Захист інформації

Системи телекомунікацій впроваджуються у фінансові, промислові, торгові і соціальні сфери. Різко зріс інтерес користувачів до проблем захисту інформації, який є сукупністю організаційно-технічних заходів і правових норм для попередження заподіяння збитку.

Рубрика Программирование, компьютеры и кибернетика
Вид курс лекций
Язык украинский
Дата добавления 19.12.2008
Размер файла 587,7 K

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

Узагальнення шифру Цезаря - це шифр простої заміни. Його суть полягає в тому, що всі букви алфавіта замінюються на інші букви, того ж алфавіта, за правилом, яке є ключем. Наприклад, а замінюється на в, би - на з, в - на в,..., я - на м. Кількість можливих при такому шифруванні перестановок, відповідна алфавіту з об'ємом m = 32, складає m! =32! =2.631035. Якщо в одну секунду при простому переборі застосовувати мільйон ключів, то загальний час на дешифрування становитиме 8.31021 років.

Розвитком шифру простої заміни став шифр Блеза Віженера (XVI повік, Франція). У цьому шифрі ключем служить слово, т.е. послідовність з порядкових номерів букв ключа. Ключ, при необхідності повторюючись, підписується під повідомленням, після чого виконується складання по модулю m в кожному стовпці, що містить по одній букві повідомлення і ключа.

Криптографією займалася багато яка відома математика, така як Вієт, Кардано, Лейбніц і, нарешті, Френсіс Бекон, який запропонував двійкове кодування латинського алфавіту.

У Росії самостійна криптографічна служба була уперше організована Петром I, який під впливом спілкування з Лейбніцом заснував циферну палату для розвитку і використання криптографії.

Промислова революція в розвинених країнах привела до створення шифрувальних машин. У кінці XVIII століття Джефферсоном (майбутнім третьому президентом США) були винайдені шифруючі колеса. Першу практично працюючу шифрувальну машину запропонував в 1917 р. Вернам. У тому ж році була винайдена роторна шифрувальна машина, що згодом випускалася фірмою Сименс під назвою "Енігма" (загадка), - основний противник криптографів Союзних держав в роки Другої світової війни.

Неоцінимий внесок в криптографію вніс К. Шеннон, особливо своєю роботою "Математична теорія зв'язку" 1948 року. У 1978 році Діффі і Хеллман запропонували криптосистеми з відкритим ключем. У 1977 році США був введений відкритий Федеральний стандарт шифрування для несекретних повідомлень (DES). У 1992 році вводиться відкрита вітчизняна система шифрування ГОСТ (див. схему на мал. 1.3) [5,6,7].

Одночасно з вдосконаленням мистецтва шифрування йшов розвиток і криптоаналізу, предметом якого було розкриття криптограм без знання ключів. Хоч постійне змагання між шифруванням і криптоаналізом продовжується і в цей час, однак є ряд істотних відмінностей сучасного етапу від попереднього.

1. Широке використання математичних методів для доказу стійкості шифрів або для проведення криптоаналізу.

Використання коштів швидкодіючої, спеціалізованої обчислювальної техніки.

Відкриття нового вигляду криптографії з більш "прозорими" методами криптоаналізу (криптографія з відкритим ключем).

Поява нових додаткових функцій, крім шифрування і дешифрування.

Використання новітніх фізичних методів в криптографії (динамічний хаос, квантова криптографія, квантовий комп'ютер).

1.7. Стандартизація методів і засобів забезпечення інформаційної безпеки за кордоном

Розробка стандартів для забезпечення безпеки передачі інформації за кордоном почалася з нині широко відомого стандарту DES, що реалізує алгоритм захисту з ключем блокової структури. Потім були опубліковані й інші стандарти.

Міжнародна організація стандартизації ISO почала роботу з цієї проблеми в 1980 р. з утворення Робочої Групи WG1 Технічного Комітету ТС97, відповідального за питання обробки інформації. Пізніше WG1 перетворена в підкомітет під найменуванням TC97/SC20. Стандарти по безпеці передачі даних охоплюють декілька підрозділів: алгоритми, режими використання, удосконалення зв'язкових протоколів, керування ключами, аутентифікація і т.д. Стандарт DES, обумовлений як алгоритм криптографії, був перероблений у міжнародних термінах. Зберігши стару внутрішню логічну структуру, стандарт був поданий у якості міжнародного і відомий як алгоритм Data Encipherment Algorithm 1 (DEA1) із номером 8227 по класифікації ISO. Аналогічно, відомий стандарт на криптосистему з привселюдним ключем RSA був також перероблений ISO і зареєстрований під номером 9307.

У Європейському інституті стандартів по телекомунікаціях (ETS!) проводиться велика робота зі стандартизації методів забезпечення безпеки при передачі інформації з різноманітних каналів. Працює Консультативна Група по методах забезпечення безпеки (STAG Security Techniques Advisory Group), що разом з іншими консультативними групами готує технічні звіти і проекти стандартів. Видано докладний каталог стандартів, технічних звітів і оглядових документів ETSI. Нижче приводиться перелік технічних комітетів ETSI, стандартів і звітів, що стосуються проблем безпеки інформації при передачі по каналах зв'язку різноманітного призначення.

ETSS Memorandum М1Т06, т.1.2. Каталог вимог Європейських стандартів по системах забезпечення інформаційної безпеки.

ТС/ВТС Системи ділового зв'язку. Підкомітет STC/BTC4 підготовлює технічний протокол, що буде включати аспекти забезпечення безпеки в широкосмугових мережах. Документ DTR/BTC 04002: "Приватні мережі, широкосмугові. Аспекти експлуатації і міжз'єднань".

STC/NA6 Інтелектуальні мережі підготовлений документ DTR/NA 061201. "Інтелектуальні мережі. Вимоги по безпеці для глобальних інтелектуальних мереж". Схвалений у жовтні 1994 р.

STC/NA7 Універсальний персональний зв'язок.

Універсальний персональний зв'язок є службою електрозв'язку, що забезпечує користувачам можливість рухливого радіозв'язку для вхідних і вихідних викликів. Передбачається, що служба не буде залежати від типу термінала і використовуваної мережі. До кінця 1991 р. експертна група з питань безпеки ETSI заснувала робочу групу NA7 із метою визначити архітектуру і стандарти, що забезпечують безпеку на різноманітних стадіях розвитку системи персонального зв'язку. Хоча робота над проблемами універсального персонального зв'язку була розпочата у ИК1 МСЭ, проте питання безпеки там не торкалися. В даний час перша стадія роботи закінчена. Розроблено такі документи.

ETR 0554. Універсальний персональний зв'язок. Концепція служби. Частина 4: Вимоги служби по забезпеченню безпеки.

ETR 05511. Універсальний персональний зв'язок. Концепція служби. Частина 11: Вимоги служби по захисту інформації.

ETR 083. Універсальний персональний зв'язок. Загальна архітектура забезпечення безпеки.

NATR014. Універсальний персональний зв'язок. Алгоритм аутентифікації.

