Технологическое обеспечение информационных систем маркетинговой деятельности

Программное обеспечение решения аналитических и прогнозных задач сбытовой деятельности, критерии выбора средств, использование информационных технологий управления. Архитектура "клиент-сервер" в локальных сетях информационных маркетинговых систем.

Рубрика Программирование, компьютеры и кибернетика
Вид реферат
Язык русский
Дата добавления 12.03.2011
Размер файла 50,1 K

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

Архитектура «клиент-сервер» предполагает следующую организацию информационной технологии в подсистеме сбытовой деятельности. В сервере находятся информационные базы данных, с которыми работают клиенты, а также программы поиска, чтения и записи данных в эти базы (СУБД). Терминалы (клиенты) посылают серверу запросы и ждут от него ответного сообщения. В сервере производится поиск данных, осуществляются чтение их из базы и передача клиенту, а также запись данных, передаваемых клиентом в базу. Поскольку сервер обслуживает несколько подразделений предприятия, к нему предъявляются повышенные требования по пропускной способности, быстродействию, объемам запоминающих устройств и надежности.

Преимуществом для пользователей является то, что они могут постепенно заменять компоненты системы на более совершенные, пополнять базы данных, не утрачивая работоспособности системы. В частности, в этом кроется решение проблемы постепенного наращивания информационных и других мощностей компьютерной информационной системы управления материальными ресурсами.

В основе широкого распространения ЛВС на предприятиях, фирмах, занятых маркетинговой деятельностью, лежит организация распределения ресурсов. Высокая пропускная способность локальных вычислительных сетей обеспечивает эффективный доступ от АРМ маркетолога к ресурсам, находящимся на других автоматизированных рабочих местах ЛВС.

Автоматизированное рабочее место маркетолога в ЛВС предназначено для непосредственной работы пользователя или категории пользователей и обладает ресурсами, соответствующими локальным потребностям конкретного пользователя. Специфическими особенностями автоматизированного рабочего места могут быть: объем оперативной памяти (далеко не все категории маркетологов нуждаются в наличии большой оперативной памяти); наличие и объем дисковой памяти (достаточно популярны бездисковые рабочие станции, использующие внешнюю память дискового сервера); характеристики процессора и монитора (одним маркетологам нужен мощный процессор, другим требуется монитор с большей разрешающей способностью и т.д.). При необходимости можно использовать ресурсы и услуги, предоставляемые сервером.

Сервер ЛВС при обработке маркетинговой информации должен обладать ресурсами, соответствующими его функциональному назначению и потребностям сети.

Примерами серверов, которые могут использоваться в маркетинговой деятельности, являются:

- сервер телекоммуникаций, обеспечивающий услуги по связи данной ЛВС с внешней средой для получения внешней маркетинговой информации;

- вычислительный сервер, дающий возможность производить вычисления при обработке задач маркетинга, которые невозможно выполнить на автоматизированных рабочих местах;

- дисковый сервер, обладающий расширенными ресурсами внешней памяти и предоставляющий их в использование рабочим станциям и, при необходимости, другим серверам;

- файловый сервер, поддерживающий общее хранилище файлов для всех АРМ маркетологов;

- сервер баз данных -- фактически обычная СУБД, принимающая запросы по ЛВС и возвращающая результаты.

При решении задач маркетинга зачастую необходимо, чтобы прикладная программа, выполняемая на автоматизированном рабочем месте маркетолога, могла запросить услугу у сервера и получить необходимую информацию или поддержку. На базе этого строятся основные принципы системной архитектуры «клиент-сервер».

Система разбивается на две части, которые могут располагаться в разных узлах сети, на разных автоматизированных рабочих местах, -- клиентскую и серверную части. Прикладная программа, или конечный пользователь, взаимодействует с клиентской частью системы, которая в простейшем случае обеспечивает информационную связь. Клиентская часть системы, если это требуется, обращается по сети к серверной части за информацией, хранящейся в определенной базе данных сервера.

В архитектуре «клиент-сервер» в маркетинговой деятельности наибольшее распространение получил «сервер баз данных», используемый обычно для обозначения всей СУБД, включая и серверную, и клиентскую части. Такие системы предназначены для хранения и обеспечения доступа к базам данных.

