Разработка структурной схемы маршрутизатора
Описание широкополосных сетей интегрального обслуживания, классификация алгоритмов маршрутизации. Реализация логического способа формирования плана распределения информации в схеме маршрутизатора. Математическая модель и метод анализа маршрутизации.
Рубрика | Программирование, компьютеры и кибернетика |
Вид | дипломная работа |
Язык | русский |
Дата добавления | 31.10.2010 |
Размер файла | 1,1 M |
Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже
Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.
По способу формирования плана распределения информации алгоритмы маршрутизации можно разделить на две большие группы: статические (неадаптивные) и динамические (адаптивные)[5].
В случае использования статических алгоритмов, выбор маршрутов осуществляется заранее и прописывается вручную в таблицу маршрутизации, где хранится информация о том, на какой интерфейс отправить пакет с соответствующей адресной информацией. Статических таблиц маршрутизации не меняются, если только администратор сети не изменит его. Алгоритмы, использующие статические маршруты, просты для разработки и хорошо работают в окружении, где трафик сети относительно предсказуем, а схема сети относительно проста. Так как статические системы маршрутизации не могут реагировать на изменения в сети, они, как правило, считаются непригодными для современных крупных, постоянно изменяющихся сетей. К статическим алгоритмам можно отнести логический метод формирования ПРИ, который будет подробнее рассмотрен позднее.
Динамические алгоритмы отличаются по способу получения информации (например, от соседних маршрутизаторов, от всех маршрутизаторов в сети), моменту изменения маршрутов (через регулярные интервалы, при изменении топологии) и используемой метрике (расстояние, число транзитных узлов). То есть таблица маршрутизации меняется автоматически при изменении топологии сети или трафика в ней.
Динамические алгоритмы маршрутизации подстраиваются к изменяющимся обстоятельствам сети в масштабе реального времени. Они выполняют это путем анализа поступающих сообщений об обновлении маршрутизации. Если в сообщении указывается, что имело место изменение сети, маршрутизатор пересчитывает маршруты и рассылает новые сообщения о корректировке маршрутизации. Такие сообщения пронизывают сеть, стимулируя маршрутизатор заново прогонять свои алгоритмы и соответствующим образом изменять таблицы маршрутизации. Динамические алгоритмы маршрутизации могут дополнять статические маршруты там, где это уместно[8].
Среди динамических методов можно выделить два основных:
- метод рельефов;
- игровой метод.
При использовании метода рельефов сеть рассматривается как граф, вершины которого соответствуют центрам коммутации, а ребра - магистралям сети между двумя центрами комутации (ЦК). Характеристики магистралей (длина, пропускная способность, надежность) и центров (производительность, надежность) при этом являются весами графа и могут быть использованы для выбора критерия оптимального пути передачи информации.
Одним из основных показателей оптимальности пути передачи, на базе которого строятся современные устройства управления, являются число ЦК на выбранном направлении. Оптимальным считается путь с наименьшим числом ЦК (или ребер).
Поиск кратчайшего пути по рельефу из любого центра состоит в отыскании в каждом промежуточном ЦК ветви с наименьшим номером.
В период между коррекциями рельефа в сети может существовать неправильный рельеф. Поэтому те сообщения, которые в это время будут передаваться, могут проходить не по кратчайшим путям. Выбирая необходимую частоту обновления рельефа, можно добиться в среднем достаточно высокой степени оптимизации плана распределения информации[6]. То есть каждый маршрутизатор изучает топологию сети путем обмена специальными пакетами (информацией о маршрутах) с ближайшими соседними маршрутизаторами. Фактически, каждый маршрутизатор узнает о топологии сети из представлений соседних маршрутизаторов.
Используя эту информацию, маршрутизатор строит новое описание топологии сети и передает ее соседям. При необходимости данный процесс повторяется многократно, в итоге формируется окончательная картина сети: все маршрутизаторы имеют одинаковые описания сетевой топологии. Таблица содержит информацию обо всех маршрутизаторах в сети. Этот алгоритм прост и, на первый взгляд, надежен. Одним из основных недостатков этого алгоритма является медленное распространение информации о недоступности той или иной линии или выходе того или иного маршрутизатора из строя.
Использование игрового метода предусматривает формирование ПРИ по вероятности установления соединения между заданной парой узлов. В случае успешного соединения по первому выбору исходящего тракта передачи сообщений величина вероятности выбора увеличивается, а весь вектор вероятностей - нормируется. Если же соединение по пути первого выбора не установлено, то предпочтительность выбора данного исходящего тракта передачи сообщений уменьшается, а вектор вероятности заново нормируется.
Метод рельефов относительно прост для разработки и реализации. А алгоритм с использованием игрового метода более сложен и может требовать большей вычислительной мощности маршрутизатора. Однако этот алгоритм лучше масштабируется и может поддерживать большее количество сетей.[5]
Отличаясь более быстрой сходимостью, игровой метод несколько меньше склонен к образованию петель маршрутизации, чем метод рельефов. С другой стороны, игровой метод характеризуются более сложными расчетами в сравнении с методом рельефов, требуя большей процессорной мощности и памяти. Вследствие этого, реализация и поддержка игрового метода может быть более дорогостоящей. Несмотря на их различия, оба типа алгоритмов хорошо функционируют при самых различных обстоятельствах.
Ниже рассмотрим различные способы выбора исходящих трактов передачи сообщений (ТПС).
Последовательный выбор исходящих ТПС состоит в том, что, в каждом узле коммутации (УК) начиная от узла источника (УИ), осуществляется выбор только одного исходящего ТПС в результате на сети будет формироваться только один маршрут, состоящий из последовательного наращивания коммутационных участков из УИ к узлу получателя (УП). В зависимости от характера распространения на сети процесса поиска маршрута выделяют три основных класса выбора исходящих ТПС:
градиентный;
диффузный;
градиентно - диффузный.
Градиентный метод состоит в том, что в каждом транзитном узле в процессе выбора исходящего ТПС участвуют не все исходящие тракты, а лишь наиболее предпочтительные. Если в одном из УК исходящие ТПС, участвующие в выборе не доступны раздельно, то данной заявки на формирование маршрута даётся отказ. В результате градиентного выбора маршрут будет формироваться вдоль геометрического направления.
Реализация градиентных алгоритмов выбора исходящих ТПС позволяет организовать кратчайший маршрут.