DTR/NA 072402. Універсальний персональний зв'язок. Специфікація вимог до алгоритмів забезпечення безпеки.

ETR 0554. Універсальний персональний зв'язок. Частина 4: Вимоги служб до механізмів забезпечення безпеки.

DE/NA072401. Універсальний персональний зв'язок. Реалізація архітектури по забезпеченню безпеки.

DE/NA072401. Універсальний персональний зв'язок. Тести для реалізації архітектури по забезпеченню безпеки.

STC NA/STAG Консультативна група по методах забезпечення безпеки.

Консультативна група організована для підтримки заходів щодо забезпечення безпеки в складі ETSI. Вона розробила робочу програму по реалізації політики стандартизації по забезпеченню безпеки. Розроблено документи:

DTR/NA002401, Посібник із стандартів ETSI позабезпеченню безпеки.

DTR/NA002501, Напрямок і методи для ідентифікації, аналізу і документування вимог по безпеці для систем і служб телекомунікації.

DTR/NA002502, Основні напрямки в стандартизації безпеки.

TCRTR028, Словник термінології по стандартизації.

DTR/NA002602, Методи керування безпекою.

DTR/NA002603, Напрямки інтеграції механізмів забезпечення безпеки в стандарти ETSI.

DTR/NA002604, Посібник із визначення вимог для криптографічних алгоритмів.

STC/RES3 Цифрові Європейські безпровідникові системи зв'язку. У структурі забезпечення безпеки група RES3 займається питаннями взаємної аутентифікації рухливої і фіксованої частин системи, а також забезпечення конфіденціальності користувачів і переданих даних. Визначаються алгоритми аутентифікації і криптозахисту. Розроблено документи:

ETS 3001757. Радіопристрої і системи. Цифрові Європейські безпровідникові системи зв'язку. Частина 7. Особливості забезпечення безпеки.

ETS 3001757. Цифрові Європейські безпровідникові системи зв'язку. Частина 7. Переваги забезпечення безпеки.

ETS 300331, Цифрові Європейські безпровідникові системи зв'язку. Модуль підтвердження ідентичності.

STC/RES6, Трансєвропейські транкінгові радіосистеми. У складі ETSI створений підкомітет RES6, організований як експертна група по безпеці зв'язку. На першому етапі визначена конфіденціальність трафіка по радіоканалам, аутентифікація користувачів, каналів керування віщанням і ін. Розроблено документи:

ETR 0863, Трансєвропейські транкінгові радіосистеми. Частина 3. Аспекти безпеки.

priETS 3003927. Трансєвропейські транкінгові радіосистеми.

Служби "промова+дані". Частина 7: Безпека.

priETS 3003927, Трансєвропейські транкінгові радіосистеми.

Оптимізовані системи пакетного зв'язку. Частина 7: Безпека.

SAGE Консультативна Група по алгоритмах забезпечення безпеки.

Група створена для розробки всіх криптографічних алгоритмів для стандартів ETSI, а також алгоритмів за межами ETS!. Група склала специфікації на алгоритми криптозахисту для GSM систем. В даний час група працює над алгоритмом аутентифікації ТЕ9 і над алгоритмом шифрування для стандарту ТЕ10. Розроблено документи:

SAGETR 001. Вимоги для криптоалгоритмів для використання в аудіовізуальних системах.

SAGETR 0012. Звіт "Розробка алгоритму шифрування А5/2 для систем GSM".

S1.1.2.2. Проектування безпечних систем методи криптографії.

TC/SMG Мобільні системи цифрового зв'язку.

Група визначає архітектуру забезпечення безпеки для загальноєвропейської системи первинного зв'язку GSM. Головною ціллю є забезпечення аутентифікації рухливих абонентів і забезпечення конфіденціальності передачі по радіоканалам. Передбачається розробити до семи стандартів криптозахисту для систем GSM. На першому етапі розроблено два стандарти. На другій фазі передбачається поліпшення якості інших служб, у першу чергу обміну даними. Розроблено документи:

prETS 300506. Аспекти забезпечення безпеки (GSM 02.09).

prETS 300509. Модуль ідентифікації абонента (GSM 02.17).

RTS/SMG 030408В. Сигнальна підтримка алгоритму повторного шифрування (GSM 04.08).

prETS 300534. Мережні функції, що відносяться до безпеки (GSM 03. 20).

prETS 300614. Керування безпекою (GSM 12.03).

Серед багатьох переваг цифрових методів передачі аналогових повідомлень важливим є можливість захисту інформації порівняно простими засобами. У системах мобільного зв'язку типу GSM захист здійснюється шифруванням переданого радіосигналу незалежно від виду переданого повідомлення (промова, дані, сигнали керування й ін). Шифрування по алгоритму А5 здійснюється накладенням ПСП на потік переданих даних. Загальна структура алгоритму А5 загальновідома, проте конкретний різновид і ключ змінюються від сеансу до сеансу. Є також додаткові рівні захисту, що не публікуються. Ними володіють лише ті європейські оператори GSM, що підписали спеціальну угоду. Алгоритм А5 достатньо простий і реалізується апаратно у вигляді одного чіпу ВІС. Конкретні відомості про засоби захисту інформації в системі GSM містяться в специфікаціях/19/.

ETS 300506 (GSM 02.09). Аспекти безпеки.

У наземній мережі первинного сотового радіозв'язку GSM як користувачі, так і оператор мережі повинні бути захищені від несанкціонованого втручання третіх осіб. Заходи для забезпечення безпеки зв'язку розглядаються як додаткові послуги, що вибираються користувачем або включаються у функції мережі при наданні загальних послуг зв'язку. Метою цього стандарту є визначення особливостей забезпечення безпеки і відповідних рівнів захисту.

ETS 300534 (GSM 03. 20). Функції мережі для забезпечення безпеки.

Стандарт визначає функції мережі GSM, необхідні для забезпечення безпеки служб і функцій, описаних у рекомендаціях GSM 02.09.

При розробці й експлуатації сучасних систем супутникового зв'язку особлива увага приділяється використанню технічних засобів захисту інформації. Найбільше часто використовується стандарт DES, у тому числі і для урядового зв'язку. Стандарт DES використовується також у недержавних структурах, у тому числі для обслуговування банків і інших служб обертання грошей. У ряді випадків знаходить застосування метод захисту з відкритим ключем RSA.

Поряд із багатоканальними системами супутникового зв'язку типу INTELSAT широко використовуються мережі зв'язку з малими станціями VSAT (Very Small Aperture Terminal термінал із малою апертурою антени), що забезпечують малоканальний (персональний) супутниковий зв'язок. Обмін даними через супутник ретранслятор забезпечується з застосуванням ефективних засобів технічного захисту. У мережах малих станцій, що впроваджуються в Росії, часто застосовується алгоритм, обумовлений стандартом ГОСТСТАНДАРТ 2814789 [5, 6, 7]. Він перевершує стандарт DES по ряду показників, проте потребує великих обчислювальних витрат.

