Информационные технологии в профессиональной деятельности
Технические и программные средства ПК. Понятие компьютерных сетей и работа в локальной компьютерной сети. Компьютерная преступность, несанкционированный доступ к файлам. Вирусы, виды и защита от них информации. Интернет и его службы, использование сетей.
Рубрика | Программирование, компьютеры и кибернетика |
Вид | курс лекций |
Язык | русский |
Дата добавления | 12.05.2009 |
Размер файла | 311,7 K |
Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже
Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.
Собственность на информацию, как и прежде, не закреплена в законодательном порядке. На мой взгляд, последствия этого не замедлят сказаться.
Предупреждение компьютерных преступлений.
При разработке компьютерных систем, выход из строя или ошибки в работе которых могут привести к тяжелым последствиям, вопросы компьютерной безопасности становятся первоочередными. Известно много мер, направленных на предупреждение преступления. Выделим из них технические, организационные и правовые.
К техническим мерам можно отнести защиту от несанкционированного доступа к системе, резервирование особо важных компьютерных подсистем, организацию вычислительных сетей с возможностью перераспределения ресурсов в случае нарушения работоспособности отдельных звеньев, установку оборудования обнаружения и тушения пожара, оборудования обнаружения воды, принятие конструкционных мер защиты от хищений, саботажа, диверсий, взрывов, установку резервных систем электропитания, оснащение помещений замками, уста новку сигнализации и многое другое.
К организационным мерам отнесем охрану вычислительного центра, тщательный подбор персонала, исключение случаев ведения особо важных работ только одним человеком, наличие плана восстановления работоспособности центра после выхода его из строя, организацию обслуживания вычислительного центра посторонней организацией или лицами, незаинтересованными в сокрытии фактов нарушения работы центра, универсальность средств защиты от всех пользователей (включая высшее руководство), возложение ответственности на лиц, которые должны обеспечить безопасность центра, выбор места расположения центра и т.п.
К правовым мерам следует отнести разработку норм, устанавливающих ответственность за компьютерные преступления, защиту авторских прав программистов, совершенствование уголовного и гражданского законодательства, а также судопроизводства. К правовым мерам относятся также вопросы общественного контроля за разработчиками компьютерных систем и принятие международных договоров об их ограничениях, если они влияют или могут повлиять на военные, экономические и социальные аспекты жизни стран, заключающих соглашение
Защита данных.
Шифрование данных может осуществляться в режимах On-line (в темпе поступления информации) и Off-line (автономном). Остановимся подробнее на первом типе, представляющем большой интерес. Наиболее распространены два алгоритма.
Стандарт шифрования данных DES (Data Encryption Standart) был разработан фирмой IBM в начале 70-х годов и в настоящее время является правительственным стандартом для шифрования цифровой информации. Он рекомендован Ассоциацией Американских Банкиров. Сложный алгоритм DES использует ключ длиной 56 бит и 8 битов проверки на четность и тре бует от злоумышленника перебора 72 квадрилионов возможных ключевых комбинаций, обеспечивая высокую степень защиты при небольших расходах. При частой смене ключей алгоритм удовлетворительно решает проблему превращения конфиденциальной информации в недоступную.
Защита от компьютерных вирусов. В качестве перспективного подхода к защите от компьютерных вирусов в последние годы все чаще применяется сочетание программных и аппаратных методов защиты. Среди аппаратных устройств такого плана можно отметить специальные антивирусные платы, которые вставляются в стандартные слоты расширения компьютера. Корпорация Intel в 1994 году предложила перспективную технологию защиты от вирусов в компьютерных сетях. Flash-память сетевых адаптеров Intel EtherExpress PRO/10 содержит антивирусную программу, сканирующую все системы компьютера еще до его загрузки.
Защита от несанкционированного доступа. Помимо контроля доступа, необходимым элементом защиты информации в компьютерных сетях является разграничение полномочий пользователей.
В компьютерных сетях при организации контроля доступа и разграничения полномочий пользователей чаще всего используются встроенные средства сетевых операционных систем. Так, крупнейший производитель сетевых ОС - корпорация Novell - в своем последнем продукте NetWare 4.1 предусмотрел помимо стандартных средств ограничения доступа, таких, как система паролей и разграничения полномочий, ряд новых возможностей, обеспечивающих первый класс защиты данных. Новая версия NetWare предусматривает, в частности, возможность кодирования данных по принципу “открытого ключа” (алгоритм RSA) с формированием электронной подписи для передаваемых по сети пакетов.
В то же время в такой системе организации защиты все равно остается слабое место: уровень доступа и возможность входа в систему определяются паролем. Не секрет, что пароль можно подсмотреть или подобрать. Для исключения возможности неавторизованного входа в компьютерную сеть в последнее время используется комбинированный подход - пароль + идентификация пользователя по персональному “ключу”. В качестве “ключа” может использоваться пластиковая карта (магнитная или со встроенной микросхемой - smart-card) или различные устройства для идентификации личности по биометрической информации - по радужной оболочке глаза или отпечатков пальцев, размерам кисти руки и так далее.
Защита информации при удаленном доступе. По мере расширения деятельности предприятий, роста численности персонала и появления новых филиалов, возникает необходимость доступа удаленных пользователей (или групп пользователей) к вычислительным и информационным ресурсам главного офиса компании. Разработаны специальные устройства контроля доступа к компьютерным сетям по коммутируемым линиям. Например, фирмой AT&T предлагается модуль Remote Port Security Device (PRSD), представляющий собой два блока размером с обычный модем: RPSD Lock (замок), устанавливаемый в центральном офисе, и RPSD Key (ключ), подключаемый к модему удаленного пользователя. RPSD Key и Lock позволяют установить несколько уровней защиты и контроля доступа.
Широкое распространение радиосетей в последние годы поставило разработчиков радиосистем перед необходимостью защиты информации от “хакеров”, вооруженных разнообразными сканирующими устройствами. Были применены разнообразные технические решения. Например, в радиосети компании RAM Mobil Data информационные пакеты передаются через разные каналы и базовые станции, что делает практически невозможным для посторонних собрать всю передаваемую информацию воедино. Активно используются в радио сетях и технологии шифрования данных при помощи алгоритмов DES и RSA.
Итак хотелось бы подчеркнуть, что никакие аппаратные, программные и любые другие решения не смогут гарантировать абсолютную надежность и безопасность данных в компьютерных сетях.
В то же время свести риск потерь к минимуму возможно лишь при комплексном подходе к вопросам безопасности.
