.02 м при b = 0.04 м - ширина полосы,

t = 0.8 м - глубина заложения полосы.

Сопротивление растекания группового заземлителя из всех продольных полос:

Rгр п = Ом,

Где: nп - число полос,

зп = 0,43 - коэффициент использования полосы в групповом заземлителе.

Для поперечных полос расчет одинаков и имеем:

R'п = 17,9 Ом; Rгр. п = 5,2 Ом.

Общее сопротивление заземляющей сетки:

Rc Ом.

Длина полос в расчетной модели:

L'r = 2(m + 1) = 229(7+1) = 464 м.

Длина стороны ячейки:

b = м.

Сопротивление растекания тока одной полосы продольной и поперечной:

Ом,

Где:

Sрасч = Кп100 = 3100 = 300 Ом • м,

Кп = 3 - повышающий коэффициент для климатической зоны [4, 8-2],

100 Ом • м - удельное сопротивление суглинка (2 категория) [4, 8-1],

l = - длина одной полосы,

d = 0,5 • b = 0.5 • 0.04 = 0.02 м при b = 0.04 м - ширина полосы,

t = 0.8 м - глубина заложения полосы.

Сопротивление растекания группового заземлителя из всех продольных полос:

Rгр п = Ом,

Где: nп - число полос,

зп = 0,43 - коэффициент использования полосы в групповом заземлителе.

Для поперечных полос расчет одинаков и имеем:

R'п = 17,9 Ом; Rгр. п = 5,2 Ом.

Общее сопротивление заземляющей сетки:

Rc Ом.

Общее заземление с учетом естественных заземлителей Rc = 1.72 Ом

R'з = Ом.

Производим подсыпку слоем гравия толщиной 0,2 м по всей территории

ОРУ-110 кВ и производим проверку заземляющего устройства по допустимому напряжению прикосновения Uпр. доп = f (t),

Где:

t = tр + tc - время протекания тока короткого замыкания.

t = 0.05+0.08 = 0.13 c

Uпр.доп = 470 В - допустимое напряжение прикосновения с учетом подсыпки

Uпр = J3 • б1 • б2 • Rз = 13400 • 0,15 • 0,18 • 1,04 = 376 В,

Где: б1 = 0,15 - коэффициент напряжения прикосновения,

Коэффициент шага:

б2

Rh - сопротивление человека,

смс = 3000 Ом • м - удельное сопротивление гравия.

Таким образом, Uпр = 376 В < Uпр.доп = 470 В.

Максимально допустимый ток однофазного к.з. на ОРУ:

Iз max кА.

Термическая стойкость полосы 404 мм2 при Iз max

Sт = Iз max мм2,

где С = 74 - постоянный коэффициент для стали.

Таким образом Sт = 81,5 мм2 < Sr = 404 мм2 = 160 мм2, что удовлетворяет условию термической стойкости.

Контроль изоляции

Постоянный контроль изоляции производится по показаниям приборов, присоединенных к трансформатору напряжения 3НОЛ-0.9-10. Для контроля изоляции также служат трансформаторы тока нулевой последовательности типа ТЗЛ, установленные в ячейках КРУ.В электрических сетях напряжением 10кВ используется сигнализация ОЗЗ. Простейшей является общая неселективная сигнализация ОЗЗ, которая состоит из реле максимального напряжения KU ,подключенного ко вторичной обмотке трехфазного трансформатора напряжения, соединенной по схеме «открытого треугольника».Реле имеет уставку по напряжению обычно принимаемую равной 0,3*Uф. В нормальном режиме работы электрической сети напряжение нейтрали не превышает 15%Uф, чему соответствует напряжение на зажимах указанной вторичной обмотки не более 15В. При возникновении ОЗЗ, напряжение на нейтрали сети возрастает до фазного значения, а на зажимах вторичной обмотки - до 100В. Реле срабатывает и включает информационную (световую или звуковую) сигнализацию о появлении ОЗЗ в электрической сети. Такой комплект сигнализации является общим для одной секции сборных шин.

Рисунок 10.1 Схема контроля изоляции на шинах 10кВ.

Для контроля изоляции присоединений применяются трансформаторы тока нулевой последовательности типа ТЗЛМ, установленные в КРУ на каждой отходящей линии.

Схема установки трансформатора ТЗЛМ для определения однофазных замыканий на землю присоединений представлена на рис. 10.2

Рисунок 10.2 Схема контроля изоляции отходящих присоединений.

Следует определить величину тока однофазного замыкания на землю в сети 10 кВ и решить вопрос о необходимости его компенсации.

(10.1)

где: lCO-ток ОЗЗ для определенного кабеля при напряжении 10кВ, А/км;

l-длина данной кабельной линии, км.

Сеть внутреннего электроснабжения предприятия состоит из следующих кабельных линий:

3х70 мм2 - 1,885 км;

3х95 мм2 - 4,663 км;

3х240 мм2 - 0,09 км.

