Операционные системы "тонких" клиентов

Карманные персональные компьютеры. Операционная система PalmOS. Управление памятью и внешними данными. Расширения и файловая система. Виртуальное адресное пространство Windows CE. Новые тенденции встроенных ОС. Фирма Apple и компьютеры Macintosh.

Рубрика Программирование, компьютеры и кибернетика
Вид курс лекций
Язык русский
Дата добавления 03.12.2010
Размер файла 2,6 M

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

ОС OS/360 MVT, находившаяся "у истоков" этой линии, работала только с реальной памятью, создавая в ней динамические разделы по мере необходимости. В ОС MVS сложились концепции управления виртуальной памятью и другими основными ресурсами, оставшиеся в принципе неизменными и до настоящего времени. Переименование системы в OS/390 было связано с интеграцией в систему ряда программных серверов, ранее существовавших в виде отдельных программных продуктов, а в z/OS - с адаптацией к 64-разрядной z-архитектуре. Длительная история эволюционного развития MVS - OS/390 - z/OS привела к тому, что на сегодняшний день z/OS является системой настолько сложной и богатой возможностями, что описать их все даже на структурном уровне - задача невыполнимая в объеме одной книги. Тем не менее, мы попытаемся (ни в коей мере не претендуя на полноту) дать читателю некоторое представление о компонентах управления теми ресурсами, которые являются предметом нашего основного внимания.

Примерная структура системного программного обеспечения в составе z/OS показана на рисунке 12.5.

Рисунок 12.5 Структура программного обеспечения z/OS

Мы отметили, что развитие этой ОС происходило исключительно эволюционным путем. Внедрение новых возможностей управления ресурсами в ОС происходит, как правило, по следующему сценарию:

новый управляющий сервис разрабатывается и внедряется как отдельный программный продукт, продаваемый отдельно от ОС;

новый программный продукт включается в комплект поставки ОС;

новый продукт интегрируется с ядром ОС, возможно, становится частью ядра.

Хотя понятие "ядро" для z/OS точно не определено, мы называем ядром Базовую Управляющую Программу (BCP - Base Control Program), осуществляющую низкоуровневое управление такими ресурсами, как память, процессы, средства коммуникаций. Надстройки над низкоуровневым управлением (в составе самой BCP или на более высоких уровнях системного программного обеспечения) позволяют управлять политиками распределения ресурсов. Ряд системных сервисов, не входящих в состав ядра, но работающих в режиме супервизора, являются подсистемами - средами выполнения приложений. Дополнительные системные сервисы расширяют возможности сервисов, включенных в базовый комплект. Некоторые программные продукты IBM, относящиеся к классу промежуточного программного обеспечения, также можно назвать подсистемами, так как они создают собственные среды. Эти продукты также тесно интегрированы с системой, и в ядро системы включены функции поддержки этих продуктов.

Управление памятью

Управление памятью является, возможно, самым интересным свойством z/OS. Аббревиатура первого названия ОС - MVS расшифровывается как Multiply Virtual Storage и отражает именно аспект управления памятью. Каждая задача в MVS (и в ее современных наследниках) обладает собственным виртуальным АП. Размер этого АП составлял 16 Мбайт в ранних версиях ОС (24-битный адрес), 2 Гбайта, начиная с MVS/XA (31-битный адрес) и 16 эксабайт в z/OS (64-битный адрес). Мы рассмотрим сначала первые две модели адресации, а затем отдельно расскажем об "освоении" системой 64-битного адреса.

Распределение виртуального АП для 24- и 31-битого размера адреса показано на рисунке 12.6. Нижняя часть виртуального АП занята системой, она перекрывается для всех АП, но для прикладных программ недоступна. Верхняя часть виртуального 16-Мбайтного АП - общая область памяти, занимаемая объектами, совместно используемыми разными задачами. Это как разделяемые объекты данных, так и совместно используемые программные коды, например, системные сервисные службы, такие как TSO и т.п. АП между этими двумя областями является частным АП задачи. При расширении АП до 2 Гбайт дополнительная часть общей области памяти, смежная со "старой" появляется по другую сторону 16-Мбайтной границы, остальная часть дополнительного АП является дополнительным частным пространством задачи. Таким образом, задачи, в которых выполняются программы, разработанные для 24-разрядных версий MVS, видят привычную для себя структуру 16-Мбайтного АП, задачи, созданные для новых версий, видят полную структуру 2-Гбайтного АП. Размещение в памяти и выполнение программы определяется параметрами RMODE и AMODE. Первый из этих параметров определяет размещение программы в нижней или верхней части АП. Значение параметра AMODE отображается на соответствующий бит PSW и определяет режим выполнения некоторых команд процессора, при AMODE=24 команды, работающие с адресами, используют 24-битный адрес, при AMODE=31 - 31-битный адрес. Каждая программная секция характеризуется своими параметрами RMODE и AMODE, таким образом, режимы адресации могут изменяться и в ходе выполнения одной задачи.

z/OS предоставляет также приложениям возможности использовать дополнительные АП. Хотя реализации всех этих возможностей используют описанные выше регистры доступа AR, с точки зрения приложений их можно разделить на 4 направления:

коммуникации "пересечения памяти" (cross memory communications);

явное использование дополнительных АП (AR ACS mode);

пространства данных (data spaces);

гиперпространства (hiperspaces).

Коммуникации пересечения памяти позволяют программе передавать управление в другое АП. Управление передается не "напрямую", а через системный вызов (блок запроса SRB). Различают синхронные и асинхронные коммуникации пересечения памяти.

В так называемом первичном режиме AR-программа работает только с данными, расположенными в первичном АП. В режиме же управления памятью через регистры доступа в режиме ACS AR-программа может определять регистры AR, используемые для трансляции адресов и, таким образом, употреблять обычные команды обращения к данным для работы с параллельными АП. Программа, однако, не может передавать управление в другое АП, для этого режим ACS AR надо комбинировать с коммуникациями пересечения памяти.

Пространства данных и гиперпространства являются дополнительными именованными АП размером от 4 Кбайт до 2 Гбайт, используемыми только для размещения данных.

Программа, использующая пространства данных, должна работать в режиме ACS AR. Она использует системные вызовы для создания и удаления пространства данных и управления им, команды же, выполняемые в основном АП, могут непосредственно манипулировать данными в пространстве данных.