2. Математичні основи шифрування-дешифрування діскретних повідомлень

2.1. Прийняті позначення

М - алфавіт джерела повідомлення, - об'єм алфавіта джерела, - послідовність довжини n із символів алфавіта джерела повідомлення,

- послідовність із символів алфавіта джерела повідомлення,

М - символи алфавіта джерела повідомлення,

- численність усіх можливих послідовностей довжини n,

К - алфавіт ключів (ключових даних), - об'єм алфавіта ключа,

- послідовність довжини N із символів алфавіта ключа,

- послідовність із символів алфавіта ключа,

К - символ алфавіта ключа,

- численність усіх можливих послідовностей ключа довжиной N,

- об'єм численності усіх можливих послідовностей ключів довжини N,

- ключова послідовність, яку використовують для шифрування,

- ключова послідовність, яку використовують для дешифрування,

Е - алфавіт джерела кріптограми, - об'єм алфавіта кріптограми,

- послідовність довжини n із символів алфавіта Е,

- послідовність із символів алфавіта кріптограми,

Е - символ алфавіта кріптограми,

- численність усіх можливих послідовностей кріптограми довжиной n,

- об'єм численності усіх можливих послідовностей довжини n,

- додавання по модулю 2 (mod2).

2.2. Модель шифрування-дешифрування діскретних повідомлень

Будемо далі, як правило, розглядати шифрування-дешифрування так званих діскретних повідомлень, які можуть бути представлені сигналами, які мають кінцеве число станів. Це дані, печатні тексти, а також речові сигнали та зображення, якщо вони попередньо перетворені у діскретні (цифрові) сигнали. У випадку аналогового сигнала (як правило) використовують інші методи, які будуть розглядатися далі.

Математичною моделлю системи шифрування-дешифрування називають пару функцій

(2.1)

які перетворюють повідомлення у кріптограму за допомогою ключа шифрування та навпаки, кріптограму у повідомлення за допомогою ключа дешифрування . Обидві функції, які задають кріптосистему, повинні задовольнити таким вимогам:

функція f(,) та g(,) при відомих аргементах розраховуються просто.

функція g(,?) при невідомому ключі розраховується складно.

Передбачається, що ключ дешифрування невідомий нелегальним користувачам, хоч вони і можуть знати функції f(,) та g(,), а також ключ шифрування . (Остання умова складає так званий принцип Казиски).

Слід розрізняти три основних вида нападу (атаки) опонентів на кріптограму:

Напад при відомій кріптограмі .

Напад при відомій частині кріптограми та повідомлення , яка відповідає певній частині криптограми, яку отримали при використанні того ж самого ключа (атака при частково відомому відкритому повідомлені).

Напад при відомій криптограмі та спеціально вибраній частині повідомлення, яка відповідає цій частині кріптограми, яку отримали на тому ж ключі (атака з частково вибраними відкритими повідомленнями).

Сучасні кріптосистеми важаються стійкими, якщо вони стійки до всіх трьох атак.

Для кріптосистем, які шифрують повідомлення з невисокими вимогами до ймовірності помилки при передачі (цифрова реч, цифрове зображення), необхідно дати четверту, додаткову вимогу.

Дешифрування після передачі кріптограми по каналам зі спотвореннями не повинно збільшувати число помилок у порівнянні з тим числом помилок, які виникли у каналі зв'язку внаслідок спотворень, іншими словами не повинно відбуватися розмноження помилок.

Пояснемо суть поняття розмноження помилок. Нехай при передачі кріптограми по каналу зв'язку виникли помилки (див. мал.2.1).

,t

Мал.2.1. Система шифрування-дешифрування.

Місцезнаходження та величина помилок визначаються вектором помилок . При двоїчній системі передачі прийнята криптограма буде мати вигляд , де знак означає побітне додавання по модуля два, а загальне число помилок t дорівнює нормі векторів помилок , тобто t=. Число помилок t' у розшифрованому повідомлені підраховується як

(2.2)

Помилки не розмножуються при умові, що t'=t.

Якщо ключ шифрування дорівнює ключу дешифрування, тобто

==, (2.3)

то система називається сіметричною (одноключовою). Тоді у пункти шифрування та дешифрування повинні бути доставлені однакові ключі. Якщо , то система шифрування називається несіметричною (двоключовою). У цьому випадку ключ доставляється у пункт шифрування, а - у пункт дешифрування. Оба ключа повинні бути зв'язані функціональною залежністю =(), але такою, щоб відомому ключу шифрування неможливо було б відтворити ключ дешифрування. Для несиметричних систем шифрування () повинна бути складно розрахуємою функцією. У такій системі є можливість секретним чином розподіляти серед законних користувачів тільки їх ключі дешифрування, а ключі шифрування зробити відкритими та оприлюднити, наприклад у загальнодоступному довіднику. Розглядаєма система тому називається системою з відкритим (загальнодоступним) ключом . Кріптосистема з загальнодоступним ключом (Public key criptosystem) була вперше запропанована Діффі та Хелманом у 1978р.

У цій частині курсу будуть розглядатися тільки одноключові системи.

2.3 Особливі крітерії стійкості кріптосистем

Існують два основних класа стійкості кріптосистем:

Ідеально (безумовно) стійкі, або досконалі системи, для яких стійкість кріптоаналізу (дешифрування) без знання ключа не залежить від розрахункової потужності опонента. Ми будемо називати їх теоретично недешифруємими.

Розрахунково стійкі системи, у якіх стійкість кріптоаналізу залежить від розрахункової потужності опонента.

Система є теоретично недешифруємою, якщо будь-яка криптограма , отримана у ній, при відсутності знання про ключ , не містить ніяких відомостей про повідомлення , зашифроване у цю кріптограму. У відповідності з терією інформації це має місце, коли (при відсутності відомостей про ключ) дорівнює нулю взаємна інформація між численністю повідомлень М та численністю кріптограм Е, тобто І(Е, М) =0, де І(Е, М) =Н(М) - Н(М/Е), Н(м) - ентропія джерела повідомлень, Н(М/Е) - умовна ентропія численності повідомлень М при заданій численності криптограм Е.

При ідеальному шифруванні фактично виникає "обрив канала" від легальних користувачів до опонентів.

Равносильне визначення ідеального шифрування встановлює незалежність будь-якої пари та від численності повідомлень та численності кріптограм, тобто тоді, коли умовна ймовірність передачі визначеного повідомлення при отриманні визначеної криптограми залишається завжди рівною апріорній ймовірності передачі цього повідомлення.

(2.4)

З визначення ТНДШ видно, що найкращій засіб кріптоаналізу для такої системи при невідомому ключі дешифрування складається в ігноруванні кріптограми та в випадковому угадуванні повідомлень по відомій апріорно ймовірності.

Розглянемо приклад побудови теоретично недешифруємих систем (див. мал.2.2).

Припустимо, що повідомлення є двоїчною послідовністю довжини n. Тоді можна формувати кріптограму як двоїчну послідовність такої ж довжини n за наступним правилом:

(2.5)

використовуючи побітне додавання з ключем , який також є двоїчною послідовністю довжини n.

