Проектирование и методика использования информационной системы оценки знаний по информатике учащихся средней школы
Текущий, рубежный и заключительный контроль. Самостоятельная работа как одна из форм организации учебной деятельности учащихся. Этапы внедрения тестирования в практику американской школы. Практическое внедрение информационной системы в процесс обучения.
Рубрика | Программирование, компьютеры и кибернетика |
Вид | дипломная работа |
Язык | русский |
Дата добавления | 19.04.2011 |
Размер файла | 52,2 K |
Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже
Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.
Собственно системы компьютерного тестирования обладают шестью режимами: режимом классического тестирования, режимом тестирования по методу доведения ответа до правильного, тестированием на внимание, групповым тестированием, режимом голосования и режимом опроса.
Проведенный в рамках настоящего дипломного исследования анализ разработок СГУ выявил, что при практически полном сохранении всех преимуществ компьютерного тестирования, данные средства обеспечивают:
низкую себестоимость устройств,
отсутствие вредных электромагнитных излучений от экранов мониторов компьютеров,
относительную мобильность,
не обязательность использования для тестирования больших помещений,
малочисленность штата специалистов, обслуживающих компьютерную технику, необходимую для тестирования.
Немаловажным аспектом использования таких программ является то, что ученики имеют возможность за время обучения подготовиться к тестированию как в психологическом так и техническом плане, что особенно актуально в свете повсеместного перехода к единому государственному экзамену.
Актуальность задачи автоматизации процедуры контроля уровня обученности определяется целым рядом факторов:
1. Освобождением преподавателя от выполнения трудоемкой и рутинной работы;
2. Предоставлением педагогу времени для творческого совершенствования разных аспектов его профессиональной деятельности;
3. Обеспечением всесторонней и полной проверки;
4. Повышением объективности контроля и обеспечением его стандартизации;
5. Оперативностью и многофакторностью статистической обработки результатов контроля.
На наш взгляд, наиболее эффективного использования технических средств в процессе выявления уровня знаний и умений можно достичь при построении целостной системы компьютерного контроля. В ходе анализа научно-технической литературы были определены основные требования, предъявляемые к построению подобных компьютерных систем. Такие системы должны предусматривать:
1. Расчет данных на различные предметные области и способы деятельности;
2. Охват всех периодов обучения и изменяемость в зависимости от них;
3. Содержание различных форм, приёмов и способов;
4. Зависимость уровня проблемности контроля от уровня проблемности содержания и индивидуального уровня обученности;
5. Контроль за степенью достижения каждым тестируемым целевого уровня подготовки;
6. Поддержка всех этапов обучения: от целеполагания до оценочно-результативного этапа.
Любая компьютерная программная система представляет собой целый комплекс различных составляющих, каждый из которых решает одну из подзадач общей технической задачи, стоящей перед системой. В этом смысле компьютеризированные системы педагогического контроля не являются исключением. В связи с этим технологии разработки систем контроля, как правило, состоят из различных этапов. Перечислим основные из них:
определение цели контроля;
отбор учебного материала;
определение содержания контроля;
обеспечение процесса контроля;
сбор, обработка и анализ результатов.
В настоящее время разработано достаточно большое количество отечественных и зарубежных компьютерных технологий и программных средств, нацеленных на выявление уровня подготовленности учащихся. Однако для большинства из них наряду с большим количеством положительных моментов присущи и некоторые более или менее стандартные недостатки.
Рассмотрим эти аспекты на примере одного из наиболее распространенных направлений, связанных с созданием и эксплуатацией автоматизированных систем контроля знаний. В настоящее время известно множество практических реализаций систем автоматизированного тестирования как по отдельным дисциплинам так и универсальных систем оценивания знаний, полностью или частично инвариантных к конкретным дисциплинам и допускающих их информационное наполнение преподавателями - организаторами тестирования. Такие универсальные системы получили название “конструкторов тестов”. В качестве примера достаточно упомянуть такие системы как АСКО (Автоматизированная система контроля обучения) и АДОНИС.