Тема 2.2 Вирусы и защита от них
Компьютерный вирус - это специально написанная небольшая по размерам программа, которая может "приписывать" себя к другим программам, а также выполнять различные нежелательные действия на компьютере. Программа, внутри которой находится вирус, называется "зараженной". Когда такая программа начинает работу, то сначала управление получает вирус. Вирус находит и "заражает" другие программы, а также выполняет какие-нибудь вредные действия (например, портит файлы или таблицу размещения файлов на диске, "засоряет" оперативную память и т.д.). Вирус - это программа, обладающая способностью к самовоспроизведению. Такая способность является единственным свойством, присущим всем типам вирусов.
История компьютерной вирусологии представляется сегодня постоянной "гонкой за лидером", причем, не смотря на всю мощь современных антивирусных программ, лидерами являются именно вирусы. Среди тысяч вирусов лишь несколько десятков являются оригинальными разработками, использующими действительно принципиально новые идеи. Все остальные - "вариации на тему". Но каждая оригинальная разработка заставляет создателей антивирусов приспосабливаться к новым условиям, догонять вирусную технологию. Последнее можно оспорить. Например, в 1989 году американский студент сумел создать вирус, который вывел из строя около 6000 компьютеров Министерства обороны США. Или эпидемия известного вируса Dir-II, разразившаяся в 1991 году. Вирус использовал действительно оригинальную, принципиально новую технологию и на первых порах сумел широко распространиться за счет несовершенства традиционных антивирусных средств.
Или всплеск компьютерных вирусов в Великобритании: Кристоферу Пайну удалось создать вирусы Pathogen и Queeq, а также вирус Smeg. Именно последний был самым опасным, его можно было накладывать на первые два вируса, и из-за этого после каждого прогона программы они меняли конфигурацию. Поэтому их было невозможно уничтожить. Чтобы распространить вирусы, Пайн скопировал компьютерные игры и программы, заразил их, а затем отправил обратно в сеть. Пользователи загружали в свои компьютеры зараженные программы и инфицировали диски. Ситуация усугубилась тем, что Пайн умудрился занести вирусы и в программу, которая с ними борется. Запустив ее, пользователи вместо уничтожения вирусов получали еще один. В результате этого были уничтожены файлы множества фирм, убытки составили миллионы фунтов стерлингов.
Причины появления и распространения компьютерных вирусов, с одной стороны, скрываются в психологии человеческой личности и ее теневых сторонах (зависти, мести, тщеславии непризнанных творцов, невозможности конструктивно применить свои способности), с другой стороны, обусловлены отсутствием аппаратных средств защиты и противодействия со стороны операционной системы персонального компьютера.
Классификация вирусов.
В зависимости от среды обитания вирусы можно разделить на:
Сетевые вирусы распространяются по различным компьютерным сетям.
Файловые вирусы внедряются главным образом в исполняемые модули, т.е. в файлы, имеющие расширения COM и EXE. Файловые вирусы могут внедряться и в другие типы файлов, но, как правило, записанные в таких файлах, они никогда не получают управление и, следовательно, теряют способность к размножению.
Загрузочные вирусы внедряются в загрузочный сектор диска (Boot-сектор) или в сектор, содержащий программу загрузки системного диска (Master Boot Re-cord).
Файлово-загрузочные вирусы заражают как файлы, так и загрузочные сектора дисков.
По способу заражения вирусы делятся на:
Резидентный вирус при заражении (инфицировании) компьютера оставляет в оперативной памяти свою резидентную часть, которая потом перехватывает обращение операционной системы к объектам заражения (файлам, загрузочным секторам дисков и т.п.) и внедряется в них. Резидентные вирусы находятся в памяти и являются активными вплоть до выключения или перезагрузки компьютера.
Нерезидентные вирусы не заражают память компьютера и являются активными ограниченное время.
По особенностям алгоритма:
Загрузочные вирусы
Рассмотрим схему функционирования очень простого загрузочного вируса, заражающего дискеты.
Что происходит, когда вы включаете компьютер? Первым делом управление передается программе начальной загрузки, которая хранится в постоянно запоминающем устройстве (ПЗУ) т.е. ПНЗ ПЗУ.
Эта программа тестирует оборудование и при успешном завершении проверок пытается найти дискету в дисководе А:
Таким образом, нормальная схема начальной загрузки следующая:
ПНЗ (ПЗУ) - ПНЗ (диск) - СИСТЕМА
Теперь рассмотрим вирус. В загрузочных вирусах выделяют две части: голову и т. н. хвост. Хвост может быть пустым.
Пусть у вас имеются чистая дискета и зараженный компьютер, под которым мы понимаем компьютер с активным резидентным вирусом. Как только этот вирус обнаружит, что в дисководе появилась подходящая жертва - в нашем случае не защищенная от записи и еще не зараженная дискета, он приступает к заражению. Заражая дискету, вирус производит следующие действия:
выделяет некоторую область диска и помечает ее как недоступную операционной системе, это можно сделать по-разному, в простейшем и традиционном случае занятые вирусом секторы помечаются как сбойные (bad)
копирует в выделенную область диска свой хвост и оригинальный (здоровый) загрузочный сектор
замещает программу начальной загрузки в загрузочном секторе (настоящем) своей головой
организует цепочку передачи управления согласно схеме.
Таким образом, голова вируса теперь первой получает управление, вирус устанавливается в память и передает управление оригинальному загрузочному сектору. В цепочке
ПНЗ (ПЗУ) - ПНЗ (диск) - СИСТЕМА
появляется новое звено:
ПНЗ (ПЗУ) - ВИРУС - ПНЗ (диск) - СИСТЕМА
Мы рассмотрели схему функционирования простого бутового вируса, живущего в загрузочных секторах дискет. Как правило, вирусы способны заражать не только загрузочные секторы дискет, но и загрузочные секторы винчестеров.
Файловые вирусы.
В отличие от загрузочных вирусов, которые практически всегда резидентны, файловые вирусы совсем не обязательно резидентны. Рассмотрим схему функционирования нерезидентного файлового вируса. Пусть у нас имеется инфицированный исполняемый файл. При запуске такого файла вирус получает управление, производит некоторые действия и передает управление "хозяину"
Какие же действия выполняет вирус? Он ищет новый объект для заражения - подходящий по типу файл, который еще не заражен. Заражая файл, вирус внедряется в его код, чтобы получить управление при запуске этого файла. Кроме своей основной функции - размножения, вирус вполне может сделать что-нибудь замысловатое (сказать, спросить, сыграть) - это уже зависит от фантазии автора вируса. Если файловый вирус резидентный, то он установится в память и получит возможность заражать файлы и проявлять прочие способности не только во время работы зараженного файла. Заражая исполняемый файл, вирус всегда изменяет его код - следовательно, заражение исполняемого файла всегда можно обнаружить.