Наприклад,

011001101111010001110

010011110101100110101

___________________________

001010011010110111011

При відомому ключі , який повинен бути переданий на сторону прийому будь-яким секретним чином, повідомлення легко відновлюється по тій же формулі, по якій прводилося шифрування

(2.6)

Покажемо, що якщо двоїчні елементи ключа вибираються взіємнонезалежними та равноймовірними, то цього достатньо, щоб описана вище система була ТНДШ.

Елементи ключа вибирають незалежно, тому достатньо довести рівність Р(МЕ) =Р(М) для одного елемента. По формулі Бейеса

(2.7)

Із графа, який представлено на мал.2.3. і який показує можливості шифрування при рівноймовірних символах ключа слідчить, що , .

Звідси р(Е) =р(М=0) р(ЕМ=0) +р(М=1) р(ЕМ=1) =0.5(р(М=0) +р(М=1)) = 0.5 і отимаємо

(2.8)

Останнє рівняння і є умовою теоретичної недешифруємості.

Відзначимо, що дана система має суттєвий недолік, який полягає у тому, що потрібна довжина ключа N повинна дорівнювати довжині повідомлення, тому необхідна генерація, передача у секреті, зберігання великого числа біт ключа, що робить розглядаєму систему дорогою та непридатною для масового використання, доступною лише для привілейованих користувачів. Але поки на доведено, що умова n=N є необхідною для побудови ТНДШ.

Доведемо: необхідна умова ТНДШ складається з того, що число можливих кодів, використовуємих у ТНДШ повинно бути не менш, ніж число повідомлень, які засекречуються на цих ключах. Дійсно, нехай є L можливих повідомлень . Виберемо фіксований ключ . При одному й тому ж ключі різні повідомлення переходять у різні кріптограми з ймовірністю (граф такої системи

шифрування - на мал.2.5.

Мал.2.5. Граф шифрування одним ключом.

Мал.2.6. Граф шифрування в одну криптограму.

Оскільки передбачається, що система є ідеальною, то по визначенню для будь-якого повідомлення та кріптограми повинна виконуватися умова: , з якого, враховуючи, що

(2.9)

і виходить, що . Тоді для будь-якої обраної кріптограми (наприклад ) існують нульові ймовірності переходу у неї з будь-якого повідомлення , але оскільки різні повідомлення можуть переходити в одну й ту ж саму кріптограму тільки на різних ключах, то кожному такому переходу можуть відповідати різні ключі .

Відповідний граф для отримання кріптограми представлений на мал.2.6. Тоді ми отримаємо стільки ж ключів, скільки є повідомлень, тобто R.

Нехай ключ представляє собою послідовність довжиною N із алфавіта К об'ємом . Тоді загальне число ключів буде дорівнювати . Порівнюючи це число ключів з числом повідомлень , де m - об'єм алфавіта джерела, n - довжина повідомлення, отримаємо, що необхідна умова ТНДШ приймає вигляд

, або (2.10)

У частному випадку, коли L=m, отримаємо, що N=n, що співпадає з достатньою умовою, яку отримали вище для прикладу двоїчного кодування по модулю два.

Але нема необхідності шифрувати усі послідовності, які можна скласти із символів джерела повідомлень. У дійсності можна шифрувати тільки так звані "типічні" послідовності, які з'являються з ненульовою ймовірністю.

Із теорії інформації бачимо, що при число типових послідовностей , де H(M) - ентропія джерела повідомлення. Типові послідовності приблизно рівноймовірні, їх сумарна ймовірність збігається до одиниці. На підставі раніше доведеного твердження, шифруючи тільки типові послідовності, отримаємо необхідну умову ТНДШ:

, або (2.11)

Оскільки для будь-яких джерел Н(М) <logm, то (7) дає меньш жорсткі умови, ніж (6). Чим більше надлишок джерела, тим менше його ентропія. Таким чином для забезпечення найбільш економного з точки зору ключа ідеального шифра, необхідно попередньо стиснути повідомлення, а потім провести додавання по модулю два з ключовою послідовністю.

Таким чином, необхідною умовою ТНДШ є пропорційність довжини ключа довжині послідовності. Тільки коефіцієнт цієї пропорційності для надлишкових джерел може бути декілька зменшений в порівнянні з одиницею.

Приклад: нехай задані такі параметри джерела повідомлень та ключа: L=2, m=32, ентропія джерела Н(М) =0.5 біта на букву. Тоді при шифруванні усіх послідовностей джерела довжина ключа повинна бути N=5n, тоді як після стиснення повідомлення такого джерела вони можуть бути зменшені вдвічи.

2.4. Поняття про відстань єдиності

Розглянемо декілька інший підхід до поняття стійкості кріптосистеми, яка не залежить від розрахункової потужності опонента, який зв'язан з невизначеністю дешифрування при відомому ключі.

Будемо вважати, що опоненту відома кріптограма Е та опис системи шифрування-дешифрування симетричної кріптосистеми, тобто функції f(M,K) та g(E,K), але невідомий ключ К. Використовуючи до прийнятої кріптограми Е усі можливі ключі К, можна спробувати відновити повідомлення, коли серед численності ключів тільки один є вірним, тоді як інші - помилкові. Відбраковку ключів можна виконувати, використовуючи крітерій, який полягає у отриманні осмисленного текста. Однак може статися, що одній кріптограмі будуть відповідати декілька осмисленних розшифровок. У цьому випадку навіть при необмеженій розрахунковій потужності опонента немає засобу, щоб знайти істиний ключ та відновити дійсно зашифроване повідомлення.

- осмислених "типічних" повідомлень.

- безглуздих повідомлень.

Мал.2.7. Розшифровка кріптограми тотальним перебором ключів.

Нехай одній кріптограмі відповідає S осмислених розшифровок (мал.2.7). З них очевидно будуть помилкові, та одна істинна. Передбачемо також, що алфавіти повідомлень та кріптограм, а також довжини послідовностей повідомлень та кріптограм співпадають.

Якщо вдасться побудувати кріптосистему, яка для кожної кріптограми дає дуже велике число помилкових розшифровок, то її можна буде також важати стійкою, оскільки при будь-якій розрахунковій потужності стане неможливим визначити, яка з припущених розшифровок є істинною. Нижня межа для середнього числа помилкових розшифровок у випадку використання кріптосистеми з ключом довжини N, з об'ємом алфавіта ключових даних L, при шифруванні джерела повідомлення з ентропією Н(М) визначається теоремою Шеннона-Хелмна:

(2.15)

де m - об'єм алфавіта, n - довжина повідомлення (кріптограма). Із даного відношення видно, що якщо показник степені більше нуля та достатньо великий, то середнє число помилкових розшифровок буде дуже великим і систему шифрування можна вважати стійкою.