К сожалению, анализ эффективности автоматизированного тестирования в ходе проведения текущего, корректирующего, рубежного и заключительного контроля в образовательном процессе средней школы показывает, что многие преподаватели настороженно и даже негативно относятся к подобным системам. Среди наиболее существенных недостатков современных подходов к автоматизированному тестированию, называемых в качестве причин такого отрицательного отношения, можно отметить:
необходимость формулирования вариантов ответов на тестовые задания по принципу “один абсолютно правильный” - “N абсолютно неправильных”. Это не дает возможности организовать полноценное тестирование по слабо формализованным дисциплинам, для которых характерна диалектичность знаний (дисциплины общественно-политического, гуманитарного, социально-экономического и прочих циклов);
примитивность и негибкость процедур расчета итоговой оценки, сводимых либо к определению отношения количества правильных ответов к количеству заданных вопросов, либо к суммированию баллов, назначаемых за каждый правильный ответ;
невозможность автоматизации разнообразных методик контроля знаний, широко применяемых в педагогической практике (оценка широты либо глубины знаний, учет относительной важности отдельных тем или разделов изучаемой дисциплины, выбор сложности теста с учетом уровня подготовленности и самооценки тестируемого, стимуляция правильных ответов и т.п.);
значительная трудоемкость ручного формирования такого множества тестовых заданий и вариантов ответов на каждое из них, которое позволит исключить или минимизировать вероятность предъявления одного и того же задания различным тестируемым при параллельной проверке их знаний.
Как уже отмечалось, особенно ярко указанные недостатки автоматизированного тестирования проявляются при контроле знаний по дисциплинам гуманитарного, социально-экономического и общественно-политического циклов. В силу их диалектичности степень формализации знаний по этим дисциплинам слишком низка, чтобы наличие знаний могло определяться по тому, насколько хорошо помнит экзаменуемый отдельные факты, точные определения или конкретные формулы и правила их применения. С точки зрения контроля знаний по информатике некоторые из указанных недостатков не имеют принципиального значения.
В числе проблем, которые сопровождают построение и функционирование компьютерных средств педагогического тестового контроля, можно отметить непроработанность методических аспектов построения таких систем. Зачастую вызывает сомнение организация некоторых тестовых компьютерных программ. С нашей точки зрения один из наиболее часто встречающихся недостатков заключается в том, что очень многие разработчики идут по традиционной схеме, когда тесты, написанные на бумаге просто переносятся на компьютер. При этом сильно сужается набор типов контролирующих вопросов.
Исходя из необходимости повышения эффективности учебного процесса и из возможности применения современных информационных технологий наиболее перспективным и целесообразным представляется автоматизация процесса педагогического тестирования. Всеобщий интерес к подобному способу оценивания знаний предопределили его положительные стороны:
· высокая степень формализации и унификации процедуры тестирования,
· возможность одновременного проведения тестирования на нескольких компьютерах,
· возможность организации дистанционного тестирования посредством локальной вычислительной сети либо через глобальную информационную сеть Интернет.
Определенный интерес представляет выявление роли и значимости тестирования на различных этапах контроля и оценивания знаний, а также его применимость при изучении различных дисциплин. Не вызывает сомнений целесообразность применения традиционных автоматизированных систем контроля знаний при изучении дисциплин, ориентированных на усвоение обучаемыми конечного множества фактов либо однозначно трактуемых правил. Примером подобной ситуации можно считать экзамен на знание правил дорожного движения. Практически безальтернативным представляется применение таких приемов компьютеризации контроля уровня знаний и умений при проведении массового одновременного государственного тестирования знаний учащихся, хотя руководители центров тестирования отмечают наличие претензий, связанных с оцениванием знаний по дисциплинам языкового цикла, для которых характерна неоднозначность некоторых “истинных” ответов даже с точки зрения наиболее опытных преподавателей-предметников.
Компьютерные системы выявления уровня знаний широко применяются для уменьшения трудоемкости текущего контроля по естественно-научным и техническим дисциплинам, цель которого состоит в оперативной и массовой одновременной проверке остаточных знаний большого количества обучаемых.
Таким образом, для многих дисциплин, знания в которых носят принципиально нечеткий характер и не могут быть сведены к однозначным формулировкам многие процедуры компьютерного тестирования, к сожалению, оказываются неприменимыми. Более того, можно утверждать, что процедуры “классического” компьютерного тестирования, основанные на парадигме “один абсолютно правильный ответ - N абсолютно неправильных ответов” и выводе итоговой оценки из соотношения количества правильных ответов и заданных вопросов, неадекватны представлениям большинства преподавателей об их абсолютной применимости в процессе оценивания знаний.
Можно сделать вполне естественный вывод, что компьютерное программное средство контроля знаний будет признаваться конкретным преподавателем как эффективный инструмент промежуточного или итогового контроля знаний только в том случае, если оно будет адекватно набору требований.
Глава 2. Информационная система оценки знаний по информатике учащихся средней школы
2.1 Проектирование информационной системы оценки знаний
Построение компьютерной системы оценки знаний по информатике требует применения специализированных подходов к представлению и обработке знаний. Сформулируем основные принципы построения компьютерной системы контроля знаний, основанные на методах и моделях, развиваемых в рамках теории интеллектуальных вычислений и инженерии знаний. Эти принципы определяют концепцию интеллектуального тестирования, более адекватную представлениям преподавателя о требуемой организации процесса контроля и оценивания знаний и позволяющую реализовать неформализованные ранее педагогические приемы и методики.