Программа, использующая гиперпространства, может работать в первичном режиме AR. Она использует системные вызовы для создания и удаления пространства данных и управления им, а также для того, чтобы пересылать данные между гиперпространством и основным АП. Обмен между первичным АП и гиперпространством ведется 4-Кбайтными блоками.

Пространства данных или гиперпространства могут содержать также и программные коды, но передавать управление на эти коды непосредственно программа не может. Для выполнения эти коды должны быть пересланы в буфер в первичном АП. Физически оба вида пространств могут размещаться как в основной, так и в расширенной памяти, но для пространства данных предпочтение отдается основной памяти, а для гиперпространства - расширенной. Для управления пространствами данных система использует те же механизмы страничного обмена, что и для первичного АП. Поскольку же манипулирование данными в гиперпространстве несколько ограничено, для управления гиперпространством используются более простые и более эффективные алгоритмы.

В z/OS имеется также механизм отображения в память объектов данных (data-in-virtual), аналогичный файлам, отображаемым в память, в Unix. Этот механизм позволяет назначить "окно" виртуальных адресов, просматривать в этом окне нужную часть объекта данных и перемещать окно по мере необходимости. Отображение данных возможно (и предпочтительно) в пространство данных или в гиперпространство.

Приложение получает память в своем виртуальном АП, используя системные вызовы явного (GETMAIN или STORAGE) или неявного выделения памяти. Управление выделением памяти ведется при помощи так называемых подпулов. Подпулы состоят из 4-Кбайтных блоков памяти и формируются динамически: блоки добавляются в подпул или удаляются из него по мере необходимости. Система удовлетворяет каждый запрос на выделение памяти из одного блока (разумеется, кроме тех случаев, когда размер запроса превосходит размер блока). При размещении небольших запросов система ищет свободное место в уже выделенных блоках по принципу "самый подходящий" и лишь при невозможности удовлетворить запрос таким образом выделяет новый блок.

При создании любой задачи для нее обязательно создается подпул 0, но в задаче может быть создано и большее число подпулов. Любой подпул может использоваться только одной задачей или разделяться несколькими задачами. Подпул 0 разделяется задачей со всеми ее подзадачами, но если подпул 0 задачи определен как неразделяемый, для каждой подзадачи будет создаваться свой подпул 0. Монопольно используемые подпулы освобождаются с окончанием задачи, которая ими владеет. Разделяемые подпулы сохраняются, пока сохраняется хотя бы одна из использующих их задач.

"64-разрядная революция" аппаратуры мейнфреймов осваивается z/OS за несколько шагов.

Первый шаг, сделанный в z/OS V1R1, обеспечил 64-битное управление реальной памятью, что позволило уменьшить страничный обмен и ограничения на память для прежних 31-разрядных приложений.

Со второго шага, сделанного в z/OS V1R2, обеспечивается поддержка 64-битной адресации в одном АП. Качественно картина виртуальной памяти приложения остается такой же, как и представленная на рисунке 12.6, но выше границы 2 Гбайт, называемой "планкой" (bar) появляется дополнительная часть частного АП. Любая 31-битная программа может теперь получать виртуальную память за планкой и манипулировать данными в этой памяти. Программа по-прежнему размещается в пределах 2 Гбайт, виртуальная память выше планки предназначена только для данных. Новый язык Ассемблера включает в себя новые команды для работы с данными за планкой и манипулирования с 64-разрядными регистрами общего назначения. Системные вызовы для работы с данными за планкой включают в себя прежние механизмы выделения и освобождения памяти - для совместимости со старыми программами, но система управляет пространством выше планки как объектами данных. В новых механизмах программа создает за планкой объекты данных, размер которых кратен 1 Мбайту. В V1R2 объекты данных не могут совместно использоваться в разных АП.

Третий шаг (z/OS V1R3) состоит во внедрении AMODE=64. В сочетании с новыми возможностями Редактора Связей и Загрузчика этот режим позволяет создавать полностью 64-разрядные программы.

Четвертый шаг, который будет реализован в следующей версии z/OS, - обеспечение возможности разделения объектов данных, размещенных за планкой между разными АП.

Параллельно с введением 64-разрядных возможностей в системные сервисы и низкоуровневое программирование они внедряются и в инструментальные средства (C/C++, Java), и в основные продукты промежуточного программного обеспечения (DB2, WebSphere и др.).

Управление процессами

АП в z/OS создается для задания. Как и в VSE, задание в z/OS состоит из нескольких последовательно выполняющихся программ - шагов задания. Для каждого шага задания создается задача (процесс). Структурой, представляющей задачу в системе, является блок управления задачей TCB (Task Control Block). Задача может порождать новые задачи (подзадачи) при помощи системных вызовов ATTACH (подзадача выполняется в первичном режиме AR) или ATTACHX (подзадача выполняется в режиме ASC AR). Порождаемые таким образом подзадачи имеют собственные блоки TCB и, таким образом, представляются как полноценные задачи, но все они выполняются в том же АП, что и породившая их задача. Порожденная подзадача выполняется параллельно с породившей и может порождать собственные подзадачи. Между задачей и ее подзадачами устанавливаются отношения "предок - потомок". Задача и ее подзадачи выполняются асинхронно, но выполнение задачи-предка может быть и синхронизировано с завершением задачи-потомка. Подзадача может порождаться с параметрами ECB или/и EXTR. Первый параметр назначает для подзадачи Блок Управления Событием (Event Control Block), в котором делается отметка о завершении подзадачи. Если подзадача создается с параметром ECB, ее TCB не удаляется с ее завершением, а сохраняется до тех пор, пока информация о завершении не будет востребована задачей-предком. Задача-предок может ожидать завершения потомка и получить информацию о его завершении, применяя системный вызов WAIT, параметром которого является ECB потомка. Параметр EXTR позволяет определить в задаче-предке процедуру, которая автоматически выполняется при завершении данного потомка.

Приоритеты выполнения определяются на двух уровнях:

приоритет АП;

приоритеты задач и подзадач.

Приоритет АП, как правило, определяется ОС из соображений обеспечения наилучшей загрузки системы (см. ниже). Однако этот приоритет может быть назначен и пользователем в операторах языка управления заданиями. Приоритет пользователя назначается дифференцированно для каждого шага задания. Приоритет АП, установленный пользователем для шага задания, во время выполнения шага изменяться в программе не может, но может меняться ОС.

