Методы многомерной оптимизации: многомерная оптимизация методом Хука и Дживса
Сравнение методов многомерной оптимизации Хука-Дживса и Розенброка по числу вычислений и по числу вызова оптимизируемой функции в процессе оптимизации. Особенности применения алгоритмов ускоряющего шага, в которых используется поиск по направлению.
Рубрика | Программирование, компьютеры и кибернетика |
Предмет | Теория оптимального планирования и управления |
Вид | лабораторная работа |
Язык | русский |
Прислал(а) | Евгений |
Дата добавления | 14.07.2012 |
Размер файла | 2,8 M |
Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже
Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.
Подобные документы
Теоретические основы метода оптимизации. Разработка компьютерной системы для решения задач многомерной безусловной оптимизации методом Хука-Дживса с минимизацией по направлению. Описание структуры программы и результаты ее отладки на контрольных примерах.
курсовая работа [595,4 K], добавлен 13.01.2014Задачи оптимизации в математике и информатике. Классификация методов оптимизации. Методы с переменной метрикой. Значение функции на заданном интервале. Локальный минимум функции. Методы минимизации функции. Классификация методов многомерной оптимизации.
курсовая работа [1,5 M], добавлен 19.06.2012Программирование численных методов одномерной оптимизации. Решение одномерных задач оптимизации методами последовательного поиска. Градиентные методы и их применение для оптимизации на ЭВМ математических моделей объектов. Методы нулевого порядка.
контрольная работа [257,9 K], добавлен 15.01.2009Программная реализация приложения для вычисления заданных функций. Процедура поиска минимума функции. Применение методов Хука-Дживса и градиентного спуска для решения задачи. Исследование функции в окрестности базисной точки, определение ее координат.
контрольная работа [767,1 K], добавлен 02.02.2014Задача оптимизации с точки зрения математики как задача нахождения экстремума вещественной функции в некоторой области. Классификация и типы методов оптимизации, условия их практического использования. Создание программы, ее листинг, описание алгоритмов.
курсовая работа [181,7 K], добавлен 22.06.2012Необходимые условия экстремума. Разработка машинного алгоритма и программы многомерной оптимизации для градиентного метода с использованием метода равномерного поиска. Проверка необходимых и достаточных условий экстремума для найденной точки минимума.
курсовая работа [249,8 K], добавлен 25.09.2013Нахождение стационарной точки. Расчет безусловного экстремума функции методами прямого поиска. Графическое пояснение метода равномерного симплекса. Метод поиска Хука-Дживса. Метод сопряженных направлений Пауэлла. Разработка программного модуля расчетов.
курсовая работа [1,4 M], добавлен 16.09.2012Математическое описание и аналитическое исследование методов оптимизации: Нелдера-Мида и градиентный с дроблением шага. Зависимость числа итераций от заданной точности. Решение задачи минимизации для каждого из методов и ее графическая интерпретация.
курсовая работа [472,8 K], добавлен 22.11.2009Решения алгебраических уравнений методом выделения корней. Аппроксимация функций методом наименьших квадратов; дихотомия, бисекция. Одномерная оптимизация многоэкстремальных функций; метод золотого сечения. Многомерная оптимизация градиентным методом.
курсовая работа [956,7 K], добавлен 04.03.2013Математические основы оптимизации. Постановка задачи оптимизации. Методы оптимизации. Решение задачи классическим симплекс методом. Графический метод. Решение задач с помощью Excel. Коэффициенты целевой функции. Линейное программирование, метод, задачи.
реферат [157,5 K], добавлен 21.08.2008