Множество требований, предъявляемых к компьютерному программному средству контроля знаний
В числе провозглашаемых принципов:
Переход от задания истинности предлагаемых вариантов ответов в категориях дихотомических шкал (“правильно - неправильно”) к более общей и универсальной схеме оценивания ответов функциями предпочтения, определяемыми в категориях нечеткой логики. Заметим, что такой переход не противоречит традиционному подход, поскольку в соответствии с современными представлениями двоичная логика может считаться частным случаем нечеткой логики;
Переход от индивидуальной организации теста к коллегиальной экспертной подготовке всех его этапов, что увеличит доверие конечных пользователей к компьютерной системе контроля знаний и повысит валидность результатов тестирования;
Количественное определение сложности и важности каждого тестового задания по пропорциональной цифровой шкале, что даст возможность повысить объективность оценивания демонстрируемых знаний.
Разбиение множества тестовых заданий на тематические подмножества, элементы которых семантически коррелируют друг с другом, с обязательным ранжированием как тестовых заданий внутри каждого подмножества, так и выделенных подмножеств между собой. Реализация этого принципа создаст объективную основу для формализации ряда применяемых в настоящее время “ручных” методик контроля знаний, таких, например, как оценивание широты или глубины знаний и т.п.;
Переход от характерного для современных компьютерных средств использования программно реализованных алгоритмов прямого тестирования, при котором выбор очередного задания практически не зависит от ответов тестируемого на предыдущие вопросы, к модульному конструированию при подготовке теста;
Переход к построению алгоритмов адаптивного тестирования, обусловливающих выбор очередного i-го задания ответами обучаемого на предыдущих (i - 1)-м, (i - 2)-м,..., и т.д. шагах теста. Реализация этого принципа позволит формализовать широко применяемые в педагогической практике методики дополнительных, наводящих и уточняющих вопросов;
Построение, унифицированное описание и однотипная реализация в рамках одной и той же компьютерной системы контроля знаний набора алгоритмов тестирования, реализующих различные методики контроля и предоставление организатору тестирования возможности выбирать в конкретной ситуации те из них, применение которых либо предписывается нормативными документами, либо определяется его собственными предпочтениями;
Создание инструментария для построения, настройки и модификации различных шкал итогового оценивания знаний, включая как возможность изменения количества и ширины оценочных интервалов, так и определение и варьирование зон неопределенности оценок. Это даст возможность организовать параметрический анализ валидности текущих и заключительных результатов тестирования;
Автоматизация на основе возможностей компьютерной техники наиболее трудоемкого этапа подготовительной стадии тестирования, связанного с формированием множества тестовых заданий и вариантов ответов на них. Базис этой процедуры могут составить, в частности, формализованная модель знаний по изучаемой дисциплине, представленная в виде структурированной семантической сети и известные из инженерии знаний фрейм-технологии.
Использование при разработке тестовых материалов, технических средств контроля знаний и при их практическом применении самых современных и наиболее эффективных аппаратных и программных компьютерных средств. Построение гетерогенных компьютерных средств, доступных к использованию в большинстве учебных заведений и центров тестирования;
Предусмотрение во всех вновь разрабатываемых программных средствах компьютеризированного тестирования возможности использования современных информационных средств компьютерных телекоммуникаций;
Включение в компьютерные системы контроля уровня подготовленности учащихся модулей, предотвращающих или минимизирующих фальсификацию результатов педагогического контроля.
Средства автоматизации тестового контроля можно рассматривать как составляющие компоненты технологии педагогической диагностики, активно разрабатываемой с 80-х годов Е.А. Михайличевым, В.Е. Сайко и др. Одним из направлений разработки методов педагогической диагностики является развитие связей с математическими методами и новыми информационными технологиями.
Несмотря на достигнутые в этой области результаты, создание системы диагностирования по конкретному предмету является актуальной задачей. Развитие принципиально новой системы коммуникаций, основанной на компьютерных технологиях и телекоммуникациях, позволяет принципиально изменить существо подхода к синтезу системы тестирования по любому предмету обучения.
В числе программных средств, позволяющих автоматизировать контроль знаний учащихся находятся и компьютерные обучающие среды, основная цель которых - программная поддержка учебного процесса. Современные инструментальные среды для создания автоматизированных учебных курсов позволяют строить тесты с выборочными, числовыми, конструируемыми ответами. На практике в таких программных средствах чаще всего применяется выбор правильного ответа из списка (тесты с выборочными ответами).