Несмотря на то, что обычно одна база данных целиком хранится в одном узле сети и поддерживается одним сервером, серверы баз данных представляют собой простое и дешевое приближение к распределенным базам данных, поскольку общая база данных доступна для всех пользователей ЛВС, что достаточно удобно для обработки маркетинговой информации на предприятии или в фирме.

Все файлы СУБД можно укрупнено распределить на 6 основных групп.

Данные хранятся в файлах базы данных, состоящих из записей фиксированной длины. Состав и характеристика полей записи задаются маркетологами при создании файла. Каждое поле поименовано с указанием типа и длины. На основании описания полей формируется описание файла, которое хранится вместе с данными. В текущий момент времени маркетологу доступен только один файл, называемый активным. Файлы остальных типов являются вспомогательными, обеспечивающими дополнительные возможности по обработке файлов баз данных.

Индексные файлы обеспечивают прямой доступ к записям файлов базы данных. Индексы строятся по любому полю или сцеплению полей. При построении индексных файлов используется сплошная индексация, т.е. на каждую запись файла базы данных приходится запись в индексном файле, содержащая значение индексируемого поля и адрес, соответствующий номеру записи файла базы данных.

Файлы памяти предназначены для хранения на диске переменных памяти, которые создаются в процессе сеанса работы маркетолога с СУБД и теряются, если их не сохранять. В переменных памяти хранятся константы, промежуточные результаты, получаемые в процессе обработки данных.

Командные файлы содержат программы в виде последовательности команд, обеспечивающие комплексную обработку маркетинговых данных по одним и тем же алгоритмам.

Форматные файлы обеспечивают получение документов сложной структуры. В них содержится описание документов, включающее заголовок, правила заполнения граф, общие и промежуточные итоги и правила управления печатью.

Файлы конфигурации содержат оформленные как обычные текстовые файлы совокупности команд установки специальных функций.

Такое информационное построение при организации локальной вычислительной сети позволяет эффективно решать задачи маркетинга.

6. Технология решения аналитических и прогнозных задач маркетинга

В маркетинговой деятельности важное место занимают задачи аналитического и прогнозного характера, решение которых сопряжено с большими временными, трудовыми затратами, а главное -- требуют участия высококвалифицированных специалистов. Это задачи изучения спроса, состояния рынка, поиска наиболее благоприятных условий для сбыта продукции, анализа складывающейся ценовой динамики на нее и т.п. В данном случае приходится не только анализировать сложные процессы во времени, но и располагать большими объемами информации о покупательском спросе в конкретном регионе и на интересующую аналитика дату по отдельным группам или видам товаров; выявлять внутригрупповой ассортимент структуры спроса по товарным признакам, устанавливать сезонные колебания спроса и степень возможного или фактического его удовлетворения по видам товаров и т.п. Задачи аналитического и прогнозного характера могут быть очень разнообразны по содержанию и направленности использования полученных результатов.

Систематизация знаний о поведении рынка была предпринята еще в конце прошлого века Чарльзом Доу (одним из авторов индекса Доу-Джонса). Технический анализ как метод прогнозирования цен на основе изучения их изменений за определенные промежутки времени формировался в 40--60-х годах нашего столетия под влиянием работ Эллиота, Ганна, Мерфи и других ученых. С 80-х годов отмечено резкое повышение интереса к теории технического анализа, что обусловлено не только быстрым ростом биржевых операций, но и интенсивным развитием информатизации во всех областях науки, техники, экономики и, в частности, быстрым развитием информационных технологий.

Технический анализ реализуется с помощью графических методик, математической апроксимации и циклического анализа временных рядов. Знание закономерностей предоставляет аналитику набор правил, руководствуясь которыми он способен принять взвешенное решение.

Для реализации требований анализа и прогнозирования финансового и товарного рынков в последнее время разрабатывается специальное программное обеспечение, а также программные продукты на основе экспертных систем и нейронных сетей.

