Развертывание сетей WIMAX
Обзор современных систем беспроводного абонентского доступа. Особенности применения модемов OFDM и многостанционного доступа OFDMA. Разработка информационной сети на основе технологии Mobile WiMAX, оценка экономической эффективности ее внедрения.
Рубрика | Программирование, компьютеры и кибернетика |
Вид | дипломная работа |
Язык | русский |
Дата добавления | 12.07.2010 |
Размер файла | 5,4 M |
Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже
Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.
С точки зрения формирования модуляционных символов OFDMA аналогичен OFDM: OFDMA-символ включает собственно зону передачи данных и предшествующий ему защитный интервал (повтор начального фрагмента символа), предназначенный для предотвращения межисмвольной интерференции). Сам символ - это совокупность модулированных ортогональных несущих. В режиме OFDMA несущих значительно больше, чем в OFDM - 2048 вместо 256, соответственно и число подканалов становится достаточным для организации работы сети: в разных режимах их от 32 до 70, по 24 или 48 информационных несущих в каждом. Используются не все 2048 несущих - около 200 нижних и 200 верхних частот составляют защитный интервал канала и не модулируются. Также не используется центральная частота канала (частота с индексом 1024). Кроме того, часть несущих - пилотные, предназначенные для служебных целей, а не для передачи информации. Точное число пилотных несущих и частот в защитных интервалах незначительно варьируется в зависимости от режимов OFDMA, описанных далее.
Системная тактовая частота всегда составляет 8/7 ширины полосы физического канала BW. Ширина физического канала не нормирована (в стандарте говорится "не менее 1 МГц), но в реальных применениях вряд ли окажутся эффективными каналы менее 5 МГц.
Метод формирования, структура OFDM-символов и механизм канального кодирования в OFDMA схожи с описанными для OFDM [2]. Канальное кодирование включает рандомизацию, помехоустойчивое кодирование, перемежение и модуляцию. Метод рандомизации практически идентичен OFDM, различны лишь способы формирования инициализирующего вектора генератора псевдослучайной последовательности (ПСП).
Помехоустойчивое кодирование в OFDMA в качестве обязательного предусматривает только сверточный кодер - такой же, как в OFDM, и с тем же набором скоростей кодирования. Кодера Рида-Соломона нет. Опционально предусмотрено применение блоковых и сверточных турбо-кодов. Метод перемежения также практически идентичен.
В нисходящем канале первый символ - это преамбула. Несущие в символах преамбул модулируются посредством BPSK специальным псевдослучайным кодом, зависящим от используемого сегмента (в режиме PUSC) и переменной IDcell, задаваемой на МАС-уровне [3]. В преамбуле модулируется каждая третья несущая всего канала (кроме несущих защитных интервалов и центральной), причем начальный сдвиг [0..2] задается дополнительно. Распознав тип преамбулы, АС сразу определяет значение переменной IDcell и режим работы БС.
За преамбулой следуют два символа, передающие заголовок кадра FCH и карту распределения полей нисходящего канала DL-MAP. Заголовок транслируется посредством QPSK со скоростью кодирования 1/2. Он содержит префикс нисходящего канала (DL Frame prefix), в котором указываются используемые сегменты и параметры карты нисходящего канала DL-MAP (длина, используемый метод кодирования и число повторений), транслируемой сразу за заголовком кадра. Также в заголовке используется флаг, установка которого означает изменение в расположении области конкурентного доступа в восходящем субкадре по отношению к предыдущему кадру.
Далее транслируется карта восходящего канала UL-MAP и нисходящие пакеты данных для разных АС.
Режим FUSC означает, что используются весь диапазон физического канала (все возможные несущие). Это 1702 несущие информационные частоты и защитный интервал (173 и 172 несущих в верху и низу диапазона, соответственно). Центральная частота с индексом 1024 не используется.
Рисунок 13 - Совмещение различных “зон перестановки” в OFDMA-кадре.
В режиме FUSC прежде всего назначаются пилотные частоты. Они подразделяются на фиксированные и переменные. Списки тех и других приведены в стандарте. Термин "переменные пилотные частоты" означает, что в каждом четном OFDMA-символе их индексы соответствуют приведенным в документе IEEE 802.16, в каждом нечетном - увеличиваются на 6 (нумерация OFDMA-символов начинается с 0). Всего предусмотрено 166 пилотных частот, из них 24 - фиксированные. И фиксированные, и переменные пилотные частоты разбиты на два набора, одинаковых по объему. Это разбиение имеет значение только при работе с адаптивными антенными системами в режиме пространственно-временного кодирования (STC).