Выбор исходящего пути, при котором искомый маршрут может формироваться и в противоположную сторону, называется диффузным. То есть допускает возможность выбора любых из доступных исходящих ТПС. Данный метод обладает большой гибкостью при обходах повреждённых участков сети, однако средняя длина маршрута может быть больше, чем в градиентных способах.
Градиентно - диффузный метод является комбинацией первых двух методов. В свою очередь процедура выбора исходящего ТПС в каждом УК может быть детерминирована и вероятностна.
В первом случае выбор исходящего ТПС осуществляется по максимальному значению одного из элементов вектора. Во втором случае выбор исходящего ТПС производится в результате случайного розыгрыша, при этом исходящие ТПС имеющие большие значения получают большую вероятность выбора. Комбинированный способ содержит как вероятностную, так и детерминированную компоненту.
Параллельный выбор исходящих ТПС состоит в том, что поиск маршрута между УИ и УП по всем исходящим ТПС в определённой зоне сети связи. Если выбор ширины зоны, в которой осуществляется поиск маршрута, определяется однозначно, заранее выбранным критерием, то такой выбор будет называться детерминированным. Если же выбор ширины зоны поиска маршрута осуществляется в результате случайного выбора, то в данном случае выбор будет называться вероятностным. Примером параллельного выбора исходящего ТПС с детерминированным выбором ширины зоны поиска маршрута является алгоритм, получивший название волновой или лавинный. При поступлении заявки на организацию маршрута между парой узлов в УИ формируется поисковая посылка, которая пересылается инцидентным с ним узлам. В соседних УК эта процедура повторяется. Таким образом, поисковая посылка попадает во все узлы сети, причём через время, равное времени его передачи по кратчайшему маршруту. Основным недостатком волнового метода маршрутизации является дополнительная нагрузка, создаваемая при передачи поисковой посылки во все стороны, в том числе и в противоположном от УП.
В алгоритмах маршрутизации используется много различных показателей. Сложные алгоритмы маршрутизации при выборе маршрута могут базироваться на множестве показателей, комбинируя их таким образом, что в результате получается один отдельный (гибридный) показатель[9]. Ниже перечислены показатели, которые используются в алгоритмах маршрутизации:
1. Длина маршрута;
2. Надежность;
3. Задержка;
4. Ширина полосы пропускания;
5. Нагрузка;
6. Стоимость связи.
Длина маршрута является одним из общих показателем, которые используются в алгоритмах маршрутизации. То есть показатель, характеризующий число проходов, которые пакет должен совершить на пути от источника до пункта назначения через маршрутизаторы.
Надежность, в контексте алгоритмов маршрутизации, относится к надежности каждого канала сети (обычно описываемой в терминах соотношения бит/ошибка). Некоторые каналы сети могут отказывать чаще, чем другие. Отказы одних каналов сети могут быть устранены легче или быстрее, чем отказы других каналов. При назначении оценок надежности могут быть приняты в расчет любые факторы надежности.
Под задержкой маршрутизации обычно понимают отрезок времени, необходимый для передвижения пакета от источника до пункта назначения через объединенную сеть. Задержка зависит от многих факторов, включая полосу пропускания промежуточных каналов сети, очереди в порт каждого маршрутизатора на пути передвижения пакета, перегруженность сети на всех промежуточных каналах сети и физическое расстояние, на которое необходимо переместить пакет.
Полоса пропускания относится к имеющейся мощности трафика какого-либо канала. Хотя полоса пропускания является оценкой максимально достижимой пропускной способности канала, маршруты, проходящие через каналы с большей полосой пропускания, не обязательно будут лучше маршрутов, проходящих через менее быстродействующие каналы.[8]
При разработке алгоритмов маршрутизации часто преследуют одну или несколько из перечисленных ниже целей:
1 Оптимальность;
2 Простота и низкие непроизводительные затраты;
3 Живучесть и стабильность;
4 Быстрая сходимость;
5 Гибкость.
Оптимальность, характеризует способность алгоритма маршрутизации выбирать наилучший маршрут. Оптимальный маршрут зависит от показателей, используемых при проведении расчета.
Алгоритмы маршрутизации разрабатываются как можно более простыми. Другими словами, алгоритм маршрутизации должен эффективно обеспечивать свои функциональные возможности, с минимальными затратами и коэффициентом использования.
Алгоритмы маршрутизации должны обладать живучестью. Другими словами, они должны четко функционировать в случае неординарных или непредвиденных обстоятельств, таких как отказы аппаратуры, условия высокой нагрузки и некорректные реализации. Так как маршрутизаторы расположены в узловых точках сети, их отказ может вызвать значительные проблемы. Часто наилучшими алгоритмами маршрутизации оказываются те, которые выдержали испытание временем и доказали свою надежность в различных условиях работы сети.
Алгоритмы маршрутизации должны быстро сходиться. Сходимость - это процесс соглашения между всеми маршрутизаторами по оптимальным маршрутам. Когда какое-нибудь событие в сети приводит к тому, что маршруты или отвергаются, или становятся доступными, маршрутизаторы рассылают сообщения об обновлении маршрутизации. Сообщения об обновлении маршрутизации пронизывают сети, стимулируя пересчет оптимальных маршрутов и, в конечном итоге, вынуждая все маршрутизаторы придти к соглашению по этим маршрутам. Алгоритмы маршрутизации, которые сходятся медленно, могут привести к образованию петель маршрутизации или выходам из строя сети.
Алгоритмы маршрутизации должны быть также гибкими. Другими словами, алгоритмы маршрутизации должны быстро и точно адаптироваться к разнообразным обстоятельствам в сети. Например, предположим, что сегмент сети отвергнут. Многие алгоритмы маршрутизации, после того как они узнают об этой проблеме, быстро выбирают следующий наилучший путь для всех маршрутов, которые обычно используют этот сегмент. Алгоритмы маршрутизации могут быть реализованы таким образом, чтобы они могли адаптироваться к изменениям полосы пропускания сети, размеров очереди к маршрутизатору, величины задержки сети и других переменных.
3.3 Область применения маршрутизаторов
По области применения маршрутизаторы делятся на несколько классов:
Магистральные маршрутизаторы. Предназначены для построения центральной сети. Это мощные устройства способные обрабатывать миллионы пакетов с секунду и имеющих большое количество интерфейсов локальной и глобальной сети. Большое внимание в этих моделях уделяется надёжности и отказоустойчивости маршрутизатора, которое достигается за счёт системы терморегуляции, избыточных источников питания, а также симметричного мультиплексирования. Примерами магистральных маршрутизаторов служат маршрутизаторы Backbone Concentrator Node, Cisco 7500, Cisco 12000[3].