Для формирования собственных программных приложений в среде архитектуры «клиент-сервер» может функционировать визуальная объектно-ориентированная система Oracle Express Objects, позволяющая пользователям специалистам-маркетологам (не профессиональным аналитикам) осуществлять анализ при выполнении своих служебных обязанностей. Oracle Express Objects предоставляет возможности графического моделирования и анализа типа «что -- если» на базе традиционных систем Oracle Objects, работающих в среде Windows.

Используя таблицы и графики, специалист-маркетолог может производить разносторонний анализ, детализируя и углубляя его по различным аспектам. Например могут быть выявлены запасы товаров, отслежены колебания объемов, предупреждены менеджеры о снижении таких запасов и необходимости их пополнения.

Программный продукт Oracle Sales Analyzer является широко применяемым приложением в области продаж и маркетинга. Он предназначен для анализа объемов продаж маркетинговых компаний, прибыльности продукции или заказчика, жизненного цикла продукта и эффективности продвижения товара. После окончания работы система позволяет пользователям скорректировать их стратегию с помощью дополнительного анализа.

Oracle Sales Analyzer упрощает оценку долей рынка, формирование отчетов о распределении мест, проведение анализа и вычислений и позволяет определить:

- кто скорее всего купит следующим какой продукт и когда;

- почему доля рынка на некоторых направлениях падает, а на остальных нет;

- кто из заказчиков конкретного вида продукции является наиболее прибыльным;

- как скажется выпуск нового продукта на сбыте уже существующего ассортимента;

- какая ценовая политика может считаться лучшей: максимизация прибыли или соревнование с ценами конкурентов.

Создание и использование экспертных систем является одним из концептуальных этапов развития информационных технологий в маркетинге.

Экспертная система (ЭС) -- это совокупность методов и средств организации, накопления и применения знаний на базе АИТ для решения сложных задач оценки ситуаций в коммерческо-сбытовой деятельности. ЭС предназначена для решения так называемых неформализованных задач, решение которых не может описываться традиционными математическими и статистическими методами и которые обладают одной или несколькими из следующих характеристик:

- задачи не могут быть выражены в числовой форме;

- цели не могут быть показаны в терминах точно определенной целевой функции;

- не существует алгоритмического решения задачи;

- алгоритмическое решение есть, но его нельзя использовать из-за ограниченности ресурсов (время, память).

В основе интеллектуального решения проблем маркетинговой деятельности с использованием ЭС лежит принцип воспроизведения знаний опытных специалистов-экспертов. Исходя из собственного опыта, эксперт, используя ЭС, анализирует ситуацию и распознает наиболее полезные факты, оптимизирует принятие решений, отсекая тупиковые пути. Программные средства, основанные на технологии экспертных систем, позволяют достичь более высокой эффективности за счет рассмотрения большого числа альтернатив при выборе решения, ориентации на накопленный и зафиксированный в базе знаний опыт группы специалистов, анализа влияния большого количества новых факторов и оценки их при построении стратегий и прогноза.

Основой экспертной системы является совокупность знаний (базы знаний), структурированных в целях формализации процесса принятия решений. Экспертные системы разрабатываются с расчетом па обучение, и потому способны обосновать логику выбора решений, т.е. обладают свойствами адаптивности и аргументирования. Большинство ЭС имеют механизм объяснения, который, используя накопленные в системе знания, дает пояснения и обоснования выбора найденного решения.

Преимущества ЭС по сравнению с использованием опытных специалистов состоят в следующем:

- достигнутая компетентность не утрачивается, она может документироваться, передаваться, воспроизводиться и наращиваться;

- имеют место более устойчивые результаты, отсутствуют эмоциональные и другие факторы человеческой ненадежности;

- высокая стоимость разработки уравновешивается низкой стоимостью эксплуатации, возможности копирования, что в совокупности дешевле оплаты труда высококвалифицированных специалистов.

ЭС создаются как инструмент в работе пользователей, с помощью которого они получают возможность совершенствовать свой потенциал для решения трудных, неординарных задач в ходе практической работы. В частности, ЭС для анализа маркетинговой деятельности должна демонстрировать не только компетентность, т.е. достигать в процессе работы того же уровня, что и специалисты-эксперты, но и находить наиболее рациональные решения в минимальные временные отрезки.