После определения пилотных частот оставшиеся 1536 несущих предназначены для передачи данных. Они подразделяются на Nsubchannels = 32 подканала по Nsubcarriers = 48 несущих в каждом. Назначение информационных несущих подканалам происходит в соответствии с формулой:
где subcarrier(k,s) - индекс несущей k в подканале s, s = [0...Nsubchannels - 1],
k = [0…Nsubcarriers - 1],
nk = (k + 13s) mod Nsubcarriers. IDCell
- идентификатор отдельного сегмента БС, определяемый на МАС-уровне (задаваемая базовой станцией целая переменная в диапазоне 0-31). P(x) означает х-ый элемент последовательности перестановок {P}, приведенной в стандарте (P = {3, 18, 2, 8, 16, 10, 11, 15, 26, 22, 6, 9, 27, 20, 25, 1, 29, 7, 21, 5, 28, 31, 23, 17, 4, 24, 0, 13, 12, 19, 14, 30}). Операция x mod k - это остаток от x/k.
Очевидно, что перед применением приведенной формулы информационные несущие должны быть перенумерованы так, чтобы их индексы укладывались в диапазон 0-1535 (последнее значение соответствует физическому индексу 1702), т.е. пронумерованы подряд, без учета пилотных частот. Поскольку в четных и нечетных символах расположение пилотных частот различно, распределение информационных несущих для них также нужно вычислять независимо.
В режиме PUSC весь доступный диапазон подразделяется на 60 подканалов. По определению, для работы используется лишь часть из них, но не менее 12. Подканалы группируются в шести сегментах, из них три базовых (сегменты 0, 1 и 2), каждый включает 12 подканалов (0-11, 20-31 и 40-51 подканалы, соответственно). Очевидно, исходя из требования минимума в 12 подканалов, не базовые сегменты могут использоваться лишь совместно с базовыми. Деление на сегменты введено, чтобы БС было проще сообщать, в каких подканалах она работает (достаточно сообщить номера сегментов).
Рисунок 14 - Структура кластера
Символ в режиме PUSC формируется по следующему принципу. Всего предусмотрено 2048 частот, из них центральная (с индексом 1024) и защитные (184 нижних и 183 верхних) не используются. Оставшиеся 1680 несущих последовательно разбивают на 120 кластеров, каждый содержит 14 несущих. После этого последовательные физические кластеры перенумеровываются в "логические" в соответствии с формулой LogicalCluster = RenumberingSequence [(PhysicalCluster+13 IDcell) mod 120], где RenumberingSequence (х) - соответствующий элемент приведенной в стандарте IEEE 802.16 последовательности перестановок, IDcell - определяемый на МАС-уровне идентификатор отдельного сегмента БС (задаваемая базовой станцией целая переменная в диапазоне 0-31). Эта операция фактически означает перемежение - распределение последовательных групп несущих по всему диапазону физического канала. Далее логические кластеры разбиваются на шесть групп (0-23, 24-39, 40-63, 64-79, 80-103, 104-119), по 24 и 16 кластеров. Большие группы соответствуют большим сегментам (по умолчанию, группа 0 соответствует сегменту 0, группа 2 - сегменту 1, группа 4 - сегменту 2). В каждом кластере определяются пилотные несущие - для четных символов это 5-я и 9-я несущие, для нечетных - 1-я и 13-я (рисунок 14).
Таким образом, набору подканалов в пределах сегмента или нескольких сегментов оказывается поставленным в соответствие набор несущих (для 12 подканалов - 336 несущих, из них 24 пилотные и 288 информационных). Информационные несущие в сегменте нумеруются подряд, не учитывая пилотные частоты, после чего в соответствии с формулой (1) каждому подканалу назначаются по 24 несущих. В данном случае в формуле (1) используются значения Nsubchannels = 12 или 8, Nsubcarriers = 24, а также специальные перестановочные последовательности P12 и P8 для сегментов из 12 и 8 каналов, соответственно (приведены в стандарте [3]).
Кроме рассмотренных методов распределения несущих, в стандарте предусмотрены и опциональные механизмы - в частности, т.н. optional FUSC, принципиально не отличающийся от рассмотренного.
Восходящий канал
Восходящий субкадр следует непосредственно за нисходящим через интервал TTG. Он содержит пакеты от абонентских станций и интервал для запроса доступа/инициализации. Минимальный размер одного сообщения в восходящем субкадре (слот) - 3 OFDMA-символа в одном подканале. Это привело к появлению в документе IEEE 802.16 термина "фрагмент" (мозаичный элемент, tile).
Рисунок 15 - Структура “фрагмента” восходящего канала.