Создавая задачу для шага задания, ОС присваивает ей диспетчерский (текущий) и граничный приоритеты. Подзадача по умолчанию наследует приоритеты своего родителя, но ей могут быть назначены и собственные приоритеты. Приоритеты подзадач могут меняться в программе системным вызовом CHAP. Приоритеты задач/подзадач, однако, никак не влияют на то, в каком порядке выбираются на выполнение программы - этот порядок определяется только приоритетом АП. Приоритеты же подзадач влияют на порядок их выборки на выполнение в пределах процессорного обслуживания, выделяемого для АП. В этих пределах приоритеты подзадач являются абсолютными: на выполнение выбирается подзадача с наивысшим приоритетом, текущая активная подзадача немедленно вытесняется, если подзадача с более высоким приоритетом приходит в состояние готовности.

Средства взаимодействия

Выше мы упомянули о блоках ECB, используемых для синхронизации выполнения задачи и ее подзадач. Однако блоки ECB являются более универсальным средством синхронизации выполнения. ECB используется с системными вызовами WAIT, POST и EVENTS. Системный вызов POST сигнализирует о совершении события, системные вызовы WAIT и EVENTS задерживают выполнение задачи до совершения одного или нескольких событий.

Для взаимного исключения доступа к ресурсам из разных программ используются системные вызовы ENQ и DEQ. В первом приближении их можно считать эквивалентным семафорным операциям P и V соответственно. При употреблении этих системных вызовов задается имя ресурса и масштаб. Имя (оно состоит из двух частей) в документации IBM называется именем ресурса, но на самом деле это скорее имя семафора, имена в операциях ENQ/DEQ назначаются произвольно и не имеют никакой связи с действительными именами ресурсов. Масштаб определяет область видимости ресурса:

масштаб STEP означает, что ресурс доступен только в данном АП;

масштаб SYSTEM означает, что ресурс доступен во всех АП, но только в данной вычислительной системе;

масштаб SYSTEMS означает, что ресурс доступен во всех АП всех вычислительных систем sysplex'а.

Комбинация имени ресурса и масштаба должна быть уникальной.

В отличие от обычных семафорных операций, системный вызов ENQ может выполняться в монопольном или разделяемом режиме, что соответствует классической задаче "читатели-писатели". Любое число задач может одновременно получать доступ к ресурсу в разделяемом режиме, только одна задача может иметь доступ к ресурсу в монопольном режиме.

Системный вызов ENQ может также выполняться и с условием. Предусмотренные для ENQ условия могут обеспечивать:

проверку состояния ресурса без его захвата;

захват ресурса только в том случае, если он немедленно доступен;

изменение режима захвата с разделяемого на монопольный;

захват ресурса только в том случае, если программа еще им не владеет.

Задачи, задержанные при выполнении операции ENQ, образуют очереди к ресурсам, которые обслуживаются по дисциплине FCFS. Размер такой очереди может быть, однако, ограничен, в этом случае попытка выполнения запроса ENQ, который переполнит очередь, приводит не к блокированию программы, а к завершению запроса с признаком ошибки.

Попытка захвата ресурса, которым программа уже владеет, приводит к аварийному завершению программы. Ответственность за обход тупиков лежит на программисте.

Системные вызовы в z/OS выполняются системными сервисными процедурами. Такая процедура представляется в системе Блоком Сервисной Процедуры SRB (Service Routine Block). SRB во многом аналогичен TCB, но SRB не может владеть АП. Однако SRB может получать и использовать память в АП вызвавшей его задачи и в системном АП. После вызова процедуры и создания для нее SRB сервисная процедура может выполняться параллельно с вызвавшей ее программой (даже с реальным параллелелизмом - на разных процессорах). Все системные процедуры являются реентерабельными и, следовательно, могут быть прерваны в ходе своего выполнения.

Подсистемы и управление ресурсами

Прежде чем рассмотреть принципы распределения ресурсов в системе, дадим краткие характеристики некоторым (далеко не всем) подсистемам в составе z/OS.

Подсистема ввода заданий JES (Job Entry Subsystem) обеспечивает выполнение пакетных заданий. Ее функции во многом аналогичны подсистеме POWER в VSE. JES интерпретирует операторы языка управления заданиями JCL и управляет очередями. В системе могут быть запущены несколько копий JES, каждая из которых создает свой системный образ. Имеются две версии JES - JES2 и JES3, которые различаются тем, что в JES2 выполняется независимое управление каждой запущенной копией, в JES3 осуществляется централизованное управление всеми копиями.

Подсистема разделения времени TSO/E (Time Sharing Option/Extention) - основной интерактивный интерфейс z/OS. TSO/E обеспечивает для конечных пользователей, программистов и администраторов набор команд и полноэкранных возможностей для подготовки программ, подготовки и выполнения заданий, выполнения управления системой. Как обязательная часть z/OS, TSO/E является базой для ряда других системных сервисов, таких как Book Manager, Hardware Configuration Definition и другие.

z/OS UNIX System Services обеспечивают использование z/OS как сверхмощного Unix-сервера. Службы приложений z/OS UNIX System Services включают в себя командный интерпретатор shell, утилиты и отладчик. Набор команд и утилит полностью соответствует спецификациям стандарта Single Unix Specification, известного также как Unix 95. Это позволяет программистам и пользователям, даже не знающим команд z/OS, взаимодействовать с z/OS как с Unix-системой. Отладчик предоставляет программистам набор команд для интерактивной отладки программ, написанных на языке C. Этот набор подобен аналогичным командам, существующим в большинстве Unix-систем. Службы ядра z/OS UNIX System Services совместно с языковыми средами обеспечивают соответствующий Single Unix Specification API для программирования на языке C, многопоточность и средства разработки клиент/серверных приложений. Это обеспечивает возможность программирования для z/OS как для Unix и переноса в z/OS приложений, созданных для Unix.

Еще MVS прошла сертификацию по стандартам POSIX, Single Unix Specification и OSF/1. Таким образом, z/OS соответствует Unix-ориентированным стандартам лучше, чем большинство систем, относящихся к семейству Unix, и является наилучшим Unix-суперсервером.

Планированием распределения ресурсов занимается Менеджер Системных Ресурсов - SRM (System Resource Manager), являющийся компонентом BCP. SRM определяет, какие АП получат доступ к системным ресурсам, и ту долю системных ресурсов, которая будет выделена каждому АП. SRM распределяет ресурсы между АП в соответствии с приоритетными требованиями, заданными в параметрах инсталляции, и стремится достичь оптимального использования ресурсов с точки зрения производительности системы. При определении параметров функционирования SRM работы, выполняемые в системе, разбиваются на группы, называемые доменами. Домены характеризуются общими характеристиками работы, и общим для домена показателем важности. Каждое выполняющееся АП попадает в тот или иной домен - пакетное задание, транзакция IMS, транзакция DB2, короткая или длинная команда TSO и т.д. Управление доменами дает возможность:

гарантировать доступ к системным ресурсам хотя бы минимальному количеству АП, принадлежащих к определенному типу работы;

ограничивать количество АП, имеющих доступ к ресурсам, для каждого типа работ;

назначать степень важности для каждого типа работ.