Маршрутизаторы региональных отделений - соединяют региональные отделения между собой и с центральной сетью. Такой маршрутизатор представляет собой версию упрощённого магистрального маршрутизатора. Поддерживает интерфейс локальных и глобальных сетей мене скоростных. Примерами маршрутизаторов региональных отделений служат маршрутизаторы BLN, ASN, Cisco 3600, Cisco 2500[3].
Маршрутизаторы удалённого офиса могут поддерживать работу по коммутируемой телефонной линии в качестве резервной связи для выделенного канала. Примерами маршрутизаторов удалённых офисов, являбтся наиболее типичные представители - Nautika, Cisco 1600, Office Connect, Pipeline[7].
Маршрутизаторы локальных сетей предназначены для разделения крупных локальных сетей на подсети. Основные требования предъявляемые к ним: высокая скорость машрутизации, так как в такой конфигурации отсутствуют низкоскоростные поры, такие как модельные или цифровые порты.
Кроме того, сетевые устройства типа моста/маршрутизатора работают в нормальном режиме как многопротокольные маршрутизаторы, а при получении пакета с неизвестным сетевым протоколом обрабатывают его как мост. Они работают как мосты, но при этом поддерживают некоторые функции третьего уровня для оптимизации передачи данных.
4. Логический метод маршрутизации
Логический метод маршрутизации относится к статическим алгоритмам. Распределение статических таблиц маршрутизации устанавливается администратором заранее и прописывается вручную. В таблицах хранится информация о том, на какой интерфейс отправить пакет с соответствующей адресной информацией. Информация в таблицах не меняется, если только администратор сети не изменит её.
Логический метод маршрутизации на сети связи состоит в процедуре, выполняемой в каждом транзитном узле коммутации, начиная от узла источника, позволяющее определить исходящий тракт передачи сообщений, максимально близкий к геометрическому направлению. Сеть связи вкладывается в прямоугольную систему координат (рисунок 4.1), в соответствии с которой, каждому узу сети присваивается собственный адрес (X,Y).То есть каждом узлу на сети помимо своего адреса в общей системе адресации присваивается адрес в данной системе координат. Поэтому в оперативной памяти узла необходимо держать таблицы соответствий для данных видов адресации. Таблица содержит информацию обо всех маршрутизаторах в сети. Таблица состоит из трех частей: собственного адреса, адреса смежных узлов и адресов удаленных узлов.
В каждом транзитном узле УК(Xi,Yj), начиная с узла источника, производится анализ адреса узла получателя в сопоставлении его с собственным. В результате вычисляется геометрическое направление из данного узла на УП.
Данные вычисления можно провести заблаговременно и держать в оперативной памяти узла.
Логический метод относится к алгоритмам, которые определяют оптимальный путь доставки информации, основываясь на данных о расстоянии между узлами, а не о пропускной способности сети на данном участке, то соответственно он не может учитывать возможности по ранее забракованным участкам сети из-за загруженности или неисправности [12].
Алгоритм прост для разработки и хорошо работает в окружения, где трафик сети относительно предсказуем, а схема сети относительно проста.
5. Структурная схема маршрутизатора, реализующего логический метод формирования
Рассмотрим процесс нахождения оптимального пути на магистральной сети между узлом получателя и отправителем при условии:
число узлов на сети около ста;
структура сети не иерархичная;
алгоритм нахождения оптимального пути - логический;
В i-м ТПС передается служебная и пользовательская информация.
В фильтре происходит выделение различной служебной информации такой как посылка отказа; посылка на установление соединения; посылка отбоя. В каждом маршрутизаторе содержится таблица соответствия между адресом маршрутизатора на сети и адресом маршрутизатора в единой системе координат. Логический метод маршрутизации относится к статическому, поэтому данные в таблицу заносятся администратором сети. Данный метод маршрутизации не учитывает состояние каналов связи между узлами на сети, а при нахождение маршрута учитывает оптимальное расстояние между узлами. Таблицу соответствия можно разбить на три части. В первой части содержится информация о адресе данного маршрутизатора в обеих системах адресации, адрес в координатной сетке обозначим как (,). Значение адрес смежных с данным узлом маршрутизатором - (). Адреса удаленных узлов в координатной сетке - (). Производится анализ искомого адреса () с собственным адресом маршрутизатора (,), В случае если =,, то запрашиваемый адрес находится в пределах сети данного маршрутизатора. В случае если ,, то производится дальнейший анализ =, анализируется, - не является ли искомый узел смежным с данным маршрутизатором. Если данное условие не выполняется, то есть = , то искомый узел является удаленным, поэтому необходимо найти исходящий тракт максимально близкий к геометрическому направлению:
;
далее определяем к смежным узлам:
,
при этом необходимо учитывать:
если и , то ;
если и , то ;
если и , то ;
В схеме сравнения производится анализ и , то есть определяется наименьший угол отклонения от исходного :
,
Определив наименьший угол отклонения, определяется исходящий тракт, для дальнейшего следования. Далее проверяется ИПТС на доступность, если он не доступен, то производим процедуру по анализу следующего ИПТС, который имеет наименьший угол отклонения от исходного угла; если при анализе всех ИТПС не было обнаружено свободного тракта, то формируется посылка на отказ в соединении. Эта информация заносится в таблицу коммутации. В случае если определен исходящий тракт информация об этом поступает не только в таблицу коммутации, но и производится проверка на узел получения: то есть если дальнейший узел является оконечным то в его направлении формируется посылка на установление соединения.; если следующий узел является транзитным, то в его направлении формируется соответствующая посылка на установление соединения.
Ячейки пользовательской информации поступают в контроллер, где происходит обращение к таблице коммутации, для получении информации для прохождения по коммутационной матрице.
Формируется быстрый пакет, то есть к ячейки присоединяется новый заголовок, содержащий номера виртуальных каналов для прохождения по коммутационной системе (КС). После прохождения по коммутационной системе происходит удаление заголовка, и ячейки в дальнейшем передаются по соответствующему тракту. Структурная схема маршрутизатора приведена на рисунке 5.1.