Полиморфные вирусы.
Полиморфные вирусы - вирусы, модифицирующие свой код в зараженных программах таким образом, что два экземпляра одного и того же вируса могут не совпадать ни в одном бите.
Такие вирусы не только шифруют свой код, используя различные пути шифрования, но и содержат код генерации шифровщика и расшифровщика, что отличает их от обычных шифровальных вирусов, которые также могут шифровать участки своего кода, но имеют при этом постоянный код шифровальщика и расшифровщика.
Полиморфные вирусы - это вирусы с самомодифицирующимися расшифровщиками. Цель такого шифрования: имея зараженный и оригинальный файлы, вы все равно не сможете проанализировать его код с помощью обычного дизассемблирования. Этот код зашифрован и представляет собой бессмысленный набор команд. Расшифровка производится самим вирусом уже непосредственно во время выполнения. При этом возможны варианты: он может расшифровать себя всего сразу, а может выполнить такую расшифровку "по ходу дела", может вновь шифровать уже отработавшие участки. Все это делается ради затруднения анализа кода вируса.
Стелс-вирусы.
В ходе проверки компьютера антивирусные программы считывают данные - файлы и системные области с жестких дисков и дискет, пользуясь средствами операционной системы и базовой системы ввода/вывода BIOS. Ряд вирусов, после запуска оставляют в оперативной памяти компьютера специальные модули, перехватывающие обращение программ к дисковой подсистеме компьютера. Если такой модуль обнаруживает, что программа пытается прочитать зараженный файл или системную область диска, он на ходу подменяет читаемые данные, как будто вируса на диске нет.
Стелс-вирусы обманывают антивирусные программы и в результате остаются незамеченными. Тем не менее, существует простой способ отключить механизм маскировки стелс-вирусов. Достаточно загрузить компьютер с не зараженной системной дискеты и сразу, не запуская других программ с диска компьютера (которые также могут оказаться зараженными), проверить компьютер антивирусной программой.
При загрузке с системной дискеты вирус не может получить управление и установить в оперативной памяти резидентный модуль, реализующий стелс-механизм. Антивирусная программа сможет прочитать информацию, действительно записанную на диске, и легко обнаружит вирус.
Методы защиты от компьютерных вирусов.
Каким бы не был вирус, пользователю необходимо знать основные методы защиты от компьютерных вирусов.
Для защиты от вирусов можно использовать:
общие средства защиты информации (копирование важной информации и разграничение доступа);
профилактические меры, позволяющие уменьшить вероятность заражения вирусом;
специализированные программы для защиты от вирусов.
Несмотря на то, что общие средства защиты информации очень важны для защиты от вирусов, все же их недостаточно. Необходимо и применение специализированных программ для защиты от вирусов. Эти программы можно разделить на несколько видов:
ПРОГРАММЫ-ДЕТЕКТОРЫ позволяют обнаруживать файлы, зараженные одним из нескольких известных вирусов. Эти программы проверяют, имеется ли в файлах на указанном пользователем диске специфическая для данного вируса комбинация байтов. При ее обнаружении в каком-либо файле на экран выводится соответствующее сообщение (Scan, Aidstest).
Многие детекторы имеют режимы лечения или уничтожения зараженных файлов. Следует подчеркнуть, что программы-детекторы могут обнаруживать только те вирусы, которые ей "известны".
Многие программы-детекторы (в том числе и Aidstest) не умеют обнаруживать заражение "невидимыми" вирусами, если такой вирус активен в памяти компьютера. Дело в том, что для чтения диска они используют функции DOS, а они перехватываются вирусом, который говорит, что все хорошо.
Так что надежный диагноз программы-детекторы дают только при загрузке DOS с "чистой", защищенной от записи дискеты, при этом копия программы-детектора также должна быть запущена с этой дискеты.
Большинство программ-детекторов имеют функцию "доктора", т.е. они пытаются вернуть зараженные файлы или области диска в их исходное состояние. Те файлы, которые не удалось восстановить, как правило, делаются неработоспособными или удаляются.
Большинство программ-докторов умеют "лечить" только от некоторого фиксированного набора вирусов, поэтому они быстро устаревают.
ПРОГРАММЫ-РЕВИЗОРЫ имеют две стадии работы. Сначала они запоминают сведения о состоянии программ и системных областей дисков (загрузочного сектора и сектора с таблицей разбиения жесткого диска). Предполагается, что в этот момент программы и системные области дисков не заражены. После этого с помощью программы-ревизора можно в любой момент сравнить состояние программ и системных областей дисков с исходным. О выявленных несоответствиях сообщается пользователю.
Чтобы проверка состояния программ и дисков проходила при каждой загрузке операционной системы, необходимо включить команду запуска программы-ревизора в командный файл AUTOEXEC. BAT. Это позволяет обнаружить заражение компьютерным вирусом, когда он еще не успел нанести большого вреда. Более того, та же программа-ревизор сможет найти поврежденные вирусом файлы.
ПРОГРАММЫ-ФИЛЬТРЫ, которые располагаются резидентно в оперативной памяти компьютера и перехватывают те обращения к операционной системе, которые используются вирусами для размножения и нанесения вреда, и сообщают о них пользователя. Пользователь может разрешить или запретить выполнение соответствующей операции.
Некоторые программы-фильтры не "ловят" подозрительные действия, а проверяют вызываемые на выполнение программы на наличие вирусов. Это вызывает замедление работы компьютера.
Однако преимущества использования программ-фильтров весьма значительны - они позволяют обнаружить многие вирусы на самой ранней стадии, когда вирус еще не успел размножиться и что-либо испортить. Тем самым можно свести убытки от вируса к минимуму.
ПРОГРАММЫ-ВАКЦИНЫ, или ИММУНИЗАТОРЫ, модифицируют программы и диски таким образом, что это не отражается на работе программ, но тот вирус, от которого производится вакцинация, считает эти программы или диски уже зараженными. Эти программы крайне неэффективны.