Управление характеристиками выполнения позволяет дифференцировать выполняемые работы, например, установить приоритет коротких транзакций над длинными, приоритет времени реакции над пропускной способностью и т.д.

Управление доменами позволяет установить, какие АП получают доступ к системным ресурсам. Диспетчеризация управляет долей системных ресурсов, получаемых каждым из допущенных АП. После того, как АП включено в мультипрограммный набор (набор АП, размещенных в основной памяти и допущенных к использованию ресурсов), все АП конкурируют за обладание ресурсами независимо от доменов, к которым они принадлежат. Диспетчеризация ведется по приоритетному принципу: работа с наивысшим приоритетом получает ресурс первой. Всего в системе имеется 256 уровней приоритетов, которые разбиты на 16 наборов по 16 уровней в каждом. Внутри каждого набора АП может иметь переменный или фиксированный приоритет. Фиксированные приоритеты более высокие, чем переменные. Фиксированный приоритет просто назначается АП в соответствии с параметрами, указанными в настройках SRM для домена. Переменные приоритеты периодически перевычисляются по алгоритму минимизации среднего времени ожидания.

SRM управляет использованием ресурсов в пределах всей системы и постоянно ищет пути преодоления дисбаланса - перегрузки ресурса или его простоя. Это достигается путем периодического пересмотра уровня мультипрограммирования - количества АП, которые находятся в основной памяти и готовы к диспетчеризации. Когда характеристики использования показывают, что ресурсы системы используются не полностью, SRM выбирает домен и увеличивает число допущенных АП в этом домене. Если показатели использования говорят о перегрузке системы, SRM уменьшает уровень мультипрограммирования.

Для уменьшения интенсивности страничного обмена SRM применяет так называемый "логический свопинг". Страничные кадры АП, подвергающегося логическому свопингу, сохраняются в основной памяти на время, не превышающее некоторого порогового значения, устанавливаемого SRM. Пороговое значение для логического свопинга перевычисляется динамически и зависит от текущей потребности системы в основной памяти.

SRM автоматически определяет наилучший состав АП в мультипрограммном наборе и количество основной памяти, выделяемое каждому АП, наиболее эффективное в рамках принятого уровня мультипрограммирования. При этом управление страничным обменом и использованием ЦП в рамках всей системы сочетается с индивидуальным управлением рабочим набором каждого АП. Таким образом, показатели свопинга определяются общесистемными показателями страничного обмена и требованиями рабочего набора, причем последние имеют некоторый приоритет.

SRM также определяет приоритеты АП в очередях ввода-вывода. По умолчанию эти приоритеты такие же, как и диспетчерские приоритеты, но в параметрах SRM для доменов могут быть назначены приоритеты ввода-вывода выше или ниже их диспетчерских приоритетов.

SRM управляет распределением дисковых устройств и контролирует использование таких ресурсов, как вторичная память (дисковые области, используемые для свопинга - они не входят в дисковое пространство, управляемое файловой системой), область системных очередей и ресурс страничных кадров. При нехватке этих ресурсов SRM предпринимает меры, сводящиеся к уменьшению уровня мультипрограммирования.

Настройка SRM производится при инсталляции ОС и продолжается в ходе ее эксплуатации. Это процесс итеративный и, возможно, бесконечный, так как в ходе эксплуатации характеристики выполняемого системой потока работ могут уточняться и меняться. Мы уже отмечали в нашей книге, что мейнйфреймы обладают весьма высоким показателем производительность/стоимость, но реально высоким этот показатель может быть только тогда, когда производительность будет востребована в полном объеме. Эффективность работы SRM существенно зависит от параметров, заданных при его настройке, а гарантировать правильность определения пользователем большого числа параметров, многие из которых могут находиться в сложной зависимости друг от друга, невозможно. Поэтому возникла необходимость переложить планирование нагрузки в вычислительной системе или sysplex'е на ОС. В настоящее время надстройка над SRM, осуществляющая это планирование - Менеджер Нагрузки (WLM - Workload Manager) - включена в ядро ОС. WLM требует от администратора нагрузки задания определения сервиса и сам реализует это определение в рамках системы или sysplex'а. Определение сервиса производится не в терминах системных параметров, как для SRM, а в терминах пользователя. Таким образом, WLM требует от пользователя определение того, что нужно сделать, а не того, как это делать. Как это делать, WLM решает сам, учитывая конфигурацию системы и требования всех используемых подсистем, обеспечивающих собственные среды выполнения - как входящих в состав ОС (TSO, JES, Unix System Services и др.), так и отдельных программных продуктов (CICS, DB2, MQSeries и др.).

Определение сервиса включает в себя:

Политику сервиса - набор бизнес-целей управления, таких как время реакции и максимальная задержка выполнения. Каждой цели придается также весовой коэффициент, характеризующий важность достижения этой цели.

Классы сервиса, которые разбиваются на "периоды" - группы работ с одинаковыми целями и требованиями к ресурсам.

Группы ресурсов, которые определяют границы процессорной мощности в sysplex'е. Назначая классу сервиса группу ресурсов, администратор загрузки определяет минимальный и максимальный объем процессорного обслуживания для работы.

Правила классификации, которые определяют, как отнести поступившую работу к тому или иному классу сервиса.

Прикладные среды - группы прикладных функций, которые выполняются в АП сервера и могут быть вызваны клиентом. WLM в соответствии с определенными целями автоматически активизирует или останавливает АП сервера.

Среды планирования - списки ресурсов (первичных и вторичных) с отражением их состояния, которые позволяют гарантировать, что система (в составе sysplex'а) обладает достаточным ресурсом для выполнения работы.

Классы отчетности, используемые для получения более подробной информации о производительности внутри класса сервиса.

