Разработка нейронной сети с быстрой и простой обучаемостью программы новым символам
Обзор программных продуктов для анализа изображений: ABBYY FineReader и OCR CuneiForm. Понятие и виды нейронных сетей. Алгоритм обучения персептрона. Результаты исследований и описание интерфейса программы. Расчет себестоимости программного обеспечения.
Рубрика | Программирование, компьютеры и кибернетика |
Предмет | Нейрокомпьютерная техника |
Вид | дипломная работа |
Язык | русский |
Прислал(а) | jakpomaslu |
Дата добавления | 17.08.2011 |
Размер файла | 590,7 K |
Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже
Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.
Подобные документы
Общие сведения о принципах построения нейронных сетей. Искусственные нейронные системы. Математическая модель нейрона. Классификация нейронных сетей. Правила обучения Хэбба, Розенблатта и Видроу-Хоффа. Алгоритм обратного распространения ошибки.
дипломная работа [814,6 K], добавлен 29.09.2014Математическая модель искусственной нейронной сети. Структура многослойного персептрона. Обучение без учителя, методом соревнования. Правило коррекции по ошибке. Метод Хэбба. Генетический алгоритм. Применение нейронных сетей для синтеза регуляторов.
дипломная работа [1,5 M], добавлен 17.09.2013Разработка методики создания электронного учебника по дисциплине "Дешифрирование аэроснимков", оценка программных средств. Методика сканирования изображений в больших количествах с помощью программы ABBYY FineReader. Особенности программы ScanTailor.
дипломная работа [5,2 M], добавлен 11.12.2015Понятие, закономерности функционирования нейронных сетей, Обзор информационных технологий, программных средств для реализации соответствующих алгоритмов. Детальное описание особенностей выполнения демонстрационного примера, составление программного кода.
курсовая работа [551,3 K], добавлен 09.04.2015Понятие искусственного нейрона и искусственных нейронных сетей. Сущность процесса обучения нейронной сети и аппроксимации функции. Смысл алгоритма обучения с учителем. Построение и обучение нейронной сети для аппроксимации функции в среде Matlab.
лабораторная работа [1,1 M], добавлен 05.10.2010Разработка технологии обработки информации, структуры и формы представления данных. Проектирование программных модулей. Блок-схема алгоритма и исходный код программы анализа арифметического выражения, синтаксического анализа простой программы на языке С.
курсовая работа [2,4 M], добавлен 12.12.2011Диагностический анализ изучения алгоритмов обучения нейронных сетей "с учителем". Сбор входных и выходных переменных для наблюдений и понятие пре/пост процессирования. Подготовка и обобщение многослойного персептрона, модель обратного распространения.
курсовая работа [249,3 K], добавлен 22.06.2011Разработка алгоритма и программы для распознавания пола по фотографии с использованием искусственной нейронной сети. Создание алгоритмов: математического, работы с приложением, установки весов, реализации функции активации и обучения нейронной сети.
курсовая работа [1,0 M], добавлен 05.01.2013Искусственные нейронные сети как одна из широко известных и используемых моделей машинного обучения. Знакомство с особенностями разработки системы распознавания изображений на основе аппарата искусственных нейронных сетей. Анализ типов машинного обучения.
дипломная работа [1,8 M], добавлен 08.02.2017Математическая модель нейронной сети. Однослойный и многослойный персептрон, рекуррентные сети. Обучение нейронных сетей с учителем и без него. Алгоритм обратного распространения ошибки. Подготовка данных, схема системы сети с динамическим объектом.
дипломная работа [2,6 M], добавлен 23.09.2013