Фрагмент представляет собой совокупность трех символов и четырех несущих, в котором положения пилотных частот жестко определены (рисунок 15). Весь частотный диапазон канала (1680 несущих) разбивается на 420 последовательных фрагментов, по 4 несущих в каждом. Предусмотрено 70 подканалов. Каждый из них включает 6 фрагментов - т.е. 24 несущие на символ в одном подканале. Распределение фрагментов по подканалам происходит следующим образом. Все 420 фрагментов разбиваются на 6 групп по 70 фрагментов. В каждый подканал включается по одному фрагменту из каждой группы в соответ ствии с уравнением:
Tile (n, s) = 70n + {P[(n + s) mod 70] + UL_IDcell} mod 70, (8)
где Tile(n, s) - фрагмент n подканала s, n = [0…5], s = [0…69].
P(x) - перестановочная последовательность,
UL_IDcell - переменная в диапазоне 0-69, задаваемая БС на МАС-уровне.
В результате каждому подканалу в каждом символе назначается свой набор несущих.
После распределения по подканалам происходит нумерация информационных несущих в каждом слоте - всего их в трех символах 48. Информационные частоты в подканале нумеруются начиная с наименьшей несущей фрагмента с наименьшим индексом - сначала в первом символе, затем во втором и третьем. Затем информационные несущие в каждом слоте перенумеровываются в соответствии с формулой:
subcarrier (n, s) = (n + 13s) mod 48, (9)
где s - номер подканала, n = [0…47] (т.е. происходит циклический сдвиг нумерации информационных несущих на 13s в каждом подканале s).
Отметим, что в тексте документа IEEE 802.16 происходит подмена терминов: подканалом в восходящем субкадре авторы текста IEEE 802.16 называют именно слот, информационную структуру размером 24 несущих на 3 символа. И когда в документе - английским по белому - написано, что в субканале 48 информационных несущих, следует помнить, что с точки зрения правильной терминологии речь идет не о субканале, а о слоте. Реальных несущих (т.е. физических частот) в субканале всего 24. Умножая их на 3 (число OFDMA-символов в слоте) и вычитая 24 пилотные несущие, как раз и получим 48 информационных несущих.
Опционально в восходящем канале предусмотрен режим, в котором во фрагменте одна пилотная частота (рисунок 16), 6 фрагментов на подканал, всего 96 подканалов (1728 используемых частот).
Механизмы запроса начальной инициализации в сети и первичного запроса полосы пропускания в режиме OFDMA схожи - и принципиально отличаются от других режимов. Для этих запросов в OFDMA используется специально выделенный канал. Он назначается БС и состоит из шести последовательных подканалов, индексы которых приведены в UL-MAP. Запрос представляет собой 144-разрядный CDMA-код, передаваемый посредством BPSK, т.е. 1 бит на несущую в одном символе. В результате для передачи такого кода достаточно 6 подканалов (24 информационных несущих в каждом). Сам код формируется в генераторе ПСП - 15-разрядном сдвиговом регистре с задающим полиномом 1 + X1 + X4 + X7 + X15. Старшие 6 разрядов вектора инициализации генератора ПСП равны переменной UL_IDcell, остальные 9 - константа. Номер кода определяется начальной точкой (т.е. числом тактов генератора ПСП после инициализации) - всего предусмотрено 256 кодов. Причем БС использует только часть из всех возможных кодов - сначала N кодов начальной инициализации, за ними следуют M кодов периодического определения параметров АС, далее L кодов запроса полосы. Для каждой БС задается точка начала этой последовательности (N + M + L).
Рисунок 16 - Структура “фрагмента” восходящего канала в опциальном режиме
Начальная инициализация происходит так: АС, приняв дескриптор восходящего канала и UL-MAP, определяет набор CDMA-кодов и посылает в отведенном интервале случайно выбранный код из группы возможных. Один и тот же код транслируется в двух последовательных OFDMA-символах. Если длительность интервала конкурентного доступа составляет более одного слота, АС может отправить CDMA-код в четырех последовательных символах, причем коды должны быть смежными (т.е. последовательными фрагментами ПСП).
Успешно приняв и распознав CDMA-код (а этого может и не произойти, поскольку в интервале конкурентного доступа возможны коллизии при одновременной работе передатчиков нескольких АС), базовая станция не знает, от какой АС пришел запрос. Поэтому в ответ в UL-MAP следующего кадра она указывает номер принятого CDMA-кода, субканал и символ, в котором код был отправлен. Так АС определяет, что именно ее запрос принят, и понимает, что следующее за этим широковещательное сообщение с указанием диапазона запроса (номера символа, подканала и длительности) предназначено именно ей. В этом сообщении БС передает необходимые параметры для процесса инициализации в сети (включая идентификатор соединения CID, присвоенный МАС-адрес, набор физических параметров и др.). Далее в указанный в UL-MAP интервал АС приступает к штатной процедуре регистрации в сети.