В соответствии с определением сервиса WLM обеспечивает распределение нагрузки между процессорами одной вычислительной системы и системами всего sysplex'а, управление временем задержки работы после прихода ее в состояние готовности, управление анклавами (транзакциями, например, DB2, выполняющимися параллельно в разных АП, возможно, на разных системах sysplex'а), управление запросами клиентов к серверами и получение информации о состоянии. Управление ведется WLM с динамической обратной связью, с учетом нагрузки в каждый текущий момент, а также распределения нагрузки на предыдущем интервале времени.

Следующим шагом в оптимизации использования ресурсов мейнфреймов и их sysplex'ов стало внедрение Интеллектуального Распорядителя Ресурсами IRD (Intellegent Resource Director). IDR обеспечивает возможность управлять несколькими образами операционной системы, выполняющимися на одном сервере (в разных логических разделах), как одним вычислительным ресурсом с динамическим управлением нагрузкой и балансировкой физических ресурсов - процессоров и каналов ввода-вывода - между многими виртуальными серверами. Система динамически перераспределяет эти ресурсы в соответствии с определенными бизнес-приоритетами с тем, чтобы удовлетворить непредсказуемые требования задач электронного бизнеса. IRD включает в себя три основных компонента:

LPAR CPU Management - логические разделы (LPAR) на одном z-сервере объединяются в виртуальные sysplex-кластеры и управляются в соответствии с бизнес-целями и их важностью, сформулированными для WLM;

Dynamic Channel Path Management - дает возможность динамически переключать канальные пути (через переключатель ESCON Director) от одного контроллера к другому, таким образом, WLM получает возможность обеспечивать раздел большей или меньшей пропускной способностью по вводу-выводу - в соответствии с требованиями и важностью выполняемой в нем задачи;

Channel Subsystem Priority Queuing - распространяет возможности приоритетной диспетчеризации ввода-вывода на весь LPAR-кластер: если важная задача не может обеспечить выполнение своих целей из-за нехватки пропускной способности ввода-вывода, раздел, выполняющий эту задачу, получает дополнительные каналы ввода-вывода.

IRD является частью широкомасштабного проекта IBM eLiza, целью которого является создания фундамента для информационных систем с уменьшенной сложностью и стоимостью эксплуатации, использования, администрирования. Хотя проект eLiza не ориентирован на единственную аппаратную платформу и операционную среду, по вполне понятным причинам z-серверы и z/OS являются "передним краем" его реализации. Цели проекта eLiza сформулированы как: самооптимизация (self-optimization), самоконфигурирование (self-configuration), самовосстановление (self-healing) и самозащита (self-protection).

Самооптимизация заключается в свойствах WLM и IRD эффективно перераспределять ресурсы в условиях непредсказуемой рабочей нагрузки. В z/OS V2 планируется распространить возможности IRD на разделы, выполняющие ОС, отличные от z/OS (z/VM, Linux).

Самоконфигурирование поддерживается такими средствами, как msys for Setup (обеспечение простой для пользователя установки программного обеспечения) и z/OS Wizards - web-базированные диалоговые средства настройки системы.

Самовосстановление поддерживается:

множеством функций контроля и восстановления оборудования (Hardware RAS), среди которых - определение различных сбоев и в ряде случаев - автоматическое переключение и восстановление, plug and play и "горячее" переключение ввода-вывода и др.;

дуплексной передачей структур соединения (System-Managed CF Structure Duplexing) - устойчивым механизмом, позволяющим обеспечить неразрывное соединение;

msys for Operations - обеспечением лучшей работоспособности приложений за счет большей информации о ресурсах и самовосстановления критических ресурсов, а также снижения вероятности и облегчения восстановления из-за ошибок оператора;

System Automation for OS/390 - продуктом, обеспечивающим восстановление приложений, ресурсов системы и sysplex'а - на базе принятой политики обслуживания.

Самозащита обеспечивается:

Intrusion Detection Services - средством, позволяющим обнаруживать атаки на систему и выбирать механизмы защиты;

Public Key Infrastructure - встроенной в z/OS системой аутентификации и авторизации на основе открытого ключа;

средствами безопасности, являющимися промышленными стандартами: LDAP, Kerberos, SSL, цифровые сертификаты и т.д.

Часть описанных средств уже имеется в составе z/OS, в рамках проекта eLiza предполагается их интеграция, расширение их возможностей в новых версиях, создание новых средств и перенос их на другие аппаратные платформы и в другие ОС IBM.

12.4 Операционная система z/VM

ОС z/VM [21, 24, 42] (последняя версия - V4R2) является высокопроизводительной многопользовательской интерактивной ОС, предоставляющей уникальные возможности в части выполнения различных операционных сред на одном вычислительном комплексе, поддержки интерактивных пользователей и клиент/серверных сред. Существует "легенда" о том, что VM родилась как инструментальное средство, предназначенное для использования только внутри IBM, и попала на рынок вопреки планам фирмы. Хотя IBM и опровергает эту легенду, она выглядит вполне правдоподобно. z/VM представляет интерес для применения прежде всего в таких случаях:

как инструментальная платформа для разработки и отладки системного программного обеспечения, в том числе, и других ОС, обеспечивающая эффективное использование вычислительных мощностей в процессе отладки и легкое восстановление после краха отлаживаемой системы;

как платформа для миграции на новые ОС и новые версии ОС и системного программного обеспечения, обеспечивающая параллельное функционирование как старого, так и нового программного обеспечения;

как платформа для информационных систем, требующих параллельного функционирования множества прикладных и операционных сред, хорошо друг от друга изолированных, с одной стороны, а с другой, легко устанавливающих связи друг с другом.

Уникальные свойства z/VM определяются ее архитектурой. Аббревиатура VM расшифровывается как Virtual Machine, и эта ОС в полной мере воплощает концепцию виртуальных машин: интерфейс процесса выглядит как интерфейс оборудования. Ядро z/VM составляет Управляющая Программа CP (Control Program), которая предоставляет для своих конечных пользователей рабочую среду, называемую виртуальной машиной (ВМ). ВМ в z/VM является аналогом процесса в других ОС: это тот "субъект", которому CP выделяет ресурсы. ВМ моделирует реальную вычислительную систему: процессор (или процессоры), память, устройства и каналы ввода-вывода. У пользователя создается впечатление, что в его распоряжении имеется реальная ЭВМ, доступная для него в привилегированном режиме. На самом же деле, в его распоряжении находится только то подмножество ресурсов, которое выделяет или моделирует для ВМ CP. PSW ВМ определяет для выполняющейся на ВМ программы состояние "супервизор" (привилегированное состояние). PSW же реального оборудования при выполнении такой программы определяет состояние "задача" (непривилегированное). При попытке программы, выполняющейся на ВМ, выполнить привилегированную команду происходит исключение, и управление получает CP. CP распознает причину исключения и выполняет для ВМ привилегированную команду или моделирует ее выполнение, после чего возвращает управление ВМ. Исключение и его обработка скрыты от ВМ, ВМ кажется, что ее привилегированная команда выполнилась на реальном оборудовании.