6. Анализ маршрутизации Ш-ЦСИО
6.1 Постановка задачи
Спектр методов маршрутизации, которые можно применить на сетях связи, весьма широк: от простейших, фиксированных процедур, до весьма сложных. Каждый из них имеет свои достоинства и недостатки. Выбор того или иного метода маршрутизации значительно влияет, на финансовые вложения в сеть связи, эффективность использования ресурсов сети и качества обслуживания пользователя. Проведение экспериментальных исследований по функционированию методов маршрутизации непосредственно на действующих сетях связи связано с существенными техническими, организационными и финансовыми трудностями. Одним из путей решения данной проблемы является разработка математической модели, с помощью которой можно получить количественные оценки функционирования сети связи с тем или иным методом маршрутизации.
Задача, которая ставится в данной главе - это описание математической модели и методики анализа логического методов маршрутизации на Ш-ЦСИО.
Ш-ЦСИО имеет свои особенности:
Применение технологии виртуальных каналов - АТМ.
Использование в коммутаторах виртуальных каналов метода БПК.
Обслуживание неоднородного трафика, что связано с предоставлением пользователю различных видов сервиса.
Обеспечение требуемого качества обслуживания для различных видов сервиса.
Критерием анализа исследуемого метода маршрутизации примем качество обслуживания пользователей сети (вероятность потери сообщений, либо части сообщения; время задержки при передаче сообщения) при различных параметрах входного трафика. Считается, что структура сети, скорости передачи [Бит/сек] в ВТ и входящие потоки данных от пользователя определены заранее.
6.2 Математическая модель Ш-ЦСИО и методика анализа маршрутизации
Схематичное описание математической модели Ш-ЦСИО и методика анализа маршрутизации состоит из следующих этапов:
Описание исходных данных и определение ограничений математической модели.
Выбор критериев анализа маршрутизации на сети.
Описание потоковой модели, учитывающей метод маршрутизации на сети и виды сервиса Ш-ЦСИО.
Выбор системы массового обслуживания (СМО), описывающей процессы обработки потока ячеек АТМ от различных видов сервиса виртуальных трактов Ш-ЦСИО.
Определение вероятностно временных характеристик (ВВХ) функционирования Ш-ЦСИО.
Поэтапно рассмотрим математическую модель Ш-ЦСИО и методику анализа методов маршрутизации.
6.3 Описание исходных данных и определение ограничений математической модели
1. G(As,Ls) с множеством вершин (коммутаторы ВК) ; и множество рёбер (ТПС) ; соединяющих и вершины. ТПС ; характеризуется множеством виртуальных трактов
;
и скоростей передачи данных [Бит/сек]
; ; .
Структура сети связи вложена в прямоугольную систему координат, то есть каждая вершина имеет координаты Xi,Yj.
2. Абонентские пункты (АП) в модели отсутствует. Входные и выходные потоки данных приписываются ИКМВК и ВКМВК, которые непосредственно связаны с абонентскими пунктами. Данное ограничение модели не является принципиальным и при необходимости может быть снято.
3. Множество , определяет средние скорости поступления данных r-го вида сервиса в Ш-ЦСИО.
4. Вероятность поступления потока данных r-го вида сервиса в ИКМВК для его последующей передачи ВКМВК определяется матрицей тяготения:
.
5. Поступающий в сеть поток данных r-го вида сервиса характеризуется следующими параметрами:
Пуассоновское распределение количества сообщений (заявок) (k), поступающих на обслуживание (передачу по сети), за время
Соответственно, математическое ожидание и дисперсия поступления k заявок r-го вида сервиса определяются:
Плотность распределения, математического ожидания и дисперсия времени между моментами поступления заявок r-го вида сервиса на обслуживание, соответственно определяются:
Экспоненциальное распределение длительности одного сообщения (в единицах времени) r-го вида сервиса:
Соответственно, математическое ожидание и дисперсия длительности одного сообщения r-го вида сервиса определяется:
; .
Будем считать, что для r-го вида сервиса количество поступающих сообщений (заявок на обслуживание) за время Т для последующей передачи по сети и длительность передачи сообщений являются независимыми событиями. Данное условие накладывает определенные ограничения на математическую модель. Действительно, для некоторых видов сервиса (видеотелефония, телефония), для которых существует эффект повторных вызовов, данное ограничение является существенным недостатком. В тоже время для видов сервиса (видеоконференция, видеонаблюдения, аудио- и видеоинформация, звуковые сигналы, передача данных с высокой скоростью, телеуправление, телефакс, передача документов, видео высокого разрешения) допущение о независимости событий количества поступающих сообщений (заявок) на обслуживание и длительность их передачи является вполне приемлемым.
Следовательно, выражения:
; ,
соответственно, определяют математическое ожидание и дисперсию времени передачи сообщения r-го вида сервиса за период наблюдения Т.
Таким образом
, (6.1)
определяет количество данных (Бит) (интенсивность) r-го вида сервиса, которое должно поступить в сеть от пользователей со средней скоростью m(vr) за период наблюдений Т.
Учитывая, что поток данных r-го вида сервиса с интенсивностью на уровне адоптации AAL эталонной модели протоколов Ш-ЦСИО сегментируется по 48 байт и преобразуется в ячейки АТМ, то выражение
(6.2)
определяет интенсивность поступления в Ш-ЦСИО ячеек r-го вида сервиса за время Т.
6. План распределения информации на сети задан виде набора векторов,
,
где ;;;; степень ai-го коммутатора ВК.
Элементы вектора задают вероятность того, что на этапе поиска маршрута к ai ВКМВК в aj транзитном коммутаторе ВК, начиная с ИКМВК, будет выбран v-й ВК. Процедура определения при использовании логического метода маршрутизации состоит из нескольких этапов:
; ; ; , где
-угол, определяющий геометрическое направление;
-углы, соответствующие исходящим трактам к смежным углам;
k- количество исходящих трактов в данном узле.
6.4 Выбор критериев анализа маршрутизации на сети
Критерием оценки функционирования метода маршрутизации (М) на Ш-ЦСИО за время наблюдений Т примем качество обслуживания пользователей сети (вероятность потери сообщений, либо части сообщения; время задержки при передачи сообщений)при различных параметрах входного потока:
, при условии, что определены заранее.
6.5 Описание потоковой модели, учитывающей метод маршрутизации на сети и виды сервиса Ш-ЦСИО
Отождествим вершины графа G(AS,LS) с состояниями конечной цепи Маркова. Из набора векторов (7.1) для r-го вида сервиса при поиске at-го ВКМВК можно получить матрицу переходных вероятностей [9].