3. Лекция
Тема 3.1 Internet и его службы
Компьютерной сетью (сетью ЭВМ) обычно называют совокупность взаимосвязанных и распределенных по некоторой территории ЭВМ и коммутационных устройств. В настоящее время интерес к сетям во всем мире очень велик. Началось стремительное развитие сетей и в России. Это определяется следующими особенностями сетевых технологий:
1 Многие организации, фирмы отличаются большой территориальной рассредоточенностью своих подразделений. Если ЭВМ этих подразделений включены в единую сеть, то у них появляется возможность общения и связи независимо от расстояния между ними.
2 Объединение ЭВМ предприятия в единую сеть позволяет осуществить общий доступ к базам данных или оборудованию.
Использование сетей ЭВМ позволяет создать достаточно гибкую рабочую среду. Так, сотрудники фирмы, используя персональные ЭВМ, подключенные к сети ЭВМ своего учреждения при помощи процедуры "удаленного доступа, могут работать дома или находясь в командировке в другом городе.
На рисунке приведен фрагмент сети, состоящий из двух ЭВМ - А и Б. Собственно, сеть в полной мере появляется лишь тогда, когда имеется два и более альтернативных пути передачи информации. Каждая из ЭВМ выполняет некоторое Приложение Конечного Пользователя (ПКП).
В качестве ПКП могут выступать программа, пакет программ или файл данных.
Функция сети - связать ЭВМ А и Б так, чтобы обеспечить доступ программы ЭВМ А к файлу ЭВМ Б (или наоборот). Обеспечить доступ в данном случае - это предоставить всю необходимую информацию из файла ЭВМ Б по запросу программы ЭВМ А в режиме реального времени, или, как еще говорят, "оn line". Информация передается, как правило, порциями. Эти порции называются пакетами, каждый из которых имеет адрес ЭВМ - получателя, основное поле - полезную информацию и служебные поля с данными о пакете: размер, контрольную сумму и т.п. Размер пакета обычно 128 или 256 байт, но может быть и другим.
Основное "физическое" средство связи - "физическая среда", - это кабель, проводная связь, телеграфный или голосовой канал тональной частоты - ТЧ-канал и т.д. Кроме того, на рисунке показаны блоки УСа и УСб - устройства сопряжения ЭВМ с каналами связи или сетью. Назначение такого блока - обеспечить интерфейс (стык) ЭВМ с сетью. Примером УС может служить модем. Тип УС зависит от вида связи.
Работа любого устройства сопряжения реализуется в соответствии с некоторым набором правил - протоколом. Протокол - это соглашения (правила) взаимодействия друг с другом коммуникационных компонентов.
Так, например, при передаче сообщений по каналу связи двоичным кодом (в виде последовательности нулей и единиц) протокол интерфейса с каналом связи может потребовать, чтобы двоичная единица в канале связи была предоставлена напряжением +5 В, а двоичный нуль - напряжением - 5 В.
Для каждого вида интерфейса существует свой протокол. В настоящее время практически все организации - разработчики сетевых решений придерживаются общепринятых протоколов и стандартов.
Методы передачи сообщений. Сообщения передаются по каналу связи с использованием одного из трех методов:
симплексный - передача только в одном направлении, используется, например, в телевидении и радиовещании;
полудуплексный - передача в обоих направлениях поочередно, что характерно для телеметрии и факсимильной связи;
дуплексный или полнодуплексный - одновременная передача в обоих направлениях, используется в глобальных сетях.
Метод передачи сообщений определяет тип устройства сопряжения.
Классификация сетей. Существующие сети принято в настоящее время делить в первую очередь по территориальному признаку:
Локальные сети охватывают небольшую территорию с расстоянием между отдельными ЭВМ до 2 км. Обычно такие сети действуют в пределах одного учреждения и могут быть связаны между собой при помощи глобальных сетей.
Глобальные сети охватывают, как правило, большие территории (территорию страны или нескольких стран). ЭВМ располагаются друг от друга на расстоянии до нескольких сотен километров.
Региональные или корпоративные сети существуют в пределах города, района или области. Они являются частью некоторой глобальной сети и особой спецификой по отношению к глобальным не отличаются.
Локальные сети.
Назначение и определение локальной сети (JIC) ЭВМ. Локальная сеть создается, как правило, для совместного использования (в пределах одной организации, фирмы) ресурсов ЭВМ или данных. Например, для коллективного использования дорогостоящих периферийных устройств - лазерных принтеров, графопостроителей и т.д., для коллективного пользования некоторой базой данных или архивов. Она может использоваться даже просто для передачи текстовых сообщений между коллегами-пользователями. Пользователь сети имеет возможность, работая со "своей" ЭВМ, обратиться к любому файлу или к программе на диске другой машины, если, конечно, в сети (для этой ЭВМ) не принято специальных мер ограничения такого доступа.
Итак, локальная сеть - это компьютерная сеть, в которой ЭВМ расположены на небольшом расстоянии друг от друга, при этом не используются средства связи общего пользования (типа телефонных каналов). Эту формулировку можно рассматривать как нестрогое определение локальной сети.
С технической точки зрения локальная сеть есть совокупность ПЭВМ и каналов связи, соединяющих компьютеры в структуру с определенной конфигурацией, а также сетевого программного обеспечения, управляющего работой всей сети. Кроме того, большинство сетей требуют установки в каждую ПЭВМ интерфейсной платы (сетевого адаптера) для организации связи ПЭВМ с сетью.
Топология сети. Так называют конфигурацию сети, или схему соединения объектов в сети. Топология сети - одна из важнейших ее характеристик. Существует "звездная" топология, "кольцевая", "шинная", или "древовидная".
В случае "звездной" конфигурации используется центральная ЭВМ, называемая сервером, к которому подключаются все остальные машины сети. Сервер обеспечивает централизованное управление всей сетью, определяет маршруты передачи сообщений, подключает периферийные устройства, является централизованным хранилищем данных для всей сети. Недостаток этой конфигурации в том, что требуется отдельная машина для управления сетью, которую, как правило, нежелательно использовать для других целей. К тому же отказ сервера ведет к прекращению работы всей сети.
В случае "кольцевой" топологии все ПЭВМ связаны последовательно в одно кольцо и функции сервера распределены между всеми машинами сети. Непосредственный обмен информацией происходит только между соседними машинами.
Недостаток этой конфигурации в том, что при выходе из строя любой ЭВМ работа сети может прерваться. Также сложна процедура расширения сети.
Наиболее надежной и, следовательно, распространенной является схема "общая шина" с древовидной структурой. Любая из машин, включенных в эту сеть, может быть сервером. Кроме того, возможно подключение дополнительных машин без серьезных изменений настройки. Локальные сети со схемой "общая шина" могут быть одноранговыми и иерархическими, т.е. машины в сети могут быть как равноправными, так и зависимыми.