Але з ростом довжини прийнятої кріптограми та при фіксованому числі ключів, показник степені буде падати і коли він наблизиться до нуля, то можна важати, що помилкових розшифровок не буде, тобто нульове значення показника степені є критичним: при довжині кріптограми , де - довжина кріптограми, яка обертає в нуль показник степені, кожна кріптограма може бути розсекречена єдиним чином, а прі це не так. Величина дає ту мінімальну довжину кріптограми, починаючи з якої помилкові розшифровки будуть відсутні, отже, при переборі всіх ключів кожній кріптограмі буде відповідати єдине повідомлення, яке дійсно передавалося. Така довжина кріптограми називається відстанью єдиності . Знайдемо цю відстань, прирівнюючи до нуля показник степені у (2.15). Розв'язуючи отримане рівняння, знаходимо формулу Шеннона для відстані єдиності.

(2.16)

Важливий висновок, вірний для будь-яких кріптосистем, складається у тому, що якщо опонент перехватив кріптограму довжини , то він завжди зможе без знання ключа розшифрувати її єдиним правильним чином.

Аналіз формули для відстані єдиності показує, що чим менш надлишковим є джерело, тобто чим більше Н(М) до logm, тим більше відстань єдиності. Використовуючи дану формулу неважко побачити, що для дійсних повідомлень з надлишковістю та при відносно невеликій довжині ключа відстань єдиності є прийнятною для аналізу з боку опонента.

Пример. Пусть алфавит сообщения содержит 32 буквы, а энтропия сообщения H(M) = 1,5 (что примерно соответствует энтропии русского языка). Тогда при двоичном ключе длиною N = 128 символов, расстояние единственности составляет 40 букв.

Зазначимо, що хоча висновок для величини відстані єдиності був приблизним, практичний досвід свідчить, що відстань єдиності має величину того ж порядку, що дає формула Шеннона.

В заключение следует сделать общий вывод о том, что стойкие системы шифрования, криптоанализ которых не зависит от вычислительных или аппаратных возможностей оппонента, к сожалению не реализуемы на коротких ключах (N << n).

2.5. Вычислительно стойкие криптосистемы

Криптосистема называется вычислительно стойкой, если наилучший алгоритм дешифрования требует времени (или оборудования) больше, чем имеется в распоряжении оппонента.

В частности может оказаться, что требуемое время криптоанализа превышает то время в течение которого рассматриваемое сообщение перестает быть актуальным, либо получение даже правильного сообщения не окупает затрат затраченных на процедуру криптоанализа.

Существенная сложность при разработке вычислительно стойких криптосистем возникает в связи с определением наилучшего алгоритма криптоанализа. В действительности эта задача не решена ни для одной мощной криптосистемы, т.е. для достаточно мощных шифров наилучшие такие алгоритмы просто не известны. Поэтому можно говорить лишь об известных в настоящее время наилучших методах криптоанализа, которые применимы к отдельным классам шифров или разработаны для конкретных шифров. (Обычно ограничиваются наилучшими известными в настоящее время алгоритмами криптоанализа и берут значительный запас на быстродействие и количество вычислительных средств) Поэтому теоретически всегда существует возможность, что будет найден некоторый новый метод криптоанализа, который позволит решить задачу "в реальном времени". Однако для современных шифров вероятность такого "прорыва" весьма мала, поскольку он требует решения весьма сложных, и обычно давно известных в математике задач. Это особенно верно для систем с открытым ключом, для которых задача криптоанализа может быть четко сформулирована как некоторая вполне конкретная математическая задача.

В современной математике существует область "Теория сложности алгоритмов", где различают "простые" и "сложные" задачи. Задачи полиномиальной сложности, для решения которых необходимое число элементарных операций является полиномиальной функцией от размерности задачи, относятся к простым. Время T(N) для их решения  N n, где N - размерность задачи. Наиболее сложные (трудные) задачи требуют для своего решения числа операций, которое экспоненциально зависит от размерности задачи, т.е. T(N)  abN, где aиb>0 некоторые постоянные, в силу чего весь класс таких задач называется EXPTIME.

Нужно избегать построения криптосистем с полиномиальным временем криптоанализа и стараться строить криптосистемы так, чтобы их вскрытие относилось к задачам второго класса сложности.

Помимо двух уже рассмотренных классов задач в теории сложности выделяют еще один важный класс задач, называемых недетерминистско - полиномиальными (NP задачами). NP - задачи - это задачи, для которых пока неизвестны алгоритмы решения с полиномиальной сложностью (это не означает, что они вообще не существуют). Однако, если решение такой задачи найдено, то проверка его правильности это задача полиномиальной сложности.

Рис.2.8. Граф для поиска Гамильтонова цикла

Имеется достаточно широкий класс известных NP-задач, имеющий многовековую историю попыток их полиномиального решения. Так, например, для заданного графа (см. рис 2.8) нужно найти путь (Гамильтонов путь) проходящий по всем вершинам графа только один раз. Не известен алгоритм нахождения Гамильтонова цикла полиномиальной сложности от числа вершин графа. Хотя, если такой цикл найден, то проверить правильность предлагаемого решения всегда можно с помощью алгоритма полиномиальной сложности.

Среди задач NP класса имеется подкласс (см. рис.2.9) наиболее сложных задач, которые называются NP - трудными. Это задачи, обладающие следующим свойством: если для какой - то из них найдется алгоритм решения с полиномиальной сложностью, то это будет означать, что существуют алгоритмы с полиномиальной сложностью для решения всех задач из NP класса.

Рис.2.9. Соотношение между задачами NP и NPC класса.

Таким образом, нужно стремиться строить такие криптографические системы, чтобы их криптоанализ при неизвестном ключе был бы эквивалентен решению NP трудной задачи, для которой существование полиномиального алгоритма означает существование полиномиального алгоритма для решения всех задач из NP класса (что, учитывая огромный список таких задач очень маловероятно).

Отметим, однако, что имеется важное, существенное отличие в подходе к оценке сложности произвольных алгоритмов и сложности криптоанализа. В классической теории сложности оценка производится для самой трудной задачи, т.е. при наихудших входных данных, тогда как во втором - при всех входных данных, в том числе и при наилучших, т.е. при наиболее благоприятных для криптоанализа ключах.

Помимо рассмотренных ранее классов детерминированных алгоритмов, существует еще класс так называемых рандомизированных полиномиальных алгоритмов. К нему принадлежат такие алгоритмы, которые имеют полиномиальную сложность, но дают правильный ответ на поставленную задачу лишь с некоторой вероятностью. Очевидно, что если эта вероятность близка к единице, то с практической точки зрения, рандомизированные алгоритмы не хуже детерминированных.

Поэтому необходимо также исключить такие криптографические схемы, которые имеют рандомизированный алгоритм криптоанализа с полиномиальной сложностью.

Таким образом, основные очевидные требования к вычислительно стойким криптосистемам можно сформулировать в следующем виде:

Число ключей LN должно быть непереборно большим, например при L = 2 нужно иметь N = 64, N = 128 и т.п., поскольку в противном случае, приняв криптограмму длиною больше расстояния единственности (n > nре) можно правильно дешифровать переданное сообщение путем полного перебора ключей.