; ,
где вероятность перехода из ai-го состояния в aj-е при поиске at-го ВКМВК для r-го вида сервиса. Причем, состояние at, соответствующее at-му узлу-получателю (ВКМВК), определим поглощающим, то есть:
.
Матрица переходных вероятностей, описывающая вероятности переходов для поиска at-го коммутатора ВК будет иметь вид:
Интенсивность потока ячеек АТМ r-го вида сервиса в ; ; при поиске at-го коммутатора ВК (ВКМВК) определяется следующим образом:
; .
Общая интенсивность потоков ячеек АТМ r-го вида сервиса в ; при поиске at-го коммутатора ВК определится из системы уравнений:
; ; . (6.3)
Таким образом, мы получили взвешенный, граф каждому ребру (ВТ) которого присвоено r значений интенсивностей потоков ячеек АТМ.
6.6 Выбор СМО, описывающей процессы обработки потока ячеек АТМ различных видов сервиса в виртуальных трактах Ш-ЦСИО
В качестве математической модели ВТ примем СМО с относительными приоритетами (Рисунок 6.1), причем - высший приоритет; - низший приоритет; .
Высший приоритет присвоим тем видам сервиса, которые функционируют в реальном масштабе времени (критичны к задержкам во времени): телефония, видеотелефония, видеоконференция и т.д..
Данным видам сервиса соответствует СМО M/1//D/1, основной характеристикой которой является Рпот - вероятность потери ячейки АТМ. Выбор детерминированной дисциплины обслуживания в СМО обусловлен тем, что обслуживаются (передаются) ячейки АТМ, имеющие фиксированную длину 53 байта.
Таким образом, используя известные подходы, появляется возможность расчёта вероятностно - временных характеристик виртуальных трактов Ш-ЦСИО:
m(Tож r) - среднее время ожидания одной ячейки в очереди на обслуживание для r-го вида сервиса не критичного к задержкам во времени;
Рпот - вероятность потери ячейки АТМ для видов сервиса, функционирующих в реальном масштабе времени.
Для : M/1//D/1; , ; ; .
Для ; 1;М//D/1;
; - среднее время обслуживания одной ячейки АТМ;
; ; ; .
- обратно пропорционально скорости передачи в g-м ВТ (vgij) и с учетом длины ячейки 53 байта определяется следующим образом:
; .
Таким образом, получены ВВХ для каждого виртуального тракта в Ш-ЦСИО(рисунок 6.2).
6.7 Определение ВВХ функционирования Ш-ЦСИО
Усредняя ; Рgпот.ij; ;
определим их математическое ожидания:
; (6.4)
; . (6.5)
В результате получен взвешенный граф, каждому ребру (ТПС) которого присвоены искомые вероятностно - временные характеристики.
Выражения (6.4), (6.5) представляют собой матрицы размерностью (SxS), анализ которых позволяет оценить функционирование логического метода маршрутизации на Ш-ЦСИО.
7. Безопасность жизнедеятельности
Дипломный проект выполняется с использованием персонального компьютера, поэтому цель данного раздела - выявить и изучить опасные и вредные факторы при работе с дисплеем, степень их воздействия на оператора. Определить необходимые условия для устранения или уменьшения воздействия этих факторов на безопасные условия труда. Выявить меры по профилактике травматизма и профессиональных заболеваний.
7.1 Общий обзор вредных факторов
Операторы ЭВМ сталкиваются с воздействием таких физических и опасных психологических факторов, как повышенная температура внешней среды, отсутствие или недостаток естественного света, недостаточная освещенность рабочей зоны, электрический ток, статическое электричество, умственное перенапряжение, перенапряжение зрительных анализаторов, монотонность труда, эмоциональные перегрузки.[10]
Зарегистрированы десятки случаев возникновения болезней, связанных с работой на компьютере. Выявлена связь между работой на компьютере и такими недомоганиями как астенопия (быстрая утомляемость глаз); боли в спине и шее; запястный синдром (болезненное поражение срединного нерва запястья); тендениты (воспалительные процессы в тканях сухожилий); стенокардия и различные стрессовые состояния; сыпь на коже лица; хронические головные боли; головокружение; повышенная возбудимость и депрессивные состояния; снижение концентрации внимания; нарушение сна.
Служащие, работающие за дисплеем компьютера по семь и более часов в день, страдают воспалениями и другими заболеваниями глаз на 70% чаще тех, кто проводит за дисплеем меньше времени.
Основным источником эргономических проблем, связанных с охраной здоровья людей, использующих в своей работе персональные компьютеры, являются дисплеи с электронно-лучевыми трубками (ЭЛТ). Они представляют собой источники наиболее вредных излучений, неблагоприятно влияющих на здоровье операторов. Существует два типа излучений, возникающих при работе монитора:
электростатическое;
электромагнитное.
Первое возникает в результате облучения экрана потоком заряженных частиц. Неприятности, вызванные им, связаны с пылью, накапливающейся на электростатических заряженных экранах, которая летит на пользователя во время его работы за дисплеем. Результаты медицинских исследований показывают, что такая электризованная пыль может вызвать воспаление кожи.
Электромагнитное излучение создается магнитными катушками отклоняющей системы, находящимися около цокольной части ЭЛТ Специальные измерения показали, что невидимые силовые поля появляются даже вокруг головы оператора во время его работы за дисплеем. Человеку, вероятно, уже никогда не удастся полностью избежать пагубного влияния передовых технологий, но можно свести его к минимуму. Большинство проблем решаются при правильной организации рабочего места, соблюдении правил техники безопасности и разумном распределении рабочего времени.
Условия работы за монитором противоположны тем, которые привычны для наших глаз. В обычной жизни мы воспринимаем в основном отраженный свет (если только не смотрим на солнце, звезды или искусственные источники освещения), а объекты наблюдения непрерывно находятся в поле нашего зрения в течение хотя бы нескольких секунд. А вот при работе за монитором мы имеем дело с самосветящимися объектами и дискретным (мерцающим с большой частотой) изображением, что увеличивает нагрузку на глаза. Если к этому добавить такие часто встречающиеся факторы, как резкий контраст между фоном и символами, непривычная форма символов, иное, чем при чтении книги, направление взгляда, блики и отражения на экране, то становится понятным, почему почти каждый пользователь знаком с неприятными ощущениями ("песок" в глазах, жар, боль, пелена).