Каналы связи ЛС. Физическая среда передачи информации - основа всей сети. Основная характеристика канала связи - пропускная способность, т.е. максимальная скорость передачи информации. Измеряется в бит/сек, в килобит/сек, мегабит/сек.
В ЛС используются следующие виды каналов связи:
Витая пара - проводной канал связи, содержащий 2 пары скрученных попарно проводников. Обладает малой пропускной способностью (около 1 Мб/с). Однако витая пара так называемой 5-й категории обеспечивает скорость 10 Мбит/сек и даже до 100 Мбит/сек. Расстояние - до 150 м в 1-м случае и до 80-90 м во 2-м.
Коаксиальный кабель (BNC) - обладает средней пропускной способностью, однако он обеспечивает в 1,5-2 раза большую дальность по сравнению с витой парой. Без дополнительного усиления расстояние может быть до 180-200 м, а иногда и чуть более.
Оптоволоконный кабель - обладает самой высокой пропускной способностью. В настоящее время по магистральным каналам из оптоволокна передают данные со скоростью до 40 Гбит/сек, и это не предел.
Существуют и беспроводные локальные сети. В них информация между ЭВМ передается в СВЧ-диапазоне либо с помощью инфракрасных лучей. В первом случае пользователи сети могут располагаться на значительном удалении друг от друга. Недостатком этого способа является наличие помех, создаваемых другими источниками той же частоты, а также сложность защиты данных от несанкционированного доступа, поскольку передаваемые сообщения в таком случае может воспринимать любой приемник, настроенный на ту же частоту.
Сети, использующие инфракрасное излучение, свободны от указанных недостатков, но ЭВМ-приемник и ЭВМ-передатчик должны находиться в пределах прямой видимости, т.е. в одной комнате. Бесконтактный способ связи целесообразен, например, при объединении в сеть портативных ЭВМ типа Notebook или при необходимости развернуть сеть в сжатые сроки в неприспособленном для этого помещении. Примерами подобных сетей являются сети Air LAN, Altair Plus. Отметим, что существуют ЛС, в которых роль каналов связи играет обычная электрическая сеть, например Carriernet.
Сетевое программное обеспечение (СПО) - это комплекс программ, управляющих, как уже говорилось, работой всех ПЭВМ се сети. Основная часть этих программ устанавливается на сервере, часть на ПЭВМ пользователей сети. Часто в литературе СПО называют сетевой операционной системой, хотя оно не заменяет основную ОС (MS-DOS, Windows, и т.п.), а работает вместе с ней, управляя ее работой.
Из подобных сетевых систем наиболее известны в настоящее время NetWare фирмы NOVELL, Iola - отечественная разработка. У фирмы Microsoft есть свои решения - Microsoft Network. Это решение отличается обычным для Microsoft и удобным для пользователя подходом - "включай - и - работай".
Работа локальной сети. Функционирование любой локальной сети основано на следующем принципе: каждая из машин, включенных в сеть, имеет свой собственный номер (идентификатор); информация от конкретной ЭВМ поступает в сеть в виде отдельных пакетов; пакет всегда имеет информацию о том, для какой машины он предназначен, и свободно перемещается по сети. Его часть с адресом сравнивается с идентификатором каждой ЭВМ и в случае совпадения сообщение принимается. Если пакет так и не нашел адресата, то через определенное время он уничтожается.
Следует сказать, что рассылка данных и сообщений по сети возможна одновременно для всех ee пользователей: можно, например, послать сообщение не одному конкретному пользователю, а целой группе или всем пользователям сети сразу (в том числе и себе самому). Эта функция сети называется "широковещание".
Глобальные сети. Потребности формирования единого мирового информационного пространства привели к созданию глобальной компьютерной сети Интернет. В настоящее время на более чем 150 миллионах компьютеров, подключенных к Интернету, хранится громадный объем информации (сотни миллионов файлов, документов и так далее). Глобальная сеть Интернет привлекает пользователей своими информационными ресурсами и сервисами (услугами), которыми пользуется около миллиарда человек во всех странах мира.
Интернет - это глобальная компьютерная сеть, объединяющая многие локальные, региональные и корпоративные сети и включающая сотни миллионов компьютеров.
В каждой такой локальной или корпоративной сети обычно имеется, по крайней мере, один компьютер, который имеет постоянное подключение к Интернету с помощью линии связи с высокой пропускной способностью (сервер Интернета). В качестве таких "магистральных" линий связи обычно используются оптоволоконные линии с пропускной способностью до 20 Гбит/с и более.
Надежность функционирования глобальной сети обеспечивает большое количество линий связи между региональными сегментами сети. Например, российский региональный сегмент Интернета имеет несколько магистральных линий связи, соединяющих его с североамериканским, европейским и японским сегментами.
Основу, "каркас" Интернета составляют более 150 миллионов серверов, постоянно подключенных к сети, из которых в России насчитывается около 400 тысяч (на начало 2002 г).
К серверам Интернета могут подключаться с помощью локальных сетей или коммутируемых телефонных линий сотни миллионов пользователей Интернета.
IP-адрес. Для того чтобы в процессе обмена информацией компьютеры могли найти друг друга, в Интернете существует единая система адресации, основанная на использовании IP-адреса.
Каждый компьютер, подключенный к Интернету, имеет свой уникальный 32-битный (в двоичной системе) IP-адрес.
По формуле легко подсчитать, что общее количество различных IP-адресов составляет более 4 миллиардов:
N = 232 = 4 294 967 296.
Система IP-адресации учитывает структуру Интернета, то есть то, что Интернет является сетью сетей, а не объединением отдельных компьютеров. IP-адрес содержит адрес сети и адрес компьютера в данной сети.
Для обеспечения максимальной гибкости в процессе распределения IP-адресов, в зависимости от количества компьютеров в сети, адреса разделяются на три класса А, В, С. Первые биты адреса отводятся для идентификации класса, а остальные разделяются на адрес сети и адрес компьютера.
Класс А |
0 |
Адрес сети (7 битов) Адрес компьютера (24 бита) |
||
Класс В |
1 |
0 |
Адрес сети (14 битов) Адрес компьютера (16) битов) |
|
Класс С |
1 |
1 |
0 Адрес сети (21 бит) Адрес компьютера (8) битов) |
Например, адрес сети класса А имеет только 7 битов для адреса сети и 24 бита для адреса компьютера, то есть может существовать лишь 27 = 128 сетей этого класса, зато в каждой сети может содержаться 224 = 16 777 216 компьютеров.