Разработано несколько компьютерных систем тестирования, охватывающих все периоды освоения темы «Основы информатики и вычислительной техники». В их основу обычно кладутся идеи синтеза тестов на основе принципа безальтернативного выбора требуемого ответа из множества заданных. Последующее развитие этой идеи позволяет расширить возможности данной системы на основе использования альтернативных формулировок ответа при однозначной постановке вопроса. Указанный этап тестирования предполагает более глубокую по сравнению с первым степень овладения материалом.
Результаты компьютеризированного тестирования по информатике позволяют отразить не только уровень освоения требуемого материала, но и помогают получить информацию о формировании речевой культуры и уровне владения понятийным аппаратом данной дисциплины.
Исходя из описанных выше принципов и руководствуясь необходимыми критериями оценки знаний учащихся по информатике, проектируемая информационная система реализует следующие функции
· Учет текущих оценок.
· Обработка результатов тестов.
· Подсчет и выставление четвертной и годвой оценок.
· Описание успехов ученика по проходимым темам.
· Предоставления доступа к текущим результатам обучения для родителей.
· Прогнозирование четвертной оценки.
· Акцентирование внимания учеников на «проблемных» для них темах.
· Генерирование небольших отчетов, в которых содержится следующая информация:
? Четвертная оценка.
? Список изученных тем.
? Оценка за каждую тему.
? Рекомендации по изучению плохо усвоенных тем.
Для адекватной работы информационной системы в ней хранятся следующие данные:
· уникальный номер теста
· оценка
· уникальный номер теста, задания
· ФИО ученика
· раздел / тема школьного курса по информатике
· дата получения оценки
· значимость оценки на итоговый результат
Каждая оценка имеет свой "вес", в зависимости от уровня задания "вес" меняется. Для каждого уровня вводится свой коэффициент. Типы заданий:
· Текущее - 0,2
· Рубежное - 0,3
· Заключительное - 0,4.
Каждое задание может быть одного из нескольких типов: ответ на уроке (устное, теоретическое), практическое, тест, контрольная работа (теоретическое). Так как, каждый тип заданий имеет свой "вес", в итоге мы получаем более адекватную оценку знаний ученика по пройденной теме.
Самый меньший вес у входного задания. Это продиктовано тем, что входящее тестирование не должно сильно влиять на итоговую оценку.
Оценка по текущему контролю имеет больший вес, с помощью этих оценок мы можем отслеживать динамику успешности изучения каждым учеником конкретной темы. А так как задания при этом разбиваются по типам, мы можем понять, кто из учеников лучше владеет теорией, а кто практикой. С помощью этого мы можем корректировать индивидуальные задания, т.е. осуществлять корректирующий контроль, описанный в некоторых методических исследованиях.
Рубежные оценки - оценка по пройденной теме, она даёт возможность оценить общие знания ученика по всей теме. Имеет большую значимость, так как оценивается не какой либо отдельный навык ученика, а знания по теме в целом.
Таким образом, учитель может выстраивать индивидуальную образовательную траекторию для каждого ученика.
Также проектируемая информационная система позволяет хранить не только оценки, но и сами тестовые задания, например, в виде SCORM пакетов.
Sharable Content Object Reference Model (SCORM) - стандарт, разработанный для систем дистанционного обучения. Данный стандарт содержит требования к организации учебного материала и всей системы дистанционного обучения. SCORM позволяет обеспечить совместимость компонентов и возможность их многократного использования: учебный материал представлен отдельными небольшими блоками, которые могут включаться в разные учебные курсы и использоваться системой дистанционного обучения независимо от того, кем, где и с помощью каких средств были созданы. SCORM основан на стандарте XML.
Пакет может содержать курс, урок, модуль и т. п. В пакет входят xml-файл (Manifest), где описана структура пакета, и файлы, составляющие учебный блок. Manifest включает:
метаданные (свойства компонентов учебного материала)
организацию учебного материала (в каком порядке расположены компоненты)
ресурсы (ссылки на файлы, содержащиеся в пакете)
sub-Manifest (xml-файл может содержать под-Manifest)
Блоки учебного материала, входящие в пакет, могут быть двух типов: Asset и Sharable Content Object (SCO). Asset - элемент, который не взаимодействует с сервером Системы управления обучения (LMS-сервером), это может быть html-страница, просто картинка, звуковой файл или flash-объект и т.п., SCO - это элемент, который взаимодействует с LMS-сервером: сообщает о ходе и результатах обучения, получает и передает дополнительные данные и т.п. (как минимум SCO сообщает о своем запуске и завершении), кроме того SCO является тем "кирпичиком", который может быть использован для построения совершенно другого обучающего курса.
