Применение NP-полных задач в ассиметрично-ключевой криптографии

Классы сложности задач в теории алгоритмов. Общие сведения о симметричной и ассиметрично-ключевой криптографии. "Лазейка" в односторонней функции. Криптографическая система RSA. Криптографическая система Эль-Гамаля. Алгоритм обмена ключами Диффи-Хеллмана.

Рубрика Программирование, компьютеры и кибернетика
Вид курсовая работа
Язык русский
Дата добавления 06.06.2010
Размер файла 706,6 K

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

3. вычисляет открытый ключ A, используя преобразование над закрытым ключом

A = ga mod p

4. обменивается открытыми ключами с удалённой стороной

5. вычисляет общий секретный ключ K, используя открытый ключ удаленной стороны B и свой закрытый ключ a

K = Ba mod p

К получается равным с обеих сторон, потому что:

Ba mod p = (gb mod p)a mod p = gab mod p = (ga mod p)b mod p = Ab mod p

В практических реализациях, для a и b используются числа порядка 10100 и p порядка 10300. Число g не обязано быть большим и обычно имеет значение в пределах первого десятка.

Криптографическая стойкость алгоритма Диффи - Хеллмана (то есть сложность вычисления K=gab mod p по известным p, g, A=ga mod p и B=gb mod p), основана на предполагаемой сложности проблемы дискретного логарифмирования. Однако, хотя умение решать проблему дискретного логарифмирования позволит взломать алгоритм Диффи - Хеллмана, обратное утверждение до сих является открытым вопросом (другими словами, эквивалентность этих проблем не доказана).

Необходимо отметить, что алгоритм Диффи - Хеллмана работает только на линиях связи, надёжно защищённых от модификации. Если бы он был применим на любых открытых каналах, то давно снял бы проблему распространения ключей и, возможно, заменил собой всю асимметричную криптографию. Однако, в тех случаях, когда в канале возможна модификация данных, появляется возможность атаки человек посередине. Атакующий заменяет сообщения переговоров о ключе на свои собственные и таким образом получает два ключа - свой для каждого из законных участников протокола. Далее он может перешифровывать переписку между участниками, своим ключом для каждого, и таким образом ознакомиться с их сообщениями, оставаясь незамеченным.

Заключение

Долгое время традиционной криптографической схемой была схема с симметричным ключом. В этой схеме имеется один ключ, который участвует в шифровании и дешифровании информации. Шифрующая процедура при помощи ключа производит ряд действий над исходными данными, дешифрующая процедура при помощи того же ключа производит обратные действия над кодом. Дешифрование кода без ключа предполагается практически неосуществимым. Если зашифрованная таким образом информация передается по обычному, т.е. незащищенному, каналу связи, один и тот же ключ должен иметься у отправителя и получателя, вследствие чего возникает необходимость в дополнительном защищенном канале для передачи ключа, повышается уязвимость системы и увеличиваются организационные трудности.

В 1976 г. У.Диффи и М.Хеллманом был предложен новый тип криптографической системы - система с открытым ключом. В схеме с открытым ключом имеется два ключа, открытый и секретный, выбранные таким образом, что их последовательное применение к массиву данных оставляет этот массив без изменений. Шифрующая процедура использует открытый ключ, дешифрующая - секретный. Дешифрование кода без знания секретного ключа практически неосуществимо; в частности, практически неразрешима задача вычисления секретного ключа по известному открытому ключу. Основное преимущество криптографии с открытым ключом - упрощенный механизм обмена ключами. При осуществлении коммуникации по каналу связи передается только открытый ключ, что делает возможным использование для этой цели обычного канала и устраняет потребность в специальном защищенном канале для передачи ключа.

С появлением систем с открытым ключом понятие о защите информации, а вместе с ним функции криптографии значительно расширились. Если раньше основной задачей криптографических систем считалось надежное шифрование информации, в настоящее время область применения криптографии включает также цифровую подпись (аутентификацию), лицензирование, нотаризацию (свидетельствование), распределенное управление, схемы голосования, электронные деньги и многое другое. Наиболее распространенные функции криптографических систем с открытым ключом - шифрование и цифровая подпись, причем роль цифровой подписи в последнее время возросла по сравнению с традиционным шифрованием: некоторые из систем с открытым ключом поддерживают цифровую подпись, но не поддерживают шифрование.

Цифровая подпись используется для аутентификации текстов, передаваемых по телекоммуникационным каналам. Она аналогична обычной рукописной подписи и обладает ее основными свойствами: удостоверяет, что подписанный текст исходит именно от лица, поставившего подпись, и не дает самому этому лицу возможности отказаться от обязательств, связанных с подписанным текстом. Цифровая подпись представляет собой небольшое количество дополнительной информации, передаваемой вместе с подписываемым текстом. В отличие от шифрования, при формировании подписи используется секретный ключ, а при проверке - открытый.