В десятичной записи IP-адрес состоит из 4 чисел, разделенных точками, каждое из которых лежит в диапазоне от 0 до 255. Например, IP-адрес сервера компании МТУ-Интел записывается как 195.34.32.11
Достаточно просто определить по первому числу IP-адреса компьютера его принадлежность к сети того или иного класса:
адреса класса А - число от 0 до 127;
адреса класса В - число от 128 до 191;
адреса класса С - число от 192 до 223.
Так, сервер компании МТУ-Интел относится к сети класса С, адрес которой 195, а адрес компьютера в сети 34.32.11
Провайдеры часто предоставляют пользователям доступ в Интернет не с постоянным, а с динамическим IP-адресом, который может меняться при каждом подключении к сети. В процессе сеанса работы в Интернете можно определить свой текущий IP-адрес.
Доменная система имен. Компьютеры легко могут найти друг друга по числовому IP-адресу, однако человеку запомнить числовой адрес нелегко, и для удобства была введена Доменная Система Имен (DNS - Domain Name System)
Доменная система имен ставит в соответствие числовому IP-адресу компьютера уникальное доменное имя. Доменные имена и IP-адреса распределяются международным координационным центром доменных имен и IP-адресов (ICANN), в который входят по 5 представителей от каждого континента (адрес в Интернете www. icann. org).
Доменная система имен имеет иерархическую структуру: домены верхнего уровня - домены второго уровня и так далее. Домены верхнего уровня бывают двух типов: географические (двухбуквенные - каждой стране соответствует двухбуквенный код) и административные (трехбуквенные).
Административные |
Тип организации |
Географические |
Страна |
|
com |
Коммерческая |
са |
Канада |
|
edu |
Образовательная |
de |
Германия |
|
gov |
Правительственная США |
JP |
Япония |
|
int |
Международная |
ni |
Россия |
|
mil |
Военная США |
su |
бывший СССР |
|
net |
Компьютерная сеть |
uk |
Англия /Ирландия |
|
org |
Некоммерческая |
us |
США |
России принадлежит географический домен ru. Интересно, что давно существующие серверы могут относиться к домену su (СССР). Обозначение административного домена позволяет определить профиль организации, владельца домена.
Так, компания Microsoft зарегистрировала домен второго уровня microsoft в административном домене верхнего уровня com, а Московский институт открытого образования (МИ00) - домен второго уровня metodist в географическом домене верхнего уровня ru.
Имена компьютеров, которые являются серверами Интернета, включают в себя полное доменное имя и собственно имя компьютера. Так, основной сервер компании Microsoft имеет имя www. microsoft. com.
Протокол передачи данных TCP/IP
Сеть Интернет, являющаяся сетью сетей и объединяющая громадное количество различных локальных, региональных и корпоративных сетей, функционирует и развивается благодаря использованию единого протокола передачи данных TCP/IP. Термин TCP/IP включает название двух протоколов:
Transmission Control Protocol (TCP) - транспортный протокол;
Internet Protocol (IP) - протокол маршрутизации.
Протокол маршрутизации. Протокол IP обеспечивает передачу информации между компьютерами сети.
Рассмотрим работу данного протокола по аналогии с передачей информации с помощью обычной почты. Для того чтобы письмо дошло по назначению, на конверте указывается адрес получателя (кому письмо) и адрес отправителя (от кого письмо).
Аналогично передаваемая по сети информация "упаковывается в конверт", на котором "пишутся" IP-адреса компьютеров получателя и отправителя, например "Кому: - 198.78.213.185", "От кого: 193.124.5 33". Содержимое конверта на компьютерном языке называется IP-пакетом и представляет собой набор байтов.
В процессе пересылки обыкновенных писем они сначала доставляются на ближайшее к отправителю почтовое отделение, а затем передаются по цепочке почтовых отделений на ближайшее к получателю почтовое отделение. На промежуточных почтовых отделениях письма сортируются, то есть определяется, на какое следующее почтовое отделение необходимо отправить то или иное письмо.
IP-пакеты на пути к компьютеру-получателю также проходят через многочисленные промежуточные серверы Интернета, на которых производится операция маршрутизации. В результате маршрутизации IP-пакеты направляются от одного сервера Интернета к другому, постепенно приближаясь к компьютеру-получателю.
Internet Protocol (IP) обеспечивает маршрутизацию IP-пакетов, то есть доставку информации от компьютера-отправителя к компьютеру-получателю.
Транспортный протокол. Теперь представим себе, что нам необходимо переслать по почте многостраничную рукопись, а почта бандероли и посылки не принимает. Идея проста: если рукопись не помещается в обычный почтовый конверт, ее надо разобрать на листы и переслать их в нескольких конвертах. При этом листы рукописи необходимо обязательно пронумеровать, чтобы получатель знал, в какой последовательности потом эти листы соединить.
В Интернете часто случается аналогичная ситуация, когда компьютеры обмениваются большими по объему файлами. Если послать такой файл целиком, то он может надолго "закупорить" канал связи, сделать его недоступным для пересылки других сообщений.
Для того чтобы этого не происходило, на компьютере-отправителе необходимо разбить большой файл на мелкие части, пронумеровать их и транспортировать в отдельных IP-пакетах до компьютера-получателя. На компьютере-получателе необходимо собрать исходный файл из отдельных частей в правильной последовательности.
Transmission Control Protocol (TCP), то есть транспортный протокол, обеспечивает разбиение файлов на IP-пакеты в процессе передачи и сборку файлов в процессе получения.
Интересно, что для IP-протокола, ответственного за маршрутизацию, эти пакеты совершенно никак не связаны между собой. Поэтому последний IP-пакет вполне может по пути обогнать первый IP-пакет. Может сложиться так, что даже маршруты доставки этих пакетов окажутся совершенно разными. Однако протокол TCP дождется первого IP-пакета и соберет исходный файл в правильной последовательности.
Тема 3.2 Сканеры
Сканером называется устройство, позволяющее вводить в компьютер образы изображений, представленных в виде текста, рисунков, слайдов, фотографий или другой графической информации. Кстати, несмотря на обилие различных моделей сканеров, в первом приближении их классификацию можно провести всего по нескольким признакам (или критериям). Во-первых, по степени прозрачности вводимого оригинала изображения, во-вторых, по кинематическому механизму сканера (конструкции; механизма движения), в-третьих, по типу вводимого изображения, в-четвертых, по особенностям программного и аппаратного обеспечения сканера.
Оригиналы изображений.