Недостатком современных экспертных систем является меньшая их приспособляемость к обучению новым правилам и концепциям, к творчеству и изобретательству. Использование ЭС позволяет во многих случаях отказаться от услуг высококвалифицированных специалистов. В системе эксперта с более низкой квалификацией наличие технологии ЭС будет служить средством расширения профессиональных знаний и возможностей.

Отличиями ЭС от обычных компьютерных технологий являются:

- экспертные системы манипулируют знаниями, тогда как любые другие системы используют готовые данные;

- экспертные системы, как правило, дают эффективные обоснованные решения, и хотя они способны иногда ошибаться, но, в отличие от традиционных компьютерных систем, имеют потенциальную возможность учиться на своих ошибках.

Экспертные системы создаются для решения разного рода проблем, типы которых можно сгруппировать в категории.

Зарубежный опыт показывает, что ЭС разрабатываются в основном в университетах, научно-исследовательских центрах и коммерческих организациях и области их применения постоянно расширяются. Одним из наиболее важных последствий разработки экспертных систем является модификация знаний. По мере того, как разработчики будут строить сложные базы знаний, начнет функционировать рынок знаний, не зависимых от компьютерных систем. Появятся средства обучения для изучающих определенную прикладную область. Коммерческим продуктом станут метазнания, т.е. знания об оптимальных стратегиях и процедурах использования предметных знаний. Перерастание экспертных систем в интеллектуальные состоит в слиянии концепций оборудования, средств их создания (языков) и самих экспертных систем. Объединение интеллектуальных систем особенно эффективно в сложных инфраструктурах. Интеллектуальные системы уже разрабатываются и внедряются за рубежом для коммерческого использования.

Экспертная система FOLIO (Стенфордский университет, США) помогает консультантам по инвестициям определять цели клиентов и подбирать портфели ценных бумаг, наиболее соответствующие этим целям. Система определяет нужды клиента в ходе интервью и затем рекомендует, в каких пропорциях надо распределить капиталовложения между разными фондовыми инструментами, чтобы наилучшим образом удовлетворить запросы клиента. Система различает небольшое число классов ценных бумаг (например, ориентированные на дивиденды акции с невысоким уровнем риска или ориентированные на акции с высоким уровнем риска) и содержит знания о свойствах (например о годовых процентах на капитал) ценных бумаг каждого класса. В системе применена основанная на принятых правилах схема представления знаний с прямой цепочкой рассуждений для вывода целей и схема линейного программирования для максимизации соответствия между целями и предлагаемым портфелем. Система доведена до уровня демонстрационного прототипа.

Искусственная компетентность экспертных систем не заменяет полностью человека. Эксперт-человек способен реорганизовать информацию и знания и использовать их для синтеза новых знаний. В области творческой деятельности люди обладают большими способностями и возможностями по сравнению с самыми умными системами. Эксперты справляются с неожиданными поворотами событий и, используя новые подходы, способны проводить аналогии из других предметных областей. Они адаптируют свои стратегии к изменяющимся условиям и приспосабливают их к новым обстоятельствам в более широком диапазоне проблем и задач. Экспертные системы менее приспособлены к обучению на уровне новых концепций и новых правил. Они оказываются не столь эффективными и мало пригодными в случаях, когда надо учитывать всю сложность реальных задач.

Эксперты могут непосредственно воспринимать весь комплекс входной информации: символьной, визуальной, графической, текстовой, звуковой, осязательной, обонятельной. У экспертной системы есть только символы, через которые представлены базы знаний с воплощенными в них теми или иными концепциями. Преобразование сенсорной информации в символьную сопровождается потерей части информации.

И самое главное, люди (эксперты и неэксперты) обладают здравым смыслом или общими знаниями. Это широкий спектр знаний о мире, о действующих в нем законах. Из-за огромного объема знаний, образующих здравый смысл, не существует пока способа, встроить их в интеллектуальную систему, тем более специализированную, какой является любая экспертная система.