Технический уровень современных мониторов не позволяет полностью исключить воздействие перечисленных выше факторов, однако разработано ряд правил, позволяющих облегчить адаптацию к непривычным для организма человека факторам, сохранив тем самым работоспособность и здоровье пользователей.
7.2 Монитор
Среди параметров монитора есть несколько очень важных для здоровья оператора. Первый параметр это частота строчной развертки, то есть частота кадров. Изображение, созданное электронно-лучевой трубкой, всегда немного мерцает. Это мерцание приводит к утомлению глаз, головным болям и другим менее заметным проблемам. Чем меньше мерцает экран, то есть чем выше частота смены кадров, тем больше времени вы можете провести за этим компьютером без существенных последствий для своего здоровья. Международные стандарты на частоту кадров, например стандарт VESA, постоянно меняются. Сначала минимальная частота была 72 Гц, потом 75 Гц, сейчас 80 Гц. В России до сих пор существует огромный парк мониторов, работающих на частотах 60-65 Гц, что очень вредно для глаз.
Второй важный параметр это размер точки. При маленьком размере точки изображение будет более четким, более различимым, глаза будут меньше утомляться. Размер ее должен быть не больше 0.28 мм, в лучших моделях может быть и меньше (0.25 мм или 0.21 мм).
Существует еще один фактор, влияющий на здоровье оператора, это излучение, исходящее от монитора.
Основными параметрами изображения на экране монитора являются яркость, контраст, размеры и форма знаков, отражательная способность экрана, наличие или отсутствие мерцаний.
Яркость изображения (имеется в виду яркость светлых элементов, т. е. знака для негативного изображения и фона для позитивного) нормируется для того, чтобы облегчить приспособление глаз к самосветящимся объектам. Ограничены также (в пределах (25%)) и колебания яркости. Нормируется внешняя освещенность экрана (100 - 250 лк). Исследования показали, что при более высоких уровнях освещенности экрана зрительная система утомляется быстрее и в большей степени.
До сих пор спорным остается вопрос о том, что лучше для зрения: позитивное изображение (светлый экран и темные символы) или, наоборот, негативное изображение. И для того и для другого варианта можно привести доводы за и против. Если работа с ПЭВМ предполагает одновременно и работу с бумажным носителем (тетрадь, книга), то лучше и на экране монитора иметь темные символы на светлом фоне, чтобы глазам не приходилось все время перестраиваться.
Требования, предъявляемые к характеристикам монитора (ГОСТ 27954-88):
частота кадров при работе с позитивным контрастом - не менее 60 Гц
частота кадров в режиме обработке текстов - не менее 72 Гц
дрожание элементов изображения - не более 0.1 мм
антибликовое покрытие - обязательно
допустимый уровень шума - не более 50 дБ
мощность дозы рентгеновского излучения на расстоянии 0.05 м от экрана 100 мкР/час
При выборе цветовой гаммы предпочтение следует отдавать зелено-голубой части спектра.
Часто фактором, способствующим быстрому утомлению глаз, становится и контраст между фоном и символами на экране. Малая контрастность затрудняет различение символов, однако и слишком большая тоже вредит. Поэтому контраст должен находиться в пределах от 3:1 до 1,5:1. При более низких уровнях контрастности у работающих быстрее наступали неблагоприятные изменения способности фокусировать изображение и критической частоты слияния световых мельканий, регистрировалось больше жалоб на усталость глаз и общую усталость.
Человеческий глаз не может долго работать с мелкими объектами. Вот почему нормируются размеры знаков на экране. Например, угловой размер знака должен быть в пределах от 16 до 60 угловых минут, что составляет от 0,46 до 1,75 см, если пользователь смотрит на экран с расстояния 50 см (минимальное расстояние).
Отражательная способность экрана не должна превышать 1%. Для снижения количества бликов и облегчения концентрации внимания корпус монитора должен иметь матовую одноцветную поверхность (светло-серый, светло-бежевый тона) с коэффициентом отражения 0,4-0,6, без блестящих деталей и с минимальным числом органов управления и надписей на лицевой стороне.
Основные нормируемые визуальные характеристики мониторов и соответствующие допустимые значения этих характеристик:
яркость знака или фона (измеряется в темноте): 35-120 кд/м2
контраст: От 3:1 до 1,5:1
угловой размер знака: 16-60
отношение ширины знака к высоте: 0,5-1,0
отражательная способность экрана (блики): не более 1%
7.3 Излучения и поля
К числу вредных факторов, с которыми сталкивается человек, работающий за монитором, относятся рентгеновское и электромагнитное излучения, а также электростатическое поле.
Допустимые нормы для этих параметров представлены ниже.
- Мощность экспозиционной дозы рентгеновского излучения на расстоянии 0,05 м вокруг видеомонитора: 0.05 мкР/час.
- Электромагнитное излучение на расстоянии 0,5 м вокруг видеомонитора по электрической составляющей:
в диапазоне 5 Гц-2 кГц - 25 В/м
в диапазоне 2-400 кГц - 2,5 В/м
по магнитной составляющей:
в диапазоне 5 Гц-2 кГц - 250 нТл
в диапазоне 2-400 кГц - 25 нТл
- Поверхностный электростатический потенциал: не более 500 В.
Благодаря существующим достаточно строгим стандартам дозы рентгеновского излучения от современных видеомониторов не опасны для большинства пользователей. Исключение составляют люди с повышенной чувствительностью к нему.
Специалисты не пришли к однозначному выводу относительно воздействия электромагнитного излучения на организм человека, однако совершенно очевидно, что уровни излучения, фиксируемые вблизи монитора, опасности не представляют.
7.4 Требования по электробезопасности
Электроустановки, к которым относится практически все оборудование ЭВМ, представляют для человека большую потенциальную опасность, так как в процессе эксплуатации или проведения профилактических работ человек может коснуться частей, находящихся под напряжением. Специфическая опасность электроустановок: токоведущие проводники, корпуса стоек ЭВМ и прочего оборудования, оказавшегося под напряжением в результате повреждения (пробоя) изоляции, не подают каких-либо сигналов, которые предупреждали бы человека об опасности. Реакция человека на электрический ток возникает лишь при протекании последнего через тело человека.