СP на выбор моделирует для ВМ архитектуры нескольких поколений мейнфреймов - от 370/XA до z900, а также виртуальную архитектуру ESA/XC (eXtended Confuguration), в которой ВМ могут быть доступны (при авторизации) адресные пространства других ВМ. В число компонентов архитектуры ВМ входят:

процессор/процессоры;

память;

внешняя память;

операторская консоль;

каналы и устройства ввода-вывода.

Поскольку CP предоставляет ВМ модель, неотличимую для нее от ресурсов реальной вычислительной системы, программа, выполняющаяся на ВМ, может (и должна) осуществлять управление этими ресурсами, то есть, в свою очередь, быть операционной системой. Такие ОС называются в z/VM гостевыми (guest). В документации z/VM CP иногда называют гипервизором, в отличие от супервизоров - управляющих программ гостевых ОС. Гостевая ОС может "знать" о том, что она работает под управлением гипервизора, в этом случае гостевая ОС может использовать обращения к CP (команда DIAGNOSE), а также гостевая ОС и CP могут распределять между собой управление ресурсами: гипервизор работает с интерфейсом оборудования, а гостевая ОС - с интерфейсом процесса. Если же гостевая ОС не знает о присутствии CP, то она выполняет управление созданной для нее моделью ресурсов в полном объеме. С этой точки зрения можно разделить гостевые ОС на четыре категории:

ОС, специально созданные как гостевые, которые могут работать только в среде ВМ под управлением гипервизора - CMS и GCS.

Полнофункциональные другие ОС мейнфреймов (VSE, z/OS и ее предшественники, Linux for zSeries), выполняющиеся "не зная" о существовании гипервизора.

Те же ОС, но адаптированные для выполнения в среде ВМ, адаптация состоит в том, что исключается дублирование функций в гипервизоре и супервизоре.

Гостевой ОС может быть другая (вторичная) CP, которая распределяет выделенное ей подмножество ресурсов между своими ВМ и своими гостевыми ОС, среди которых в свою очередь могут быть CP и т.д.

Рисунок 12.7 CP и виртуальные машины

Определение ВМ является квазипостоянным: оно создается один раз, а затем используется многократно. Определение ВМ сохраняется в каталоге CP, основным содержанием элемента каталога CP является описание ресурсов, выделяемых ВМ. При запуске ВМ на выполнение CP на основе элемента каталога строит Блок Определения Виртуальной Машины - VMDBLK (Virtual Machine Definition BLocK), в котором содержится описание ресурсов ВМ (либо непосредственно в VMDBLK, либо как ссылки на другие управляющие блоки) и их текущего состояния. Если для ВМ создается несколько виртуальных процессоров, то для каждого процессора создается свой VMDBLK, но только один из VMDBLK каждой ВМ является базовым - тот, который содержит описание памяти ВМ. Свой VMDBLK имеет также и CP. Все VMDBLK связаны в кольцевой список.

Управление памятью

Возможно, главным ресурсом, которым управляет CP, является реальная память, и с этой точки зрения CP может создавать ВМ трех типов:

Тип V=V - ВМ, которой выделяется только виртуальная память, требуемый размер памяти дя ВМ обеспечивается за счет динамической трансляции адресов и страничного свопинга.

Тип V=F - ВМ, которой выделяется непрерывная область реальной памяти. Эта область исключается из страничного обмена, но динамическая трансляция адресов для ВМ V=F применяется, так как виртуальное адресное пространство ВМ начинается с адреса 0, а в реальной памяти область, выделяемая для ВМ V=F, начинается не с 0. ВМ типа V=F обладают преимуществом в производительности перед ВМ V=V.

Тип V=R - ВМ, которой выделяется непрерывная область реальной памяти, начиная с адреса 0. Эта память исключается из страничного обмена и для нее не применяется динамическая трансляция адресов. Кроме того, ВМ V=R может выполнять некоторые привилегированные операции на реальном оборудовании. Очевидно, что производительность ВМ этого типа наивысшая.

ВМ двух последних типов называются привилегированными. В настоящее время CP допускает одновременное функционирование не более шести привилегированных ВМ, из которых только одна может быть типа V=R, тогда как число одновременно работающих ВМ типа V=V может исчисляться десятками тысяч. Работа привилегированных ВМ резко отрицательно сказывается на производительности всех других VM, поэтому эти типы ВМ создаются только при наличии действительной необходимости в них (например, для задач реального времени).

Если под управлением CP работают только ВМ типа V=V, то ядро CP занимает нижнюю часть реальной памяти (начиная с адреса 0). Вся реальная память выше ядра отводится под динамическую страничную область, которая подвергается страничному обмену. Если же под управлением CP работают наряду с ВМ типа V=V и привилегированные ВМ, то нижняя часть реальной памяти отводится под область V=R. Часть этой области, начиная с адреса 0, занимает единственная ВМ типа V=R, остальная часть области распределяется между ВМ типа V=F. Выше области V=R размещается ядро CP, а еще выше - динамическая страничная область.

Динамическая страничная область содержит:

управляющие блоки СP;

нерезидентные модули CP;

блоки управления памятью CP;

буферы для спулинга и файловой системы;

префиксные страниц для реальных процессоров;

свободные страничные кадры;

страницы ВМ типа V=V.

В архитектуре z/VM различаются три уровня памяти:

память первого уровня - реальная память;

для каждой ВМ CP строит виртуальное адресное пространство - память второго уровня;

с точки зрения гостевой ОС память второго уровня является реальной памятью, и гостевая ОС строит для своих процессов виртуальные адресные пространства - память третьего уровня.

Виртуальная память ВМ состоит из сегментов. Для каждой ВМ строится своя таблица сегментов. При размере виртуальной памяти ВМ до 32 Мбайт таблица сегментов находится непосредственно в VDMBLK, при большем размере - для нее выделяются дополнительные страницы (по 1 странице на каждые 1024 Мбайт виртуальной памяти). С каждой таблицей сегментов связана собственная таблица страниц.

Страницы, размещаемые в динамической страничной области, подвергаются вытеснению и подкачке. CP ведет общий список свободных страничных кадров и списки используемых страничных кадров для каждой ВМ.