Вообще говоря, изображения (или оригиналы) можно условно разделить на две большие группы. К первой из них относятся называемые непрозрачные оригиналы: всевозможные фотографии, рисунки, страницы журналов и буклетов. Если вспомнить курс школьной физики, то известно, что изображения с подобных оригиналов мы видим в отраженном свете. Другое дело прозрачные оригиналы - цветные и черно-белые слайды и негативы; в этом случае глаз (как оптическая система) обрабатывает свет, прошедший через оригинал. Таким образом, прежде всего, следует обратить внимание на то, с какими типами оригиналов сканер может работать. В частности, для работы со слайдами существуют специальные приставки.
Механизм движения.
Определяющим фактором для данного параметра является способ перемещения считывающей головки сканера и бумаги относительно друг друга. В настоящее время все известные сканеры о этому критерию можно разбить на два основных типа: ручной (hand-held) и настольный (desktop). Тем не менее, существуют также комбинированные устройства, которые сочетают в себе возможности настольных и ручных сканеров. В качестве примера можно привести модель Niscan Page американской фирмы Nisca.
Ручные сканеры.
Ручной сканер, как правило, чем-то напоминает увеличению в размерах электробритву. Для того чтобы ввести в компьютер какой-либо документ при помощи этого устройства, надо без резких движений провести сканирующей головкой по соответствующему изображению. Таким образом, проблема перемещения считывающей головки относительно бумаги целиком ложится на пользователя. Кстати, равномерность перемещения сканера существенно сказывается на качестве вводимого в компьютер изображения. В ряде моделей для подтверждения нормального ввода имеется специальный индикатор. Ширина вводимого изображения для ручных сканеров не превышает обычно 4 дюймов (10 см). В некоторых моделях ручных сканеров в году повышения разрешающей способности уменьшают ширину вводимого изображения. Современные ручные сканеры могут обеспечивать автоматическую "склейку" вводимого изображения, то есть формируют целое изображение из отдельно водимых его частей. Это, в частности, связано с тем, что при помощи ручного сканера невозможно ввести изображения даже формата А4 за один проход. К основным достоинствам такого дна сканеров относятся небольшие габаритные размеры и сравнительно низкая цена.
Настольные сканеры.
Настольные сканеры называют и страничными, и планшетными, и даже авто сканерами. Такие сканеры позволяют вводить изображения размерами 8,5 на 11 или 8,5 на 14 дюймов. Существуют три разновидности настольных сканеров: планшетные (flatbed), рулонные (sheet-fed) и проекционные (overhead).
Основным отличием планшетных сканеров является то, что сканирующая головка перемещается относительно бумаги с помощью шагового двигателя. Планшетные сканеры - обычно, достаточно дорогие устройства, но, пожалуй, и наиболее "способные". Внешне они чем-то могут напоминать копировальные машины - "ксероксы", внешний вид которых известен, конечно, многим. Для сканирования изображения (чего-нибудь) необходимо открыть крышку сканера, подключить сканируемый лист на стеклянную пластину изображением вниз, после чего закрыть крышку. Все дальнейшее управление процессом сканирования осуществляется с клавиатуры компьютера - при работе с одной из специальных программ, поставляемых вместе с таким сканером. Понятно, что рассмотренная конструкция изделия позволяет (подобно "ксероксу") сканировать не только отдельные листы, но и страницы журнала или книги. Наиболее популярными сканерами этого типа на российском рынке являются модели фирмы Hewlett Packard.
Работа рулонных сканеров чем-то напоминает работу обыкновенной факс-машины. Отдельные листы документов протягиваются через такое устройство, при этом и осуществляется их сканирование. Таким образом, в данном случае сканирующая головка остается на месте, а уже относительно нее перемещается бумага. Понятно, что в этом случае копирование страниц книг и журналов просто невозможно. Рассматриваемые сканеры достаточно широко используются в областях, связанных с оптическим распознаванием символов ОСR (Optiсаl Character Recognition). Для удобства работы рулонные сканеры обычно оснащаются устройствами для автоматической подачи страниц.
Третья разновидность настольных сканеров - проекционные сканеры, которые больше всего напоминают своеобразный проекционный аппарат (или фотоувеличитель). Вводимый документ кладется на поверхность сканирования изображением вверх, блок сканирования находится при этом также сверху. Перемещается только сканирующее устройство. Основной особенностью данных сканеров является возможность сканирования проекций трехмерных проекций.
Упоминаемый выше комбинированный сканер Niscan Page обеспечивает работу в двух режимах: протягивания листов (сканирование оригиналов форматом от визитной карточки до21,6 см) и самодвижущегося сканера. Для реализации последнего режима сканера необходимо снять нижнюю крышку. При этом валики, которые обычно протягивают бумагу, служат своеобразными кодами, на которых сканер и движется по сканируемой поверхности. Хотя понятно, что ширина вводимого сканером изображения в обоих режимах не изменяется (чуть больше формата А4), однако в самодвижущемся режиме можно сканировать изображение с листа бумаги, превышающего этот формат, или вводить формацию со страниц книги.
Типы вводимого изображения.
По данному критерию все существующие сканеры можно подразделить на черно-белые и цветные. Черно-белые сканеры в свою очередь могут подразделяться на штриховые и полутоновые эмулироваться. Итак, первые модели черно-белых сканеров могли работать только в двухуровневом (bilevel) режиме, воспринимая или черный, или белый цвет. Таким образом, сканироваться могли либо штриховые рисунки (например, чертежи), либо двух тоновые изображения. Хотя эти сканеры и не могли работать с действительными оттенками серого цвета, выход для сканирования полутоновых изображений такими сканерами был найден. Псевдополутоновой режим, или режим растрирования (dithering), сканера имитирует оттенки серого цвета, группируя, несколько точек вводимого изображения в так называемые gray-scale-пиксели. Такие пиксели могут иметь размеры 2х2 (4 точки), 3х3 (9 точек) или 4х4 (16 точек) и т.д. Отношение количества черных точек к белым и выделяет уровень серого цвета. Например, gray-scale-пиксель размером 4х4 позволяет воспроизводить 17 уровней серого цвета (включая и полностью белый цвет). Не следует, правда, забывать, что разрешающая способность сканера при использовании gray-scale-пикселя снижается (в последнем случае в 4 раза).