Недопустимо использование какого - либо метода шифрования, который имел бы известный поліноміально сложный от длины ключа метод криптоанализа. Желательно, чтобы сложность была экспоненциальной. Тогда, увеличивая длину ключа всегда можно обеспечить невозможность дешифровки в реальном времени. В частности, из этого следует, что криптоанализ не должен сводить

Зазначимо, що хоча висновок для величини відстані єдиності був приблизним, практичний досвід свідчить, що відстань єдиності має величину того ж порядку, що дає формула Шеннона.

3. основнi види сучасних методiв шифрування i дешифрування

Класифікація.

Класифікація сучасних методів шифрування і дешифрування може відбуватися по різних ознаках. По стійкості вони діляться на:

1. Ідеальні (досконалі або безумовно стійкі, ТНДШ).

2. Обчислювально стійкі при неозоро великому часі дешифрування, коли при відомих алгоритмах криптоаналізу необхідний час на дешифрування завжди переважає час "старіння" зашифрованої інформації.

3. Обчислювально стійкі з доступним для огляду часом дешифрування, але перевищуючі час старіння визначеної інформації.

По засобах формування криптограми з повідомлення розрізняють:

Блокові шифри.

Потокові шифри.

4. Шифри з відкритим ключем.

5. Маскуватори аналогових повідомлень.

З погляду використання ключа виділяють:

1. Двоключеві системи (несиметричні), .

2. Одноключеві (симетричні), = .

Розглянемо далі класифікацію криптосистем по способах формування криптосистем. Для утворення блокового шифру послідовність символів повідомлень розділяється на блоки однакової довжини n і кожний такий блок перетвориться в блок криптограми такої ж довжини по однаковому правилу, що залежить від ключа шифрування KШ, як показано на мал 3.1.

Мал. 3.1. Блокове шифрування.

При збереженні незмінним ключа Kш однакові блоки повідомлення, що появляються в різних місцях, дають однакові блоки криптограм криптограми. Звичайно такий засіб блокового шифрування називається шифруванням за допомогою кодової книги.

У випадку потокового шифрування кожний символ повідомлення перетвориться в кожний символ криптограми незалежно від всіх інших символів за правилом, заданому ключем, що може змінюватися від одного символу до іншого (мал. .3.2).

Мал. 3.2. Потокове шифрування.

Найбільше часто використовуваними потоковими шифрами є, так названі, шифри гаммування. У цьому випадку повідомлення представляється послідовністю двоїчних символів, а кожний символ криптограми формується додаванням по модулю два відповідні символи повідомлення і спеціально формованої двоїчної послідовності (гама), що залежить від ключа:

,(3.1)

де - i-ий символ гами залежачий функціонально від ключа K Відновлення повідомлення відбувається по аналогічному прийомі:

(3.2)

де гама збігається з гамою в (3.1) оскільки вони формуються за допомогою того ж самого ключа, що повинний бути доставлений для цього секретною способом на приймальну сторону (мал 3.3).

Мал. 3.3. Потокове шифрування гамуванням.

Різноманітні варіанти потокових шифрів визначаються різноманітними варіантами датчиків гами. Один із варіантів датчика гами заснований на блоковому шифрі заданим у вигляді кодової книги. Блокові і потокові шифри в дійсності можуть реалізовуватися тим самим пристроєм або програмою, але при використанні різноманітних модифікацій (мод) методів шифрування. Інший відомий спосіб побудови датчиків гами використовують лінійні рекурентні регістри.

Маскуватор аналогових мовних сигналів використовується для їхнього шифрування без перетворення в цифрову форму. У процесі шифрування спектр сигналу S(f) звичайно ділиться на ряд частотних смуг, після чого відбувається перестановка смуг, інверсія спектра (мал.3.4) і затримка смугових сигналів.

Дані перетворення виконуються достатньо швидко, що створює вихідний сигнал, що не дає можливість на слух визначити зміст мовних сигналів. На приймальній стороні відбуваються зворотні перетворення і відбувається відбудова сигналу, оскільки керування процесами шифрування і дешифрування реалізується однією і тією ж функцією гама Г(), де - загальний ключ, то відбувається відновлення вихідного сигналу.

Мал. 3.4. Перетворення спектра: а) інверсія б) перестановка смуг.

На жаль, даний метод шифрування є недостатньо стійким через ту обставину, що розмова мае велику надмірність. При наявності достатньої кількості технічних засобів можна робити дешифрування таких сигналів навіть без знання ключа і за невеликий час. Тому дане перетворення називається звичайно не шифруванням, а маскуванням. Другий недолік даного методу складається в значному погіршенні якості прийнятого мовного повідомлення при великому числі переприйомів.

Використання маскуваторів не є стійким стосовно технічно озброєного опонента, проте може використовуватися при невисоких вимогах до стійкості повідомлення. Прикладом серійно випускаємої апаратури шифрування мовних сигналів є "Орех".

Для надійного шифрування мовного сигналу його потрібно перетворити в цифрову форму, потім використовувати стійкі шифри пристосовані для шифрування для дискретних повідомлень, наприклад потокові шифри. Проте при перетворенні розмови в цифрову форму за допомогою імпульсно-кодової модуляції або дельта-модуляції істотно розширюється необхідна смуга частот каналу зв'язку, що призводить до необхідності використовувати більш широкополосні канали. Для того щоб передати зашифрований сигнал у тієї ж смузі частот (0,3-3,4 kГц), що використовується звичайно для передачі вихідного мовного сигналу, застосовуються спеціальні мовоперетворюючі пристрої - вокодери. Ці пристрої вимагають невеликої швидкості передачі, порядку 1200-2400 біт/c, завдяки чому зашифрований сигнал також може бути переданий по каналі ТЧ.

Проте, при використанні вокодера порушується натуральність і взнаваємість голосу. Крім того, це досить дорогий пристрій, тому він застосовується тільки тоді, коли стійкість шифрування повинна бути високою, навіть на шкоду натуральності й взнаваємості голосу промовця.

Конкретні засоби побудови блокових і потокових шифрів розглянемо в наступних розділах.

Блокові симетричні шифри.

Основні принципи побудови блокових симетричних шифрів.

Ще в роботі Шенона "Таємність і терміновість" були сформульовані такі основні принципи перетворення повідомлень, що можуть забезпечити високу стійкість блокового шифрування (мал.3.5):

Переплутування (нелінійне перетворення підстановка) символів.

Перемішування (розосередження, перестановка) символів.

Ітерування (повторення пунктів 1 і 2 багаторазово).

Достатньо складно задати загальне нелінійне перетворення для блоків великої довжини n. У той же час, якщо вибирати короткі блоки, то в криптограмі збережеться статистика повідомлення, що опонент може використовувати для ефективного криптоаналізу, як, наприклад, це реалізується при криптоаналізі шифру простої заміни. Для вирішення цього протиріччя звичайно вибираються підблоки помірної довжини n, потім до кожного підблоку застосовуються нелінійні перетворення і, нарешті, виконуються перестановки символів підблоків у межах усього блока довжини n.

Мал.3.5. Побудова блокових шифрів.

Нелінійні перетворення повинні залежати від використовуваного секретного ключа, що при повторенні перетворення (при виконанні нової ітерації) звичайно заміняється на новий, отриманий перетворенням вихідного ключа.