Питание ЭВМ осуществляется от сети частотой 50 Гц и напряжением 220 В. Высоковольтным устройством является дисплей ЭВМ, напряжение в котором может достигать более 20000В. Таким образом, лаборатория является помещением с повышенной опасностью поражения людей электрическим током. В связи с этим применяются следующие меры защиты от поражения электрическим током:
все токоведущие детали изолированы диэлектриком и к ним нет прямого доступа;
заземление:
использование общего выключателя, при помощи которого в нужный момент можно прекратить подачу напряжения на все установки.
Весь персонал в обязательном порядке инструктируется о мерах электробезопасности. Основное значение для предотвращения электротравматизма имеет правильная организация обслуживания действующих электроустановок, проведения ремонтных и профилактических работ, осуществляемое с помощью следующих мер:
допуск к работе;
надзор во время работы;
производство отключений во время ремонта;
вывешивание предупредительных плакатов и знаков безопасности;
проверка отсутствия напряжения;
наложение заземления.
При прикосновении к любому из элементов ЭВМ могут возникнуть разрядные токи статического электричества. Такие разряды не представляют опасности для человека, однако, могут привести к выходу из строя ЭВМ. Для снижения величин возникающих зарядов в дисплейных залах применяют покрытие технологических полов из однослойного поливинилхлоридного антистатического линолеума марки АСК.
Еще одним методом защиты является нейтрализация статического электричества ионизированным газом. Можно также применить общее и местное увлажнение воздуха.
7.5 Требования к освещению
Правильно спроектированное и выполненное освещение обеспечивает высокую работоспособность, оказывает положительное психологическое воздействие на работающих, способствует повышению производительности труда. О важности вопроса освещения для дисплейных залов говорит тот факт, что основной объем информации (около 90%) оператор получает по зрительному каналу. К системам освещения предъявляют следующие требования:
соответствие уровня освещенности рабочих мест характеру выполняемой зрительной работы;
достаточно равномерное распределение яркости на рабочих поверхностях и в окружающем пространстве;
отсутствие резких теней, прямой и отраженной блескости;
постоянство освещенности во времени;
оптимальная направленность, излучаемого осветительными
приборами, светового потока;
долговечность, экономичность, электро- и пожаробезопасность,
эстетичность, удобство и простота эксплуатации.
Согласно действующим нормам для искусственного освещения регламентирована наименьшая освещенность рабочих мест, а для естественного и совмещенного - коэффициент естественной освещенности (КЕО).
Рекомендуемая освещенность для работы с экраном дисплея составляет 200 лк, а при работе с экраном в сочетании с работой над документами - 400 лк. Рекомендуемые яркости в поле зрения операторов лежат в пределах 1:5-1:10.
В дисплейных залах, обычно, применяют одностороннее естественное боковое освещение. С целью уменьшения солнечной инсоляции светопроемы устраивают с северной, северо-восточной или северо-западной ориентацией. Мониторы располагают подальше от окон и таким образом, чтобы окна находились сбоку.
Если экран дисплея расположен к окну, необходимы специальные экранирующие устройства (светорассеивающие шторы, регулируемые жалюзи, солнцезащитная пленка с металлизированным покрытием).
Для искусственного освещения дисплейных помещений лучше использовать люминесцентные лампы, так как у них высокая световая отдача (до 75 лм/Вт и более), продолжительный срок службы (до 10000 часов), малая яркость светящейся поверхности, близкий к естественному спектральный состав излучаемого света, что обеспечивает хорошую цветопередачу.
Наиболее приемлемыми для дисплейных помещений являются люминесцентные лампы ЛБ (белого света) и ЛТБ (тепло-белого света) мощность 20, 40, 80 Вт.
Для исключения засветки экранов дисплеев прямыми световыми потоками светильники общего освещения располагают сбоку от рабочего места, параллельно линии зрения оператора и стене с окнами. Такое размещение светильников позволяет производить их последовательное включение в зависимости от величины естественной освещенности и исключает раздражение глаз чередующимися полосами света и тени, возникающее при поперечном расположении светильников.
7.6 Требования к микроклимату
Микроклиматические параметры влияют на функциональную деятельность человека, его самочувствие и здоровье и на надежность работы средств вычислительной техники. Особенно большое влияние на микроклимат оказывают источники теплоты, находящиеся в помещении.
Основными источниками теплоты в дисплейных залах являются: ЭВМ, приборы освещения, обслуживающий персонал. Средняя величина тепловыделений составляет 310 Вт/м*м. Удельная величина тепловыделений от приборов освещения составляет 35-60 Вт/м*м. Количество теплоты от обслуживающего персонала невелико, оно зависит от числа работающих в помещении и интенсивности работы выполняемой человеком. Кроме того, на суммарные тепловыделения оказывают влияние внешние источники поступлений теплоты. К ним относят теплоту, поступающую через окна от солнечной радиации, приток теплоты через непрозрачные ограждающие конструкции.
Основным тепловыделяющим оборудованием в дисплейном зале является ЭВМ - в среднем до 80% суммарных выделении. Тепловыделения от приборов освещения составляют в среднем 12%. Поступление теплоты от обслуживающего персонала -1%, от солнечной радиации - 6%, приток теплоты через непрозрачные ограждающие конструкции - 1%. Эти источники теплоты являются постоянными.
На организм человека и работу компьютеров оказывает влияние относительная влажность воздуха. При относительной влажности воздуха более 75-80% снижается сопротивление изоляции, изменяются рабочие характеристики элементов ЭВМ, возрастает интенсивность отказов элементов ЭВМ. Скорость движения воздуха также оказывает влияние на функциональную деятельность человека и работу высокоскоростных устройств печати. Большое влиянием на самочувствие и здоровье операторов ЭВМ, а также на работу устройств ЭВМ (магнитные ленты, магнитные диски, печатающие устройства) оказывает запыленность воздушной среды.
С целью создания нормальных условий для операторов ЭВМ установлены нормы микроклимата. Эти нормы устанавливают оптимальные и допустимые значения температуры, относительной влажности и скорости движения воздуха в дисплейных помещениях с учетом избытков явной теплоты, тяжести выполняемой работы и сезонов года.
Под оптимальными микроклиматическими параметрами принято понимать такие, которые при длительном и систематическом воздействии на человека обеспечивают сохранение нормального функционального и теплового состояния организма без напряжения реакции терморегуляции, создают ощущение теплового комфорта и являются предпосылкой высокого уровня работоспособности.