Это позволит использовать уже готовые, отработанные задания, которые используются для проведения оценки знаний учащихся по информатике. В свою очередь, такой подход позволит наладить межшкольное взаимодействие, что может сказаться самым положительным образом на структуре педагогического процесса в целом.
Такая информационная система автоматизации оценивания знаний ученика по информатике имеет следующие достоинства:
· Увеличивается объективность оценки.
· Уменьшаются затраты сил и времени учителя не только на выставления оценок, оценивания уровня знаний ученика, но и упрощается процесс создания тестовых заданий.
· Увелечивается «прозрачность» получения и выставления оценок т.к. оценки могуть быть опубликованы на школьном web-ресурсе, к которому имеют доступ и учителя, и ученики, и родители что увеличивается степень их взаимодействия.
· Учитываются не только знания по информатике в целом, но и определяются темы и конкретные вопросы, требующие дополнительной проработки.
· У ученика появляется возможность динамически отслеживать его оценки и определять наиболее слабые места самостоятельно.
· Проектируемая информационная система оценки знаний учащихся совместима не только с традиционной пятибальной шкалой, но и с любой другой.
Но на ряду с достоинствами следует упомянуть и недостатки, которые присущи любой информационной системе такого рода:
· От педагогического коллектива требуются минимальные навыки владения компьютером. С обной стороны это достоинство, так как не требуются специальные навыки, но учитывая современные реалии, даже наличие минимальных навыкоа сожет стать проблемой.
· Проектируемая информационная система подразумевает развертывание web-сервера, что влечет за собой необходимость в специалисте, который будет эту систему обслуживать.
2.2 Методика использования информационной системы в процессе обучения информатике средней школы
Спроектированная в предыдущем параграфе информационная система не носит характер полной автоматизации всех форм контроля знаний учащихся.
Основная цель - автоматизировать тестовые формы контроля, обеспечить хранение и статистическую обработку данных как групп учащихся в общем, так и каждого учащегося в частности.
Для внедрения системы в учебный процесс необходимо:
· Выделенный компьютер, который будет выполнять роль сервера.
· Компьютеризированые рабочие места учителей.
Для первоначальной настройки в систему вносятся следующие данные:
· Фамилии и имена учеников.
· Фамилии учителей.
· Вносятся соответствие ученика и класса, в котором он обучается.
Педагогический состав знакомится с работой информационной системы. Для первоначальной работы этого достаточно.
Для наиболее удобного и безболезненного внедрения предлагается начинать использование информационной системы автоматизированного оценивания знаний учащихся в начале учебного года. Первую четверть рекомендуется отвести для тестового использования системы. Для тестового использования системы рекомендуется выбрать один класс и в течение первой четверти для этого класса при выставлении оценок использовать информационную систему параллельно с традиционным способом оценивания.
Такой порядок действий позволит и учителям и ученикам изучить все аспекты работы с информационной системой. При возникновении каких либо сложностей в работе системы, последствия в таком случае будут минимальны.
Если в процессе тестового периода значимых проблем при использовании информационной системы не возникнет, то со второй четверти следует использовать информационную систему для всех классов, изучающих информатику. Так как оценки всё равно дублируются в классном журнале такая система будет отличаться высокой надёжностью.
Общая система работы выглядит следующим образом: в процессе обучения ученик получает оценки, которые учитель вносит в базу данных спроектированной системы. Таким образом, оценки накапливаются, обрабатываются, и участники образовательного процесса могут отслеживать динамику успешности усвоения учеником знаний.
В конце отчетного периода система автоматически предлагает оценку за этот период. Учитель может как согласиться с этой оценкой, так и нет.
Описание работы с функционалом системы:
· Учет текущих оценок - производится автоматически, от учителя требуется вовремя вносить оценки, правильно указывая тип задания.
· Обработка результатов тестов - не требует вмешательства человека, на выходе получаем готовый результат.
· Подсчет и выставление четвертной и годовой оценок - не требует вмешательства человека, на выходе получаем готовый результат. Преподаватель может как согласиться с предлагаемой оценкой, так и не согласиться с ней. В некоторых случаях имеет смысл поставить оценку, к примеру, выше, для дополнительной мотивации и даже стимуляции учащегося к успешному изучению предмета.
· Описание успехов ученика по проходимым темам - по результатам работ ученика информационная система, в результате анализа его оценок, предлагается список тем, которые были изучены на данный момент и выводит учащемуся оценку за каждую из тем. Это позволяет ученику более точно распределить своё внимание к разным темам и оптимизировать учебную нагрузку.
· Предоставления доступа к текущим результатам обучения для родителей - родители могут просматривать оценки за каждую пройденную тему, текущие оценки и прогнозируемую четвертную или годовою оценку.