Найпростішим засобом завдання нелінійного перетворення є табличний засіб, коли двоїчний блок спочатку перетвориться в число, потім це число по таблиці перетвориться в інше і, нарешті, отримане число знову по таблиці перетвориться в двоїчний блок. Наприклад, шифруються блоки довжиною n = 3, яким зіставлені такі числа: 000 - 0, 001 - 1, 010 - 2,..., 111 - 7. Тоді таблиця підстановок може бути задана в такий спосіб:

{0, 1, 2, 3, 4, 5, 6, 7}{4, 2, 6, 7, 0, 5, 1, 3}.

Це означає, що, наприклад, вхідний блок 011 буде перетворений у вихідний блок 111. Складність такого перетворення залежить від довжини таблиці, що дорівнює 2n, де n - довжина блока.

Вигляд нелінійного перетворення звичайно залежить від певних біт розширеного ключа, що виробляється з вихідного ключа. Наприклад, нелінійне перетворення, що залежить від біт розширеного ключа = (K1,K2,K3), може мати вигляд

f(,) = f((K1,K2,K3), (M1,M2,M3)) = = (E1, E2, E3).

E1 = K1K2M1M2, E2 = K2K3M2M3,

E3 = (K1 K2) M1M3, = (E1, E2, E3). (3.3)

Якщо криптограма і повідомлення = (M1, M2, M3) відомі, то при виконанні криптоаналізу можна скласти рівняння щодо елементів розширеного ключа . Це буде система нелінійних рівнянь із невідомими K1, K2, K3, де дії виконуються по модулю два.

У процесі шифрування часто виконується декілька перетворень із двоїчними блоками, при чому, крім лінійної операції додавання по модулю два, використовуються, наприклад, операції додавання по модулю 2n, 2n+1 або множення по модулю 2n+1, де n - довжина блока і т.п. Тому криптоаналіз гарного блокового шифру не зводиться до відомих поліноміальних задач.

Більшість сучасних блокових шифрів реалізується на основі, так називаної, структури Файстеля. Для цього попередньо з вихідного ключа  = 0 за допомогою заданого детермінованого перетворення, що входить в опис алгоритму шифрування, формується послідовність розширених ключів i, i = 1,2,...,d, де d - число ітерацій.

Мал.3.6. Підготовка блоків для шифрування на основі структури Файстеля.

Далі структура Файстеля припускає такий засіб перетворення блоків. Спочатку послідовність двоїчних символів повідомлення розбивається на блоки довжиною n=2n0 (мал.3.6).

Кожний з отриманих блоків шифрується однаково з використанням такого рекурентного співвідношення, що на i-му кроці має вигляд

,

i=2,3,...,d, (3.4)

де 0 і  1 - підблоки першого блока вихідного повідомлення, f(,) - детермінована відкрита нелінійна функція, i-1 - елементи послідовності розширених ключів, сформовані детермінованим способом з основного секретного ключа даної криптосистеми. Криптограма, сформована на останній ітерації d, приймає вигляд

= ( d - 1, d). (3.5)

Наприклад, якщо дано = ( 0, 1), то обчислюємо

2 = 0 f(1, 1),

складаємо (1,2), знову обчисляємо

3 = 1 f( 2, 2),

складаємо (2,3) і т.д.,..., до отримання послідовностей d - 1 і d, із котрих і формується криптограма = (d - 1,d).

Перевага такої структури складається в тому, що по-перше, для неї виконується принцип перемішування між підблоками, по-друге, дуже просто реалізується алгоритм дешифрування при ключі, відомому законному користувачу. При цьому важливо те, що функція f(,) навіть не обов'язково повинна мати обернену! Дійсно, коректне дешифрування в даній структурі виконується по тому ж алгоритмі, що і шифрування: Нехай = ( 0, 1) = ( d - 1, d).

Тоді

,..., ,...,

1 = 3 f( 2, 2), 0 = 2 f( 1, 1),

= ( 0, 1), що, як очевидно і збігається з вихідним повідомленням.

Є багато різноманітних блокових шифрів, заснованих на структурі Файстеля, що відрізняються вибором функції f і засобом формування розширених ключів i i=1,2,…,d з основного ключа . Нехай на такий шифр відбувається напад із відомим повідомленням. Тоді, знаючи опис функції f і засіб побудови підключей по основному ключу, опонент може скласти систему нелінійних рівнянь і спробувати її вирішити щодо ключа як невідомого. Стійкість даного типу шифрів грунтується на складності рішення системи нелінійних рівнянь із діями по модулі два. Доведено, що в загальному випадку ця задача відноситься до класу NP - важких задач.

Багатократне шифрування блоків.

На перший погляд представляється очевидним, що можна значно підвищити стійкість шифру, якщо криптограму, отриману за допомогою ключа 1, зашифрувати ще раз за допомогою іншого ключа2, тобто реалізувати процедури шифрування-дешифрування в такий спосіб:

, . (3.6)

Проте, нескладно показати, що якщо довжина ключа дорівнює N, те фактично застосування дворазового шифрування збільшує число операцій, необхідних при криптоаналізі за допомогою тотального перебору ключів від 2N до . Іншими словами, обсяг перебору збільшується тільки в два рази і, отже, дворазове шифрування не є ефективним.

Метод, що у даному випадку використовується для дешифрування, називається "зустріччю в центрі". Нехай є криптограма , отримана шляхом повторного шифрування.

(3.7)

Для криптоаналізу використовуємо напад із відомим повідомленням, рахуючи, що відомо не менше двох блоків повідомлення і відповідні їм блоки криптограми, наприклад,

11 і 22. (3.8)

Рішення задачі будемо шукати шляхом перебору всіх можливих двоїчних ключів довжини N. Варіанти ключа помістимо в перший рядок заздалегідь складеної таблиці. В другий рядок таблиці помістимо результати шифрування першого відомого блока повідомлення відповідними варіантами ключів, а в третю - результати дешифрування першого блока криптограми, отримані як .

Варіант ключа K

K1

K2

Km

Kn

E1

E2

Em

M1

M2

Mn

З співвідношення очевидно, що для дійсно використаних ключів 1 або 2 якийсь елемент Em другого рядка повинний обов'язково співпасти з яким-небудь елементом Mn третього рядка. У такий спосіб достатньо знайти збіжні елементи в другому і третьому рядках і вибрати відповідні їм ключі Km і Kn у якості кандидатів у дійсні ключі 1 і 2. Проте збіги можливі і не тільки для істинних ключів, тобто кандидатів може виявитися декілька. Тому потрібно спробувати застосувати знайдені ключі до іншої пари повідомлення-криптограми для перевірки другого співвідношення

. (3.9)

Якщо виповниться і ця рівність то, як правило, знайдені ключі називаються істинними.

Для підвищення стійкості шифрування використовують не подвійне, а потрійне шифрування на трьох різноманітних ключах, тобто формують криптограму по такому правилу

, . (3.10)

Доводиться, що найкращий можливий метод криптоаналізу за допомогою тотального перебору ключів зажадає в цьому випадку 22N кроків, тобто стійкість криптограми істотно збільшується.