Допустимые микроклиматические параметры могут вызвать преходящие и быстро нормализующиеся изменения функционального и теплового состояния организма и напряжения реакций терморегуляции, не выходящие за пределы физиологических приспособительных возможностей, не создающие нарушений состояния здоровья, но вызывающие дискомфортные теплоощущения, ухудшение самочувствия и понижение работоспособности.
7.7 Правильная организация рабочего места
Помещение, их размеры (площадь, объем) должны в первую очередь соответствовать количеству работающих и размещенному в них комплексу технических устройств. В них предусматривают соответствующие параметры температуры, освещения, чистоту воздуха, обеспечивают изоляцию от производственных шумов и т.д. Для обеспечения нормальных условий труда, санитарные нормы устанавливают на одного работающего, объем производственного помещения не менее 15 кубических метров, площадь помещения выгороженного стенами или глухими перегородками не менее 4.5 квадратных метров. Основные и производственные помещения ВЦ следует окрашивать в соответствии с цветом технических средств. Выбор цвета определяется рядом факторов, в том числе конструкцией здания, характером выполняемой работы, освещенностью, количеством работающих. Шум на рабочих местах в помещениях ВЦ создаются внутренними источниками: техническими средствами, компрессорами и так далее.
Для снижения шума, следует:
ослабить шум самих источников, в частности, предусмотреть применение в их конструкциях акустических экранов, звукоизолирующих кожухов;
применять более рациональное расположение оборудования;
использовать архитектурно-планировочные и технические решения, направленные на изоляцию источников шума.
Необходимо учитывать психофизиологические особенности человека. Важную роль играет планировка рабочего места, которое обязано удовлетворять требованиям удобного выполнения работ и, следовательно, экономии времени. Более удобными считаются сидения, имеющие выемку, соответствующую форме бедер и наклону назад. Спинка стула должна быть изогнутой формы, обнимающей поясницу. Длинна спинки стула, должна быть 30 см, ширина 11 см, радиус изгиба 30 см.
Рекомендуемая освещенность для работы с экраном дисплея составляет 200 лк, а при работе с экраном в сочетании с работой над документацией 400 лк. В то время когда рынки заполняются новой техникой, необходимо не забыть, о нежелательных последствиях связанных с работой людей на ПК. К вопросам безопасности при работе на ПК надо подходить крайне серьезно.
После длительной работы с компьютером могут возникать такие неприятные ощущения, как "раздражение" глаз (краснота, слезотечение или сухость роговицы), утомление (общая усталость, боль и тяжесть в глазах и голове), трудности при фокусировке зрения. Возможны также боли в спине и мышечные спазмы. Все эти проблемы можно предотвратить, сделав более удобным рабочее место или используя очки, если это необходимо.
Практика показывает, что наиболее удобно располагать монитор чуть дальше, чем это делают при обычном чтении. Верхний край экрана должен располагаться на уровне глаз или чуть ниже. Если Вы работаете с текстами на бумаге, листы надо располагать как можно ближе к экрану, чтобы избежать частых движений головой и глазами при переводе взгляда.
Освещение нужно организовать так, чтобы на экране не было бликов. Стандартное офисное освещение часто бывает слишком ярким для работы с компьютером. Если свет в помещении изменить невозможно, необходимо использовать "козырек" для монитора или обычный или мелкоячеистый защитный экран.
Подобные документы
Архитектура и назначение современного маршрутизатора, характеристика его компонентов. Протоколы, используемые при создании таблицы маршрутизации. Способы задания IP-адреса сетевого оборудования, методы аутентификации (проверки подлинности пользователей).
статья [119,1 K], добавлен 06.04.2010Установка VirtualBox. Создание двух виртуальных машин с операционной системой CentOS. Настройка сетевых интерфейсов в режиме bridgeс и хоста как маршрутизатора для сети. Установка www-сервера. Настройка динамической маршрутизации по протоколу RIP.
курсовая работа [807,5 K], добавлен 14.07.2012Использование понятий из теории графов при разработке сетей и алгоритмов маршрутизации. Построение матрицы смежности и взвешенного ориентировочного графа. Результаты работы алгоритмов Дейкстры и Беллмана-Форда. Протоколы обмена маршрутной информацией.
курсовая работа [334,1 K], добавлен 20.01.2013Понятие и классификация алгоритмов маршрутизации. Основное определение теории графов. Анализ и разработка алгоритмов Дейкстры и Флойда на языке программирования C# для определения наилучшего пути пакетов, передаваемых через сеть. Их сравнительный анализ.
курсовая работа [1,2 M], добавлен 16.05.2015Анализ проблемы обеспечения информационной безопасности при работе в сетях; обоснование необходимости разработки алгоритмов безопасной маршрутизации пакетов сообщений в глобальной информационной сети. Алгоритмизация задач безопасной маршрутизации пакетов.
дипломная работа [1,0 M], добавлен 21.12.2012Виды учебных пособий и их значение в обучении. Классификация способов коммутации, используемых в широкополосных цифровых сетях интегрального обслуживания. Разработка алгоритма обучающей программы. Описание методического материала по выполнению работы.
дипломная работа [1,5 M], добавлен 29.09.2014Основные положения, связанные с маршрутизацией компьютерных сетей и её видами, протоколами маршрутизации и их разновидностями, алгоритмами маршрутизации, их классификацией, типами и свойствами. Разработка программы и моделирование компьютерной сети.
курсовая работа [1,8 M], добавлен 04.11.2012Цель маршрутизации - доставка пакетов по назначению с максимизацией эффективности. Построение алгоритмов поиска кратчайшего пути маршрутизации, расчёт пути с минимальным количеством переходов. Характеристики протокола RIP и построение маршрутных таблиц.
курсовая работа [74,1 K], добавлен 26.08.2010Принципы построения IP-сетей. Требования различных типов приложений к качеству обслуживания. Математическая модель расчета сетевых параметров. Расчет матрицы информационного тяготения. Подбор структурных параметров сети и протокола маршрутизации.
курсовая работа [2,8 M], добавлен 14.01.2016Описание систем управления процессами маршрутизации пакетов, передаваемых через компьютерную сеть. Изучение методов теории выбора кратчайших путей. Разработка программы маршрутизации данных и определение кратчайших путей их маршрутов методом Дейкстры.
курсовая работа [495,7 K], добавлен 24.06.2013