· Прогнозирование четвертной оценки - на основе тех оценок, которые хранятся в информационной системе, можно делать предварительный прогноз об итоговой оценке. Причем, чем больше оценок и чем ближе конец отчетного периода, тем точность прогноза повышается.
· Акцентирование внимания учеников на «проблемных» для них темах - информационная система автоматически формирует список тем, по которым у ученика неудовлетворительные оценки. И предлагает, к примеру, набор тестов по этим темам.
· Генерирование небольших отчетов - в конце каждого отчетного периода для каждого ученика создаётся отчет, содержащий сводные данные по его успеваемости за истекший период и список изученных тем.
2.3 Практическое внедрение информационной системы в реальный процесс обучения
Информационная система автоматизации оценивания уровня знаний учащихся по информатике внедрялась в средней общеобразовательной школе №114.
Внедрение производилось в два этапа:
· Тестирование работы системы,
· Внедрение в реальный процесс обучения.
На первом этапе была выбрана одна группа 10 класса «Б», количество учеников: 12 человек.
Тестирование информационной системы оценивания знаний учащихся по информатике было начато в начале изучения очередной темы, согласно поурочному планированию. Это было сделано для того, что бы оценки, получаемые учениками, были наиболее объективны. В противном случае, оценка, которая была выставлена с помощью информационной системы, была бы не объективна, поскольку в ней не учитывались бы оценки полученные ранее и мог быть не учтён коэффициент важности заданий.
После первого теоретического занятия по теме, ученикам тестовой группы был предложен тест по текущей теме, оценки за который были занесены в информационную систему.
Далее, на последующих занятиях ученикам предлагались различные формы заданий, оценки заносились в информационную систему.
Результаты применения информационной системы в тестовой группе оказались положительными, что позволило судить о целесообразности внедрения информационной системы автоматизации оценивания знаний учащихся по информатике в учебный процесс.
Были получены следующие результаты:
· Оценка уровня знаний стала более объективной.
· Исчезла возможность фальсификации оценки.
· У родителей и учеников появилась возможность отслеживать динамику успеваемости.
· Учителю стало проще реализовывать личностно-ориентированный подход к учащимся.
· Учителю стало проще обращать внимание учеников на те аспекты темы, в которых ученик испытывает затруднение или неуверенность.
Второй этап внедрения проходил в 8-11 классах, всех подгруппах, изучающих информатику.
Оценки, получаемые учениками на уроках выставлялись не только в журнал, но и дублировались в информационной системе, где они обрабатывались.
Результаты внедрения в образовательный процесс оказались следующими:
· У учеников появилась возможность самостоятельно определять темы, с которыми у них возникли трудности.
· Для учителя упростился процесс составления и проведения тестов.
· Упростился процесс написания отчетов.
· Уменьшилась нагрузка документооборота на учителя.
· Упростился процесс проверки тестов, который свёлся к выставлению оценок в журнал.
· Процесс выставления четвертной оценки стал абсолютно прозрачен.
· К четвертной оценке стало возможным приложить сопроводительный текст с темами, которые были изучены с оценкой за каждую.
Заключение
В ходе работы над дипломным исследованием были решены поставленные задачи и достигнуты следующие результаты.
Изучение теоретической и методической литературы позволило выявить основные виды контроля знаний, определить своевременность использования каждого вида контроля и его влияние на итоговую оценку успеваемости. Проанализировать основные формы проверки успеваемости, эффективность их применения в зависимости от вида контроля. Анализ различных форм оценки результатов обучения позволил сделать вывод, что тесты наиболее приспособлены для автоматизации.
Анализ истории развития и перспектив автоматизации процесса контроля знаний показал, что применение средств информационных технологий в процессе обучения в общем, и при проведении контроля в частности является перспективным направлением развития автоматизации учебного процесса. Информатизация процесса контроля знаний позволяет добиться следующих положительных результатов: повышение объективности оценки, сведение к минимуму возможности фальсификации оценки, возможность отслеживать динамику успеваемости родителям и ученикам, упрощение реализации личностно-ориентированного подхода в обучении и др.
В процессе работы над дипломным исследованием были сформулированы принципы построения информационной системы оценки знаний учащихся по информатике. Опираясь на сформулированные принципы, была спроектирована информационная система оценки знаний, которая реализует следующие функции: учет оценок за разные виды контроля, обработка результатов тестов, алгоритм выставления рубежных и итоговых оценок, предоставление доступа к текущим результатам обучения для родителей прогнозирование итоговой оценки, предложения учащимся для повышения эффективности обучения, генерирование различных типов отчетов.