Список свободных страничных кадров пополняется при необходимости и обрабатывается по дисциплине LIFO.

Списки используемых страничных кадров ВМ обрабатываются по дисциплине рабочего набора. Этот сисок периодически переупорядочивается по частоте использования. После каждого такого переупорядочивания в списке устанавливается промежуточный указатель - на начало той части списка, в которой располагаются дескрипторы кадров, к которым не было обращения со времени последнего переупорядочивания. Первая часть списка составляет рабочий набор ВМ, вторая - страницы-кандидаты на перенос в список свободных страничных кадров.

Если размер списка свободных страничных кадров достигает установленной нижней границы, происходит пополнение списка. Список пополняется до тех пор, пока его размер не достигнет верхней установленной границы. Это может потребовать неоднократного просмотра списков страничных кадров ВМ, каждый следующий просмотр предъявляет более жесткие требования к состоянию страницы и ВМ, которой страничный кадр принадлежит.

При выделении для ВМ виртуальной памяти предусмотрены два механизма: выделение блока памяти произвольного размера и выделение блока из подпула. Выделение блока произвольного размера происходит традиционными методами. Выделение из подпула выполняется быстрее произвольного и применяется для выделения памяти (как правило, неявного) для управляющих блоков, создаваемых для ВМ. В этом случае выделяется один из заранее заготовленных блоков стандартного размера.

Диспетчеризация ВМ

При работе на двух- и более процессорной конфигурации реальной системы для ВМ типа V=R по умолчанию выделяется отдельный процессор. Для ВМ типа V=F отдельный процессор может быть выделен, но по умолчанию это не делается.

CP может моделировать многопроцессорную конфигурацию для ВМ, но при создании ВМ с большим числом процессоров, чем имеется в реальной системе, производительность такой ВМ падает, поэтому такой прием применяется только при отладке гостевых ОС и другого программного обеспечения, рассчитанного на многопроцессорную конфигурацию.

Единицей диспетчеризации с точки зрения распределения процессорного обслуживания является ВМ. Основной целью обслуживания является справедливое распределение процессорного времени между ВМ. СP поддерживает три очереди ВМ на процессорное обслуживание:

диспетчерскую очередь, d-список (dispatch list), ВМ состоящие в диспетчерской очереди, получают процессор в режиме разделения времени, мы называли такие процессы готовыми;

очередь готовых ВМ, e-список (eligible list), которые исключены из диспетчеризации из-за нехватки ресурса памяти;

список "спящих" ВМ (dormant list).

Готовыми здесь называются те ВМ, которые требуют выполнения какой-либо процессорной транзакции. "Спящие" ВМ процессорного обслуживания не требуют.

Все ВМ распределяются по четырем классам обслуживания:

критические - те, для которых гарантируется отсутствие ожидания в e-списке (класс 0);

очень интерактивные - выполняющие короткие транзакции (класс 1);

интерактивные - выполняющие транзакции средней длительности (класс 2);

неинтерактивные - выполняющие длинные транзакции (класс 3).

Класс с меньшим номером имеет более высокий приоритет в e-списке. В d-списке приоритеты перевычисляются динамически через каждый квант времени. При перевычислении кванта принимается во внимание:

внешний приоритет ВМ;

время ожидания в d-списке;

интерактивная добавка для класса 1;

страничная добавка - единоразовая добавка к приоритету, назначаемая для ВМ класса 2 или 3 при задержке из-за страничного отказа.

Очередная ВМ из d-списка получает квант процессорного времени, который назначается таким образом, чтобы его время было примерно равно времени выполнения 100000 машинных команд. Если ВМ переходит в состояние ожидания до исчерпания кванта, то она еще остается в d-списке на время, называемое "интервалом проверки ожидания" (300 мсек). Если ВМ выйдет из ожидания до истечения этого интервала, она остается в d-списке и получает возможность использовать недоиспользованный квант. Если время ожидания превосходит интервал проверки, ВМ переводится в список спящих. ВМ за время пребывания в d-списке разрешается трижды воспользоваться интервалом проверки ожидания.

Кроме того, CP также вычисляет для каждой ВМ квант готовности - общее реальное время пребывания ВМ в d-списке. Для ВМ класса 1 этот квант вычисляется системой таким образом, чтобы за время кванта готовности успели завершить свои транзакции 85% ВМ класса 1. Для классов 0 и 2 этот квант в 6 раз больше, чем для класса 1, для класса 3 - в 48 раз больше, чем для класса 1. Если ВМ исчерпала квант готовности, но не завершила транзакцию, она переводится в следующий класс.

Использование рабочего набора не влияет на приоритет ВМ в e-списке, но влияет на перемещение ВМ между d- и e-списками. Если ВМ, находящейся в d-списке, не хватает памяти для размещения своего рабочего набора, в d-списке блокируются все ВМ того же и большего класса. Если ВМ, находящаяся в d-списке, превысила лимит роста своего рабочего набора (кроме ВМ класса 0), она переводится в e-список. Если в e-списке имеется ВМ класса 1, которая запаздывает с переходом в d-список, CP пытается вытеснить из d-списка последние переведенные в него ВМ классов 2 или 3.

В результате такой политики распределения процессорного обслуживания преимущество получают интерактивные ВМ, выполняющие короткие процессорные транзакции.

Виртуальные устройства

ВМ владеет также виртуальными каналами и устройствами. Назначение ВМ виртуального внешнего устройства может быть как постоянным (записанным в соответствующем данной ВМ элементе каталога CP), так и временным. С точки зрения ВМ виртуальное устройство ничем не отличается от реального, оно имеет в ВМ свой физический адрес и ВМ управляет им как реальным устройством.

Некоторые внешние устройства (например, накопители на магнитных лентах) закрепляются за ВМ. Закрепление означает, что устройство используется ВМ в монопольном режиме, и управляющие воздействия, формируемые ВМ для устройства, почти не преобразуются CP. Однако, и в случае закрепления устройство для ВМ является виртуальным. Его адрес в ВМ не совпадает с реальным адресом устройства, CP преобразует адрес устройства в реальный, а также выполняет трансляцию адресов памяти в канальных программах, так как ВМ формирует канальную программу с адресами в своем АП. Как правило, устройства не закрепляются за ВМ постоянно, закрепление происходит при необходимости и отменяется при окончании работы с устройством.

z/VM также широко использует концепцию спулинга. Каждая ВМ имеет свой виртуальный принтер и виртуальные устройства ввода с перфокарт и вывода на перфокарты. Физически эти устройства моделируются очередями на внешней памяти. Если очередь принтера может быть выведена на реальное устройство, то данные из очередей перфокарточных устройств так и остаются на внешней памяти, так как реальные перфокарточные устройства просто уже не существуют. Но эти данные могут пересылаться из выходных очередей в выходные. Механизмы спулинга используются также для организации, так называемых, именованных сегментов памяти (named storage segment). В таких сегментах в области спулинга сохраняются многократно используемые коды и данные, например, образы гостевых ОС.