Исторически развитие нейросетей складывалось как попытки смоделировать те или иные способности и свойства человеческого мышления. После сложных исследований была выяснена роль нейронов как элементов, накапливающих и передающих информацию. Разработка соответствующих математических методов позволила создать обученные системы, обладающие следующими свойствами:

- способностью обучаться на множестве предъявляемых примеров;

- с высокой точностью распознавать новые входные значения;

- сохранять устойчивость работы и точность распознавания в случаях, когда входные данные противоречивы, искажены или содержат шумовые помехи.

Нейронные сети -- это обобщенное название нескольких групп алгоритмов, обладающих свойством уметь обучаться на примерах, извлекая скрытые закономерности из потока данных. При этом данные могут быть неполными, противоречивыми и даже заведомо искаженными. Если между входными и выходными данными существует какая-то связь, даже не обнаруживаемая традиционными корреляционными методами, то нейронная сеть способна автоматически настроиться на нее с заданной степенью точности. Кроме того, современные нейронные сети обладают дополнительными возможностями: они позволяют оценивать сравнительную важность различных видов входной информации, уменьшать ее объем без потери существенных данных, распознавать симптомы приближения критических ситуаций и т.д.

С середины 80-х годов нейронные сети начали использоваться на Западе -- преимущественно в финансовых и военных приложениях. Однако, несмотря на успехи первых экспериментов, поначалу это были единичные заказные системы -- слишком сложен был инструмент и слишком дорога его разработка. Ситуация коренным образом изменилась в начале 90-х годов, когда на рынке появилось новое поколение нейросетевых пакетов -- мощных, недорогих и простых в использовании. Практически сразу одним из лидеров рынка стал неиросетевои пакет Brain Maker (1990 г.) американской фирмы California Sientific Software. Первоначально разработанный по заказу военных пакет был адаптирован для бизнес-приложений. Надо отметить, что при решении аналитических задач нейронные сети используются в комбинации с каким-либо мощным пакетом традиционного технического анализа (например пакетом MetaStock for Windows). Маркетологи хорошо знают цену качественной аналитической обработке данных, и поэтому можно спрогнозировать, что в ближайшее время на рынке появится новая (вероятно, весьма доходная) услуга -- поставка аналитической информации, прошедшей первичную обработку.

Применение нейронных сетей в прогнозировании началось с появления на рынке коммерческого нейропакета Brain Maker. Используемая конструкция нейросети делает его надежным и удобным в работе. Для его освоения от аналитика не требуется специальных познаний ни в программировании, ни в математике. Этот пакет до сегодняшнего дня остается самым продаваемым в своем классе. Специалисты-аналитики получили мощное средство для составления прогнозов, практически незаменимое в случаях, когда правила, по которым изменяется цена, неизвестны и трудновыявляемы.

Метод, положенный в основу создания нейросистем, основан на том, что подавляющее число рассматриваемых явлений непрерывно меняется с течением времени. Описывая эти явления, чаще всего невозможно указать их точных характеристик, поэтому необходимо прибегать к приближенным оценкам. Нечеткая логика («нечеткое представление») дает инструмент для решения задач с динамически изменяющимися данными, что достаточно важно в маркетинговой деятельности.

Отличительные свойства указанного метода:

- любой процесс можно описать в категориях «больше -- меньше», «лучше -- хуже» и т.д.;

- над нечетко заданными переменными можно производить вычисления и получать ответ с заданной степенью точности;

- по сравнению с классическими инструментами данный метод сильно сокращает количество промежуточных вычислений, что существенно, когда принятие решения ограничено жесткими временными рамками;

- при нечетком описании процесса предоставляется возможность не только количественного, но и качественного анализа данных.

Системы, реализующие механизмы нечеткой логики, в коммерческом применении появились сравнительно недавно, но быстро нашли применение в задачах управления и планирования.

По оценкам западных специалистов, современный аналитик до 80% времени тратит не на подготовку, а на поиск и извлечение необходимых данных из разнообразных потоков деловой информации. Нейронные системы в этом случае предоставляют экспертно-консультативные и вычислительные услуги по снижению фактора неопределенности входных данных, в том числе путем автоматической «подгонки» их к наиболее близкому и подходящему закону вероятностных решений.