Опытно-экспериментальная проверка показала, что результаты оценки знаний учащихся, полученные в ходе контроля образовательного процесса с использованием спроектированной информационной системы, позволили значительно повысить эффективность выставления оценки, сделать процесс контроля более прозрачным, сократить время на проверку успеваемости, создать условия для построения индивидуальных образовательных траекторий каждого учащегося.
Таким образом, в ходе работы над дипломным исследованием были решены все поставленные задачи и доказана выдвинутая гипотеза.
Библиография
1. Аванесов В.С. Методологические и теоретические основы тестового педагогического контроля [Текст] / В.С. Аванесов.- СПб., 1994.- 32 с.
2. Аванесов В.С. Научные проблемы тестового контроля знаний. [Текст] / В.С. Аванесов.- М.: Исследовательский центр проблем качества подготовки специалистов, 1994.- 135 с.
3. Александрова М.А. Педагогический контроль в процессе воспитания [Текст]: методические рекомендации: методич. пособие / М.А. Александрова, Н.А. Алексеева, Е.Н. Степанов.- М.: Сфера, 2003.
4. Бахарева Т.А. Система автоматизированного контроля знаний. Анализ и повышение качества тестов [Текст] / Т.А. Бахарева, Д.С. Карпенко // Сборник трудов XI Международной конференции-выставки Информационные технологии в образовании (ИТО-2001).- М.: МИФИ, 2001.
5. Беспалько В.П. Проблема образовательных стандартов в США и России. [Текст] / В.П. Беспалько // Педагогика.- 1995.- №1.- С. 89-94.
6. Божович Л.И. Личность и ее формирование в детском возрасте. [Текст] / Л.И. Божович.- СПб.: Питер, 2008. - 398 с.
7. Григорьев С.Г. Телекоммуникационные средства контроля знаний в электронных учебниках / С.Г. Григорьев // Материалы Всероссийской объединенной конференции “Технологии информационного общества - Интернет и современное общество” [Текст] / С.Г. Григорьев, В.В. Гриншкун, С.И. Макаров.- СПб: СПбГУ.- 2001.- С. 2-5
8. Гриншкун В.В. Методы автоматизации контроля обучения [Текст] / В.В. Гриншкун // Материалы республиканской конференции "Компьютеризация образования: проблемы и перспективы".- Алматы: КазГУ им. аль-Фараби, 1998.- С. 1-7.
9. Гулидов И.Н. Педагогический контроль и его обеспечение [Текст] / И.Н. Гулидов.- М.: Форум, 2005.
10. Ершов А.П. Школьная информатика (концепции, состояние, перспективы) [Текст] / А.П. Ершов, Г.А. Звенигородский, Ю.А. Первин // Информатика и образование.- 1995.- № 1.- C. 3-19.
11. Ефремова Н.Ф. Современные тестовые технологии в образовании [Текст] / Н.Ф. Ефремова.- М.: Логос, 2003.- 173 с.
12. Кон И.С. Психология старшеклассника [Текст] / И.С. Кон.- М.: Просвещение, 1980.- 192 с.
13. Кузнецов А.А. Контроль и оценка результатов обучения в условиях внедрения стандартов образования [Текст] / А.А. Кузнецов // Педагогическая информатика.- 1997.- № 1.- С. 13-22.
14. Кузьмина Н.В. Организация тестового контроля [Текст]: учебно-методическое пособие / Н.В. Кузьмина, М.С. Чванова, В.В. Зубец.- Тамбов: изд-во ТГУ, 1998.- 42 с.
15. Лапчик М.П. Методика преподавания информатики [Текст] / М.П. Лапчик, И.Г. Семакин, Е.К. Хенер.- М.: Академия, 2007.- 622 с.
16. Левченко И.В. Программа и справочно-методические материалы для педагогической практики по информатике [Текст]: учеб.-методич. пособие для студентов пед. вузов и ун-тов / И.В. Левченко, О.Ю. Заславская, Л.М. Дергачева.- М.: МГПУ, 2006.- 123 с.
17. Матушанский Г.У. Проектирование педагогических тестов для контроля знаний [Текст] / Г.У. Матушанский // Информатика и образование.- 2000.- № 6.- С. 7-10
18. Минина Е.Е. Компьютерные средства оценки качества обучения [Текст] / Е.Е. Минина // Сборник трудов XI Международной конференции-выставки Информационные технологии в образовании (ИТО-2001).- М.: МИФИ, 2001.
19. Рейтинговая система оценки знаний при изучении общетехнических дисциплин / В. Наделяев, Т. Мартынова, В. Герстенбергер и др. // Высшее образование в России.- 1997.- № 2.- С. 103-107.
20. Семакин И.Г. Информатика. 11 класс [Текст]: учебник / И.Г. Семакин.- М.: БИНОМ, Лаборатория знаний, 2005.- 139 с.: ил.