Из-за особенностей алгоритмов, лежащих в основе систем с открытым ключом, их быстродействие при обработке единичного блока информации обычно в десятки раз меньше, чем быстродействие систем с симметричным ключом на блоке той же длины. Для повышения эффективности систем с открытым ключом часто применяются смешанные методы, реализующие криптографические алгоритмы обоих типов. При шифровании информации выбирается случайный симметричный ключ, вызывается алгоритм с симметричным ключом для шифрования исходного текста, а затем алгоритм с открытым ключом для шифрования симметричного ключа. По коммуникационному каналу передается текст, зашифрованный симметричным ключом, и симметричный ключ, зашифрованный открытым ключом. Для расшифровки действия производятся в обратном порядке: сначала при помощи секретного ключа получателя расшифровывается симметричный ключ, а затем при помощи симметричного ключа - полученный по каналу зашифрованный текст. Для формирования электронной подписи по подписываемому тексту вычисляется его однонаправленная хэш-функция (дайджест), представляющая собой один короткий блок информации, характеризующий весь текст в целом; задача восстановления текста по его хэш-функции или подбора другого текста, имеющего ту же хэш-функцию, практически неразрешима. При непосредственном формировании подписи, вместо шифрования секретным ключом каждого блока текста секретный ключ применяется только к хэш-функции; по каналу передается сам текст и сформированная подпись хэш-функции. Для проверки подписи снова вычисляется хэш-функция от полученного по каналу текста, после чего при помощи открытого ключа проверяется, что подпись соответствует именно данному значению хэш-функции. Алгоритмы вычисления однонаправленных хэш-функций, как правило, логически тесно связаны с алгоритмами шифрования с симметричным ключом.

Описанные гибридные методы шифрования и цифровой подписи сочетают в себе эффективность алгоритмов с симметричным ключом и свойство независимости от дополнительных секретных каналов для передачи ключей, присущее алгоритмам с открытым ключом. Криптографическая стойкость конкретного гибридного метода определяется стойкостью слабейшего звена в цепи, состоящей из алгоритмов с симметричным и с открытым ключом, выбранных для его реализации.


Подобные документы

  • История, предпосылки развития, необходимость применения криптографии в жизни общества. Описание протоколов, цифровых подписей, алгоритмов, ключей. Криптоанализ, формальный анализ протоколов проверки подлинности и обмена ключами. Практическая криптография.

    дипломная работа [767,2 K], добавлен 23.12.2011

  • Изучение основных методов и алгоритмов криптографии с открытым ключом и их практического использования. Анализ и практическое применение алгоритмов криптографии с открытым ключом: шифрование данных, конфиденциальность, генерация и управление ключами.

    дипломная работа [1,2 M], добавлен 20.06.2011

  • Криптографическая защита как элемент систем обеспечения безопасности информации. Исторические шифры и их взлом. Особенности современной криптологии и криптографии. Основные методы современного криптоанализа, их сущность, особенности и характеристика.

    курсовая работа [57,1 K], добавлен 14.06.2012

  • Краткая история развития криптографических методов защиты информации. Сущность шифрования и криптографии с симметричными ключами. Описание аналитических и аддитивных методов шифрования. Методы криптографии с открытыми ключами и цифровые сертификаты.

    курсовая работа [1,2 M], добавлен 28.12.2014

  • История электронной подписи в мире. Создание электронной цифровой подписи в электронном документе с использованием закрытого ключа. Модели атак и их возможные результаты. Алгоритм генерации ключевых пар пользователя. Новые направления в криптографии.

    курсовая работа [106,1 K], добавлен 07.06.2014

  • Генератор псевдослучайной последовательности в системах защиты информации. Шифрование мультимедийных данных. Вероятностное шифрование и алгоритм Эль-Гамаля. Основные понятия теории конечных полей. Алгоритм нахождения циклического избыточного кода.

    дипломная работа [1,7 M], добавлен 19.07.2013

  • Правовые основы обеспечения защиты информации. Эволюция криптографической деятельности. Основные понятия и разделы криптографии, направления использования ее методов. Особенности симметричных и асимметричных криптосистем, предъявляемые к ним требования.

    презентация [201,1 K], добавлен 19.01.2014

  • Классы задач P и NP, их сводимость. Примеры NP-полных и NP-трудных задач. Сущность метода поиска с возвратом. Алгоритмы решения классических задач комбинаторного поиска. Решение задачи о восьми ферзях. Поиск оптимального решения методом ветвей и границ.

    презентация [441,5 K], добавлен 19.10.2014

  • Временная, пространственная и асимптотическая сложности. Основные классы сложности в теории алгоритмов. Сведение как преобразование одной задачи к другой. Проблема равенства классов P и NP. Характеристика основных иерархических отношений между классами.

    реферат [16,9 K], добавлен 09.04.2012

  • Требования к криптографическим системам защиты информации и их возможности. Условия, которым должна удовлетворять хеш-функция. Алгоритм цифровой подписи Эль-Гамаля (ЕGSА), ее формирование и проверка. Интерфейс программы, реализующей ЭЦП по ЕGSА.

    курсовая работа [1,6 M], добавлен 27.11.2014

Работы в архивах красиво оформлены согласно требованиям ВУЗов и содержат рисунки, диаграммы, формулы и т.д.
PPT, PPTX и PDF-файлы представлены только в архивах.
Рекомендуем скачать работу.