Основні параметри і принципи побудови найбільше відомих блокових шифрів.

В даний час розроблено багато різноманітних блокових шифрів, частина з яких є державними (федеральними), інші інтернаціональними. До них насамперед відносяться:

Шифр DES (Федеральний стандарт США).

IDEA - (міжнародний стандарт шифрування).

GOST - (стандарт Російської Федерації).

DES - Федеральний стандарт шифрування для несекретних повідомлень у США. Є першим у світі цілком відкритим алгоритмом. Повсюдно використовується для шифрування даних.

DES являє собою блоковий шифр, заснований на структурі Файстеля з довжиною блоків рівної 64-м бітам і такою же довжиною блока криптограми. Для шифрування використовується ключ довжиною 56 біт + 8 перевірочних біт. Алгоритм реалізується 16-ма ітераціями. На кожній ітерації ключ виробляється з вихідного ключа за допомогою вибірки визначених елементів ключа і їхніх перестановок. Нелінійна функція в кожній ітерації задається за допомогою коротких нелінійних перетворень, так названих S - блоків, і перестановок. Всі перетворення задаються таблицями, що опубліковані у відкритій літературі. Алгоритм виробляє зашифровані дані, кожний біт яких є функцією від усіх біт відкритих даних і від усіх біт ключа. Зміна лише одного біта даних дає рівні можливості зміни для кожного біта криптограми.

Спочатку DES був розроблений фірмою IBM для своїх цілей. Тест по безпеці даної системи шифрування був проведений Агентством Національної Безпеки США, що не виявило в ньому статистичних або математичних вад. Після цього з 1976 DES став стандартом шифрування для несекретних повідомлень у США. Алгоритм опублікований. Вартість апаратної реалізації зі швидкістю шифрування 500 кбіт/c складає 100$. При програмній реалізації швидкість перетворення складає 20-140 кбіт/с.

Основний метод нападу на DES - повний перебір усіх ключів, число яких складає 256. На ПК можна перебрати всі ключі за 2300 років. Якщо сконструювати спеціальну дешифровальную машину, то систему DES можна розкрити протягом 1-го тижня. Це буде коштувати 3,3 млн. $ за даними на 1995 рік. До 2000 року вартість може знизиться до 830 тис. $, а до 2005 року - до 100 тис. $.

Слід зазначити, що якщо повний перебір ключа для якогось шифру потребує визначеного часу, то це не означає неможливість знаходження істинного ключа за менший час, але з визначеною, не одиничною, можливістю (див. таблицю нижче).

Наприклад, якщо повний час перебору складає 1 рік, то з можливістю рівної 0,0833 можна знайти ключ за 1 місяць, а з можливістю 0,0192 за тиждень.

Таблиця 3.1. Можливості перебування істинних ключів.

Гарантоване

Можливість знайти ключ за

час знайти ключ

час

день

Тиждень

місяць

Рік

день

0,0417

1,0

1,0

1,0

1,0

Тиждень

0,006

0,1429

1,0

1,0

1,0

Місяць

0,0014

0,0329

0,2308

1,0

1,0

Рік

0,0001

0,0027

0,0192

0,0832

1,0

Існували спроби непереборного дешифрування DES на основі диференціального (різницевого), лінійного і статистичного криптоаналізу. Для повного алгоритму DES ці методи виявилися практично негожими. Проте, якщо використовується спрощений алгоритм DES (наприклад, замість 16-ти циклів реалізується тільки 4), то непереборні методи дозволяють розкривати спрощений "DES" без знання ключа за невеликий час.


Подобные документы

  • Принципи, цілі та завдання, напрямки робіт із захисту інформації. Суб'єкти системи захисту інформації у Російській Федерації. Основні організаційно-технічні заходи, об'єкти та засоби захисту інформації. Види загроз безпеки, матеріальні носії інформації.

    реферат [23,6 K], добавлен 27.03.2010

  • Детальний опис об'єкту захисту i видів інформації, що опрацьовується i зберігається у банку. Оцінка можливих каналів витоку інформації. Перелік організаційних і технічних заходів на об’єкті. Захист телефонних ліній і екранування виділених приміщень.

    курсовая работа [35,6 K], добавлен 23.12.2010

  • Можливі канали витоку інформації. Джерела виникнення електромагнітних полів. Основні параметри можливого витоку інформації каналами ПЕМВН. Розроблення системи захисту інформації. Захист інформації блокуванням загроз без використання засобів ТЗІ.

    дипломная работа [80,0 K], добавлен 13.03.2012

  • Акт категоріювання. Акт обстеження. Наказ на контрольовану зону. Модель загроз. Технічний захист інформації. Комплексна система захисту інформації. Перелік вимог з захисту інформації. Об'єкти, що підлягають категоріюванню.

    курсовая работа [17,6 K], добавлен 19.07.2007

  • Побудова комплексної системи захисту інформації на OOO "Віпіком". Забезпечення інженерно-технічними заходами конфіденційності, цілісності та доступності інформації. Своєчасне виявлення і протидія загрозам безпеці інформації з обмеженим доступом.

    курсовая работа [343,5 K], добавлен 05.01.2014

  • Захист електронних платежів у мережі Іntегnеt. Побудова захисту електронних банківських документів. Криптографічний захист інформації. Захист інформації та вирішення питань безпеки у СЕП. Роботи програмно-технічних комплексів в інформаційній мережі.

    контрольная работа [293,9 K], добавлен 26.07.2009

  • Проблеми побудови цілісної системи захисту інформації з обмеженим доступом для малого підприємства. Основні етапи планування та моделювання комплексної системи захисту інформації, негативні чинники, що можуть завадити проведенню якісної її побудови.

    статья [131,1 K], добавлен 27.08.2017

  • Мета і призначення комплексної системи захисту інформації. Загальна характеристика автоматизованої системи установи та умов її функціонування. Формування моделей загроз інформації та порушника об'єкта інформаційної діяльності. Розробка політики безпеки.

    курсовая работа [166,9 K], добавлен 21.03.2013

  • Аналіз системи життєзабезпечення об’єкта захисту, можливих каналів витоку інформації. Побудова моделі порушника. Розробка організаційних, технічних заходів захисту. Вибір тип електромагнітного екранування, заземлення. Розрахунок звукоізоляції приміщення.

    курсовая работа [1,7 M], добавлен 16.08.2015

  • Огляд можливостей щодо витоку інформації та заходів по його запобіганню. Захист конфіденційної інформації при проведенні переговорів. Планування захисних заходів щодо видів дестабілізуючого впливу. Виявлення несанкціонованого доступу до ресурсів.

    дипломная работа [3,8 M], добавлен 17.11.2014

Работы в архивах красиво оформлены согласно требованиям ВУЗов и содержат рисунки, диаграммы, формулы и т.д.
PPT, PPTX и PDF-файлы представлены только в архивах.
Рекомендуем скачать работу.