Программное обеспечение нейронных систем предназначено для исследования и экспертной оценки ситуаций, содержащих неопределенность, что помогает в разработке разнообразных моделей принятия решений в сфере деловой и финансовой активности.

Внедрение нейронных систем в маркетинговой деятельности предприятия, фирмы позволит повысить фактор успеха при получении прибыли.

Список литературы

1. Титоренко Г.А. Автоматизированные информационные технологии в экономике. М.: ЮНИТИ, 2008.

2. Быкова Е.В., Стоянова Е.С. Финансовое искусство коммерции. М.: Перспектива, 2009.

3. Тихомиров В.П., Хорошилов А.В. Введение в информационный выбор. М.: Финансы и статистика, 2009.

4. Ковальков В.П. Эффективные технологии в маркетинге. Спб.: Экономическое образование, 2008.

5. Глазьев В.П. Операционные технологии межбанковского финансового рынка. М.: ЮНИТИ, 2009.

Размещено на Allbest.ru


Подобные документы

  • Техническое обеспечение и его состав. Организационные формы использования технических средств. Факторы, влияющие на выбор настольных ПК для решения экономических задач. Виды информационных технологий в экономике. Технология формирования документов.

    реферат [47,5 K], добавлен 07.12.2011

  • Общее понятие и признаки классификации информационных систем. Типы архитектур построения информационных систем. Основные компоненты и свойства базы данных. Основные отличия файловых систем и систем баз данных. Архитектура клиент-сервер и ее пользователи.

    презентация [203,1 K], добавлен 22.01.2016

  • Средства компьютерной, коммуникационной и организационной техники как техническая основа обеспечения информационных технологий. Основные системы классификации компьютеров. Программное обеспечение информационных технологий в маркетинге и экономике.

    лекция [924,6 K], добавлен 01.04.2012

  • История информационных систем и их классификация. Типы обеспечивающих подсистем, информационное, техническое, математическое, программное, организационное и правовое обеспечение. Базы данных, содержащие информацию о различных отраслях деятельности.

    курсовая работа [197,4 K], добавлен 24.01.2011

  • Классификация информационных технологий. Автоматизированные системы управления. Технологическое программное обеспечение. Системы управления базами данных. Операционные системы и платформы виртуализации. Бизнес-приложения. Свободные проекты и услуги.

    контрольная работа [32,4 K], добавлен 11.01.2014

  • Основные направления в истории развития компьютерной индустрии. Специфика информационных программных систем. Основные задачи информационных систем. Классификация архитектур информационных приложений. Файл-серверные и клиент-серверные приложения.

    презентация [110,8 K], добавлен 11.04.2013

  • Информационные технологии и системы. Связь организаций и информационных систем. Интегрированная система управления промышленными предприятиями. Возможности информационных технологий в бизнесе, их влияние на организацию и роль менеджеров в этом процессе.

    курсовая работа [147,7 K], добавлен 07.05.2012

  • Классификация автоматизированных информационных систем; их использование для систем управления. Характеристика предоставляемых услуг ООО "Континент"; анализ эффективности применения информационных технологий конечного пользователя на предприятии.

    дипломная работа [4,2 M], добавлен 05.12.2011

  • Анализ технического обеспечения информационных систем (микропроцессоры). Программное обеспечение информационных систем. Классификация программного обеспечения. Программы подготовки первичных документов на примере "1С: Бухгалтерия", "1С: Налогоплательщик".

    контрольная работа [808,5 K], добавлен 20.07.2010

  • Схема организационной структуры управления информационных и аналитических технологий аппарата администрации. Математическая постановка задачи классификации информационных сообщений СМИ. Описание информационного обеспечения на примере АИС "Классификатор".

    дипломная работа [677,2 K], добавлен 28.07.2009

Работы в архивах красиво оформлены согласно требованиям ВУЗов и содержат рисунки, диаграммы, формулы и т.д.
PPT, PPTX и PDF-файлы представлены только в архивах.
Рекомендуем скачать работу.