Ток ОЗЗ для кабеля сечением 70 мм2 составляет 0,9 А/км, для 95 мм2 составляет 1 А/км, для 240 мм2 - 1,6 А/км.

Ток ОЗЗ составляет:

LОЗЗ=1,885*0,9+4,663*1+0,09*1,6 = 6,5 А

Так как 6,5 < 20 А, то согласно ПУЭ необходимость компенсации емкостных токов ОЗЗ отсутствует.

Защита ГПП от ударов молнии.

Молниезащита ГПП осуществляется в соответствии с «Инструкцией по проектированию и устройству молниезащиты зданий и сооружений» (СН-305-77 РД34.21.122-87).

Территория ГПП находится в районе среды, где грозовая деятельность до 40 часов в год. Устанавливаем 4 молниеотвода, два на порталах и два на здании ЗРУ

Необходимым условием защищенности всей площади ОРУ является условие: D 8•ha, где D - диагональ четырехугольника, в вершинах которого расположены молниеотводы:D=65м.

ha - активная высота молниеотвода: ha D/8 = 60/8 = 7,52м.

Высота молниеотводов:

h = hx + ha = 11,35 + 7,52 = 18,87м,

где hx - высота защиты молниеотводов.

Зона защиты молниеотвода:

Rx = м.

Ширина защищаемой зоны:

Bx =,

где а - сторона четырехугольника.

при а=36 м:

В1,4` = м.

В1,4 = В2,3 = 6м.

при b=50 м:

В1,2` = м.

В1,4` = B2.3` = 3,5 м.

На рисунке показана зона защиты на высоте hx = 11.35м.

Рисунок 10.3 Зона защиты.

Освещение ОРУ-110 кВ

Согласно СниП 23-05-95 освещение на ГПП предусмотрено рабочее и аварийное. Территория ГПП освещается прожекторами, питающимися от сети переменного тока напряжением 220В.

Выбор мощности и количества прожекторов освещения ОРУ производится в соответствии с нормами, установленными ПУЭ.

По «шкале освещенности» Л11 норма освещенности ОРУ ГПП: Е=5 лк.

Световой поток:

F=лм

Число прожекторов:

N=шт.

К установке принимаю 2 прожектора.

В формулах:

Е - минимальная освещенность, лк;

Кз - коэффициент запаса;

z- отношение средней освещенности к минимальной;

S - площадь ОРУ, м^2;

N - число прожекторов, шт;

М - коэффициент добавочной освещенности за счет отраженного светового потока;

- КПД светового потока;

е - суммарная условная освещенность от близлежащих светильников.

Мощность одной лампы при удельной мощности W=1 Вт/м^2:

Р=Вт.

К установке принимаем 4 прожектора типа РКУО3 - 500 - 001 - УХЛ1 с лампами ДРЛ мощностью по 400 Вт каждая, которые установлены на противоположных сторонах ОРУ ГПП.

Высота подвеса прожекторов:

Н== =9,4 м.

Ремонтное освещение от переносных ламп накаливания 12В.

Внутреннее освещение выполнено светильниками типа ЛСПО2 (люминесцентные лампы, подвесные, для промышленных и производственных зданий).

10. Расчет и выбор осветительного оборудования прессового цеха

10.1 Выбор источников света

Прессовый цех - сухое, отапливаемое чистое помещение. Этот участок прессово-сварочного завода входит в состав объединения в качестве основного производства. Основную нагрузку прессового и заготовительного отделений составляют асинхронные электродвигатели приводов металлообрабатывающего оборудования (пресса, гильотинные ножницы) и подающих рольгангов. Используются двигатели различных моделей мощностью от 0.2 до200кВт.

Освещение рассматриваемого объекта производится с помощью светильников типа РСП-10В-1000 - подвесных для производственных помещений, с лампами ДРЛ 1000, имеющими большой срок службы и высокую светоотдачу.

Эти помещение относятся к сухим помещениям, где требуется точная обработка производимых изделий. Зрительная работа высокой точности. Коэффициент отражения стен, потолка, и рабочей поверхности соответственно равны:

п = 70% ; сс = 30% ; ср = 30% .

10.2 Выбор вида и системы освещения. Выбор нормируемой освещённости. Выбор коэффициента запаса. Выбор типа светильников

Для освещения всех помещений принимаем общее равномерное освещение, для всех помещений принимаем рабочее и дежурное освещение.

Значение нормируемой освещенности устанавливается в зависимости от характера зрительной работы, размеров объекта различия, фона и контраста с ним, вида и системы освещения, типа источников света.

В соответствии с нормами освещенности, принимаем освещённость рабочих поверхностей помещения Ен = 300 лк.

Коэффициент запаса вводится при расчете осветительной установки для компенсации уменьшения светового потока источников света в процессе эксплуатации. Значение коэффициента запаса принимается по отраслевым нормам, в зависимости от условий среды в освещаемом помещении и типа применяемых источников света. Принимаем коэффициент запаса Кз = 1,4/2 для помещений с дугоразрядными лампами (Л11).