Полутоновые сканеры используют максимальную разрешающую способность, как правило, только в двухуровневом режиме. Обычно они поддерживают 16, 64 или 256 оттенков серого цвета для 4-, 6 - и 8-разрядного кода, который ставится при этом в соответствие каждой точке изображения. Разрешающая способность сканера измеряется в количестве различаемых точек на дюйм изображения - dpi (dot per inch). Если в первых моделях сканеров разрешающая способность была 200-300 dpi, то в современных моделях это, как правило, 400, а то и 800 dpi. Некоторые сканеры обеспечивают аппаратное разрешение 600х1200 dpi. В ряде случаев разрешение сканера может устанавливаться программным путем в процессе работы из ряда значений: 75, 1 150, 200, 300 и 400 dpi.
Надо сказать, что благодаря операции интерполяции, выполняемой, как правило, программно, современные сканеры могут иметь разрешение 800 и даже 1600 dpi. В результате интерполяции на получаемом при сканировании изображении сглаживаются кривые линии и исчезают неровности диагональных линий. Напомним, что интерполяция позволяет отыскивать значе пример, в результате сканирования один из пикселов имеет значение уровня серого цвета 48, а соседний с ним - 76. Использование простейшей линейной интерполяции позволяет сделать предположение о том, что значение уровня серого цвета для промежуточного пикселя могло бы быть равно 62. Если вставить все оценочные значения пикселов в файл отсканированного изображения, то разрешающая способность сканера как бы удвоится, то есть вместо обычных 400 dpi станет равной 800 dpi.
Черно-белые сканеры.
Попробуем объяснить принцип работы черно-белого сканера. Сканируемое изображение освещается белым светом, получаемым, как правило, от флуоресцентной лампы. Отраженный свет через редуцирующую (уменьшающую) линзу попадает на фоточувствительный полупроводниковый элемент, называемый прибором с зарядовой связью ПЗС (Change - Coupled Device, CCD), в основу которого положена чувствительность проводимости p-n-перехода обыкновенного полупроводникового диода к степени его освещенности. На p-n-переходе создается заряд, который рассасывается со скоростью, зависящей от освещенности. Чем выше скорость рассасывания, тем больший ток проходит через диод.
Рисунок 1 - Блок схема черно-белого сканера
Каждая строка сканирования изображения соответствует определенным значениям напряжения на ПЗС. Эти значения напряжения преобразуются в цифровую форму либо через аналого-цифровой преобразователь АЦП (для полутоновых сканеров), либо через компаратор (для двухуровневых сканеров). Компаратор сравнивает два значения (напряжение или ток) от ПЗС и опорное (рис.1), причем в зависимости от результата сравнения на его выходе формируется сигнал 0 (черный цвет) или 1 (белый). Разрядность АЦП для полутоновых сканеров зависит от количества поддерживаемых уровней серого цвета. Например, сканер, поддерживающий 64 уровня серого, должен иметь 6-разрядный АЦП. Каким образом сканируется каждая следующая строка изображения, целиком зависит от типа используемого сканера. Напомним, что у планшетных сканеров движется сканирующая головка, а в рулонных сканерах она остается неподвижной, потому что движется носитель с изображением - бумага.
Цветные сканеры.
В настоящее время существует несколько технологий для получения цветных сканируемых изображений. Один из наиболее общих принципов работы цветного сканера заключается в следующем. Сканируемое изображение освещается уже не белым цветом, а через вращающийся RGB-светофильтр (рис.2). Для каждого из основных цветов (красного, зеленого и синего) последовательность операций практически не отличается от последовательности действий при сканировании черно-белого изображения. Исключение составляет, пожалуй, только этап предварительной обработки и гамма-коррекции цветов, перед тем как информация передается в компьютер. Понятно, что этот этап является общим для всех цветных сканеров.
Подобные документы
Устройство компьютерных сетей. Системы для передачи информации, состоящие из терминалов, серверов и коммуникационной среды. Технические, программные и информационные средства сетей. Классификация компьютерных сетей. Сетевые операционные системы.
курсовая работа [3,7 M], добавлен 10.07.2014Понятие компьютерной сети и их классификация. Характеристика локальной вычислительной сети, ее структура и основные задачи. Отличительные особенности региональных и глобальных сетей. Всемирная паутина (интернет), понятие веб-страницы и веб-сервера.
реферат [23,1 K], добавлен 12.12.2010Понятие компьютерной сети как системы связи компьютеров и/или компьютерного оборудования, ее использование для передачи информации. Виды компьютерных сетей, особенности их построения, правила эксплуатации и обслуживания, технические характеристики.
контрольная работа [2,6 M], добавлен 17.02.2015Классификация компьютерных сетей. Назначение и особенности организации локальных вычислительных сетей. Назначение и структура глобальной сети Интернет. Работа с общими ресурсами в локальной сети. Вход и работа в Интернете. Поиск заданной информации.
методичка [378,6 K], добавлен 05.10.2008Назначение и классификация компьютерных сетей. Обобщенная структура компьютерной сети и характеристика процесса передачи данных. Управление взаимодействием устройств в сети. Типовые топологии и методы доступа локальных сетей. Работа в локальной сети.
реферат [1,8 M], добавлен 03.02.2009Общий анализ структуры локальной вычислительной сети военного назначения. Необходимость повышения защиты информации путем использования дополнительных средств защиты. Создание виртуальных защищенных сетей в рамках локальной компьютерной сети объекта.
дипломная работа [1,2 M], добавлен 20.10.2011Функции компьютерных сетей (хранение и обработка данных, доступ пользователей к данным и их передача). Основные показатели качества локальных сетей. Классификация компьютерных сетей, их главные компоненты. Топология сети, характеристика оборудования.
презентация [287,4 K], добавлен 01.04.2015Современная локальная компьютерная сеть. Сжатие полосы пропускания сегмента компьютерной сети. Адресация в сети. Совместное использование файлов, принтеров, модемов. Сегментирование трафика для снижения нагрузки. Поддержка средств защиты доступа.
реферат [153,5 K], добавлен 10.12.2012Классификация компьютерных сетей. Взаимодействие компьютеров в сети. Сетевые модели и архитектуры. Мосты и коммутаторы, сетевые протоколы. Правила назначения IP-адресов сетей и узлов. Сетевые службы, клиенты, серверы, ресурсы. Способы доступа в Интернет.
курсовая работа [1,5 M], добавлен 11.05.2014Типы компьютерных сетей, их структурные элементы и подсистемы. Горизонтальная подсистема СКС и компьютерная сеть, узлы локальной сети и распределительные пункты. Сеть на основе сервера и локальная сеть. Беспроводные сети. ЛВС: их топология и структура.
реферат [16,0 K], добавлен 16.07.2008