Каждое реальное дисковое устройство разделяется на несколько областей. Среди таких областей - область системных данных, вторичная память страничного обмена, область спулинга и области минидисков - постоянных и временных. Для обеспечения ВМ внешней памятью CP использует разделение дискового пространства. Каждая ВМ получает в свое распоряжение несколько минидисков. С точки зрения ВМ минидиск выглядит как реальное дисковое устройство с собственным физическим адресом. На самом же деле минидиск - это лишь часть дисковой памяти, выделенная для ВМ в области минидисков на реальном диковом накопителе. Описание минидисков, принадлежащих ВМ (адрес на реальном диске и размер), хранится в каталоге CP. Минидиски могут быть доступными только для чтения или для чтения/записи и использоваться в монопольном или совместном режиме. Обычно каждой ВМ назначается один или несколько минидисков для монопольного использования в режиме чтения/записи, а также разрешается доступ к нескольким минидискам, совместно используемым в режиме чтения (содержащим, например, системные утилиты, средства разработки и т.п.). Наряду с этим, ВМ может получать доступ к минидискам других ВМ - при соответствующей авторизации. Если минидиск разделяется двумя или более ВМ в режиме чтения/записи, то требуются специальные средства для предотвращения конфликтов и потери данных. Наряду с постоянно назначенными для ВМ минидисками, для ВМ могут создаваться и временные минидиски (создаваемые в области временных минидисков на реальном накопителе), и временные виртуальные минидиски (моделируемые буферами в памяти).

Примером еще одного подхода к виртуализации устройств в z/VM является виртуальный адаптер канал-канал. Через этот адаптер может осуществляться взаимодействие между ВМ. Управляющие воздействия, которые ВМ формирует для виртуального адаптера, - такие же, как и для реального адаптера. Однако виртуальный адаптер не отображается ни на какое реальное устройство, он моделируется CP, а управляющие воздействия для него интерпретируются CP с использованием буферов в памяти и программных кодов.

CMS

Диалоговая управляющая система СMS (Conversation Monitor System) является гостевой ОС, обязательным компонентом z/VM. Это интерактивная однопользовательская, однозадачная ОС, предназначенная прежде всего для разработчиков программного обеспечения и администраторов системы. CMS разрабатывалась именно как гостевая ОС, поэтому ей не свойственны некоторые функции, типичные для самостоятельных ОС, такие как диспетчеризация и планирование, управление реальной памятью - эти функции выполняет CP. CMS обеспечивает работу с файловой системой, управление виртуальной памятью, управление виртуальными устройствами и интерфейс пользователя.


Подобные документы

  • Тонкие клиенты, работающие в терминальном режиме. Примеры тонких клиентов. Карманные персональные компьютеры: понятие, история развития. Эволюция дисплеев. Поколение клавиатурников. PALM и предшественники. Операционные системы на карманных компьютерах.

    реферат [29,2 K], добавлен 22.09.2012

  • Первая версия Windows, постепенный рост системных требований. Важное отличие Windows 98 от Windows 95. История эволюции персональных компьютеров Apple Macintosh. Операционная система Linux, ее характерные черты и особенности, графические интерфейсы.

    реферат [1,5 M], добавлен 15.01.2015

  • Персональные компьютеры, ноутбуки и серверы, международные экологические стандарты для мониторов. Операционные системы, их назначение, принцип работы, функции, составные части, функции и классификация. Характеристика различных типов файловых систем.

    контрольная работа [59,4 K], добавлен 09.10.2010

  • Универсальная многоцелевая сетевая операционная система Windows NT Server. Использование Windows NT Workstation как невыделенного сервера в одноранговых сетях и в качестве клиента сетей. Операционные системы Windows 2003, Windows Vista и Windows 7.

    презентация [6,2 K], добавлен 23.10.2013

  • Операционная система NetWare фирмы Novell. Сетевые операционные системы LAN Meneger, Windows NT и LAN Server. Сетевая операционная система Windows NT Advanced Server. Сетевая операционная система Lantastic. Компоненты сетевой операционной системы.

    контрольная работа [34,3 K], добавлен 02.11.2004

  • Хранение файлов, доступ к ним, установка и изменение атрибутов. Операционные системы DOS, Windows 95/98/Me, Windows NT/2000/XP. Файловая система FAT 16. Уменьшение потерь дискового пространства. Количество секторов в кластере. Главная загрузочная запись.

    реферат [72,9 K], добавлен 19.01.2012

  • Операционная система (ОС) как комплекс служебных и программных средств. Базовое программное обеспечение компьютера, BIOS - опора для программного обеспечения, прикладных и служебных приложений. Функции ОС, файловая система, базовые объекты Windows.

    контрольная работа [505,3 K], добавлен 24.11.2009

  • Архитектурная организация ЭВМ основных классов и типов. Классификация компьютеров по поколениям. Операционные системы: Windows 95, Windows XP и Windows Vista. Защита от компьютерных вирусов: сканирование, эвристический анализ, антивирусные мониторы.

    контрольная работа [122,9 K], добавлен 08.04.2009

  • Исследование назначения, основных функций и характеристик операционных систем. Операционная система OS/2: исторический обзор и принципиальные особенности последнего поколения. Управление памятью. Устройства, файловая система и средства взаимодействия.

    курсовая работа [1,2 M], добавлен 17.02.2015

  • Операционная система – набор программ, обеспечивающий организацию вычислительного процесса на ЭВМ, ее значение, структура, функции, история развития. Альтернативы Windows: UNIX, Linux, OS/2, MacOS, главные их достоинства и недостатки, сферы использования.

    реферат [41,4 K], добавлен 28.03.2010

Работы в архивах красиво оформлены согласно требованиям ВУЗов и содержат рисунки, диаграммы, формулы и т.д.
PPT, PPTX и PDF-файлы представлены только в архивах.
Рекомендуем скачать работу.