Выбирается лампа ДРЛ - дуговая ртутная лампа, т.к. высота помещения 15м, а с увеличением высоты повышается относительная экономичность этих ламп и уменьшается их вредное влияние. Указанные лампы выбираются также за их высокую светоотдачу (до 55 Лм/Вт), большой срок службы (10000 ч) по сравнению с лампами накаливания. Лампа компактна, не критична к условиям среды, имеет хорошую стабильность светового потока при длительной работе. Недостатки: искажение светоотдачи, возможность работы на переменном токе, длительное включение лампы, большая пульсация светового потока. В данном случае этими недостатками можно пренебречь, т.к. производится работа без выраженной цветности, и отсутствуют специальные требования к качеству освещения. Для уменьшения Для освещения всех помещений принимаем общее равномерное освещение, для всех помещений принимаем рабочее и дежурное освещение.

Значение нормируемой освещенности устанавливается в зависимости от характера зрительной работы, размеров объекта различия, фона и контраста с ним, вида и системы освещения, типа источников света.

В соответствии с нормами освещенности, принимаем освещённость рабочих пульсации светового потока до 10 и, тем самым, устранения стробоскопического эффекта, применяется включение ламп в разные фазы трехфазной электрической сети.


Подобные документы

  • Расчет электрических нагрузок промышленного предприятия. Выбор числа, мощности и типа трансформаторов цеховых трансформаторных подстанций. Расчет напряжения, схемы внешнего электроснабжения, трансформаторов ГПП. Технико-экономическое обоснование схем.

    дипломная работа [1,4 M], добавлен 30.04.2012

  • Расчет электрических нагрузок систем электроснабжения. Нагрузка группы цехов. Обоснование числа, типа и мощности трансформаторных подстанций. Расчет токов короткого замыкания. Выбор токопроводов, изоляторов и средств компенсации реактивной мощности.

    дипломная работа [3,0 M], добавлен 06.04.2014

  • Расчет электрических нагрузок отделений и цеха промышленного предприятия. Выбор числа и мощности трансформаторов цеховых подстанций. Выбор элементов внешнего электроснабжения промышленного предприятия. Расчет токов короткого замыкания в сетях СЭС ПП.

    курсовая работа [2,2 M], добавлен 26.10.2008

  • Расчёты электрических нагрузок и освещения для группы цехов металлургического завода. Выбор числа, мощности и типа цеховых трансформаторных подстанций предприятия. Определение напряжения внешнего электроснабжения. Полная расчетная нагрузка системы.

    дипломная работа [836,3 K], добавлен 04.06.2013

  • Проект внутреннего и внешнего электроснабжения нефтеперерабатывающего завода. Расчет электрических нагрузок, выбор числа цеховых трансформаторов, силовых кабелей; компенсация реактивной мощности. Выбор оборудования и расчет токов короткого замыкания.

    курсовая работа [452,4 K], добавлен 08.04.2013

  • Определение электрических нагрузок, выбор цеховых трансформаторов и компенсации реактивной мощности. Выбор условного центра электрических нагрузок предприятия, разработка схемы электроснабжения на напряжение выше 1 кВ. Расчет токов короткого замыкания.

    курсовая работа [304,6 K], добавлен 23.03.2013

  • Расчет электрических нагрузок предприятия. Выбор числа и мощности силовых трансформаторов. Технико-экономическое сравнение вариантов схем внешнего электроснабжения. Расчет трехфазных токов короткого замыкания. Расчет ежегодных издержек на амортизацию.

    курсовая работа [820,9 K], добавлен 12.11.2013

  • Определение электрических нагрузок предприятия. Выбор цеховых трансформаторов и расчет компенсации реактивной мощности. Разработка схемы электроснабжения предприятия и расчет распределительной сети напряжением выше 1 кВ. Расчет токов короткого замыкания.

    дипломная работа [2,4 M], добавлен 21.11.2016

  • Расчёт нагрузок напряжений. Расчет картограммы нагрузок. Определение центра нагрузок. Компенсация реактивной мощности. Выбор числа и мощности трансформаторов цеховых подстанций. Варианты электроснабжения завода. Расчёт токов короткого замыкания.

    дипломная работа [840,8 K], добавлен 08.06.2015

  • Расчет электрических нагрузок. Компенсация реактивной мощности. Выбор места, числа и мощности трансформаторов цеховых подстанций. Выбор схемы распределения энергии по заводу. Расчет токов короткого замыкания. Релейная защита, автоматика, измерения и учет.

    курсовая работа [704,4 K], добавлен 08.06.2015

Работы в архивах красиво оформлены согласно требованиям ВУЗов и содержат рисунки, диаграммы, формулы и т.д.
PPT, PPTX и PDF-файлы представлены только в архивах.
Рекомендуем скачать работу.