21. Снигирева Т.А. Диагностика формируемой структуры знаний на основе квалитативной технологии [Текст] / Т.А. Снигирева // Современные диагностические оценочные средства для аттестации качества образования и применение компьютерно-информационных технологий: материалы ХI Всерос. симпозиума «Квалиметрия в образовании: методология, методика, практика». Ч. 3.- М.: изд-во исслед. центра проблем качества подготовки специалистов, 2006.- С. 67-73.
22. Соловов А.В. Проектирование компьютерных систем учебного назначения [Текст] / А.В. Соловов.- Самара, 1995.
23. Справочное руководство по программе ExaMINATOR [Текст] / Научно-производств. Фирма "Софтверк".- М.: ВидеоБилль, 2000.
24. Статистический подход к принятию решений по результатам тестирования для тестов открытой формы [Текст] / В.Б. Моисеев, В.В. Усманов, Л.Г. Пятирублевый и др. // Открытое образование.- 2001- № 1.- С. 51-57.
25. Сысоева Л.А. Предметно-критериальная методика составления тестов [Текст] / Л.А. Сысоева, В.Г. Толстоусова // Сборник трудов Международной конференции Информационные технологии в образовании (ИТО-2001). Ч. 3.- М.: МИФИ, 2001.
26. Талыгина Г.П. Компьютерное тестирование в школе [Текст] / Г.П. Талыгина // Директор школы.- 2001.- № 3.- С. 7-11
27. Фетискина М.П. Психологические проблемы применения ЭВМ в процессе обучения [Текст] / М.П. Фетискина.- М., 1990
28. Швец В. Экспертно-обучающие системы / В. Швец, В. Бурляев // Высшее образование в России.- 1997.- № 2.- С. 108-113.
Размещено на Allbest.ru
Подобные документы
Проблемы внедрения информационной системы. Процесс разработки и внедрения автоматизированной информационной системы на примере музея "Галерея изящных искусств". Рекомендации по устранению основных рисков или снижению степени их влияния на проект.
курсовая работа [3,0 M], добавлен 07.05.2015Анализ предметной области. Характеристика информационной системы. Обоснование выбора среды разработки. Проектирование, разработка, тестирование и внедрение сайта образовательной организации. Содержания школьного сайта, его организационной структуры.
дипломная работа [3,4 M], добавлен 15.02.2017Cовременные технологии тестирования. Assistant II, eTest, myTest X, veralTest, sunRav TestOfficePro. Концептуальная и физическая модель баз данных. Фреймворк Oposum CMS. Система тестирования учащихся, характеристика главных особенностей работы с ней.
дипломная работа [2,8 M], добавлен 02.01.2014Разработка прикладного программного обеспечения деятельности гимназии, предназначенного для решения задачи автоматизации учета учащихся. Проектирование процессов, структуры информационной системы и структуры базы данных. Расчет экономических показателей.
курсовая работа [2,0 M], добавлен 06.04.2013Детализация функций системы и требования к информационной системе. Анализ категорий пользователей. Этапы внедрения автоматизированной информационной системы на предприятии. Описание таблиц базы данных. Защита данных от несанкционированного доступа.
дипломная работа [1,0 M], добавлен 22.07.2015Виды организации контроля знаний и умений учащегося. Формирование независимой и объективной информации о результатах учебного процесса для обучаемого и обучающего. Обоснование выбора программы тестирования знаний студентов младших курсов по информатике.
курсовая работа [488,8 K], добавлен 03.09.2016Методика и основные этапы разработки системы тестирования для оценки уровня знаний студентов с применением технологии "Клиент-сервер". Проектирование клиентской, серверной части данной системы тестирования, порядок составления финальных отчетов.
дипломная работа [587,6 K], добавлен 08.11.2010Стратегическое планирование информационной системы предприятия, этапы ее внедрения. Задачи производственного планирования. Анализ окружения и внутренней ситуации системы. Факторы, влияющие на развитие информационной системы предприятия, ее особенности.
презентация [215,4 K], добавлен 14.10.2013Жизненный цикл программного обеспечения. Основные этапы разработки информационной системы (ИС), методики ее внедрения. Модели жизненного цикла ИС, традиционные и альтернативные модели ее создания. Разработка стратегии автоматизации. Проекты создания ИС.
презентация [105,5 K], добавлен 27.04.2013Анализ деятельности складского учета, внедрение информационных технологий в процесс работы склада. Создание информационной системы учета движения материалов на складе. Моделирование бизнес-процессов. Проектирование физической структуры базы данных.
курсовая работа [4,1 M], добавлен 22.06.2014