Первичный запрос полосы в методе OFDMA может происходить двумя способами: посредством заголовков запроса полосы, как и в остальных режимах, и путем посылки CDMA-кода запроса полосы в интервале конкурентного доступа. Посылка кода запроса полосы (равно как и кода периодического измерения параметров) происходит в одном OFDMA-символе. Возможна и посылка трех последовательных кодов в трех символах (какой из вариантов необходимо использовать, указывается в UL-MAP). Приняв CDMA-код, БС в UL-MAP повторяет его номер и параметры, а также сообщает интервал для отправки заголовка запроса полосы - уже обычным способом.
3.4 Поддержка адаптивных антенных систем
Важнейшая особенность стандарта IEEE 802.16, принципиально отличающая его, скажем, от стандартов IEEE 802.11 a/b/g, - это наличие встроенных средств поддержки адаптивных антенных систем (AAS). Разумеется, применение AAS - это не обязательное требование стандарта. AAS - это системы с секторными направленными антеннами (метод формирования диаграмм направленности антенн в стандарте не оговаривается), т.е. антенные системы с несколькими антенными элементами. Применение AAS существенно увеличивает потенциальную емкость сети стандарта IEEE 802.16, поскольку в разных секторах БС возможна работа в одних и тех же каналах (частотных и OFDMA). Кроме того, направленные антенны позволяют существенно уменьшать общую излучаемую мощность. В результате снижается и межканальная интерференция. Не менее важно применение многоэлементных антенных систем для улучшения прохождения сигналов в каналах с замираниями - так называемых методов пространственно-временного кодирования (разнесения) STC.
Поддержка ASS в спецификации IEEE 802.16 означает модификацию протоколов на физическом и МАС-уровнях, наличие специальных управляющих и контролирующих сообщений для работы с адаптивными антеннами.
Рисунок 17 - Структура кадров с зоной ААS.
Стандарт допускает в рамках одного кадра транслировать как ненаправленный, так и направленный (посредством AAS) трафик (рис.6). Для разграничения зон не-AAS и AAS-трафика используются специальные сообщения. Принцип применения AAS в режимах OFDM и OFDMA (равно как и в SCa) достаточно схож. Наиболее полно он описан в стандарте для случая OFDMA [3], поэтому остановимся именно на нем.
Механизм Diversity-Map Scan. В режиме OFDMA предусмотрено два метода работы с AAS - с распределенными несущими в подканале (FUSC, PUSC) и с последовательными несущими (AMC). Каждый из методов в начале AAS-зоны предусматривает передачу OFDMA-символа преамбулы AAS-зоны и заголовка с префиксом AAS-зоны. Для передачи этих сообщений в AAS-зоне нисходящего субкадра выделены специальные подканалы (два старших для FUSC/PUSC и четвертый с начала и четвертый с конца подканалы в AMC). Сообщения в этих подканалах могут повторяться несколько раз - с тем, что если используется не широковещательная трансляция, а передача с переключением лучей, сообщения с префиксом дошли бы до всех АС. В префиксе указывается код луча антенны, тип и размеры преамбулы ASS-зоны (в восходящем и нисходящем каналах), область для начальной инициализации / запросов полосы, а также области в кадре для каждого AAS-соединения. Префикс, как и в штатном режиме, передается посредством QPSK со скоростью кодирования 1/2 и двухкратным повтором (в пределах одного символа). Основное назначение префикса - сообщить АС о том, как будут переданы карты DL/UL-каналов для разделенных по направлениям лучей групп пользователей (очевидно, что распределение канальных ресурсов может происходить независимо в каждом луче).
Для работы в режиме АМС-AAS кадры могут объединяться в суперкадр длительностью не менее 20 обычных кадров. В суперкадр входит по крайней мере один широковещательный кадр, содержащий дескрипторы и карты DL/UL-каналов. Смысл такого объединения - обеспечить минимум управляющих сообщений для группы кадров.
Перечисленные методы работы с AAS используют так называемый механизм Diversity-Map Scan - сканирование (абонентскими станциями) разнесенных карт распределения канальных ресурсов. В режиме OFDMA предусмотрен и другой способ работы с AAS - метод прямой сигнализации (Direct Signaling Method).
Метод Direct Signaling использует механизм последовательного распределения несущих AMС. Его особенность - в каждом кадре в AAS-зоне выделяется от одного до четырех каналов доступа /распределения ресурсов (BWAA - bandwidth allocation/access). Каждый BWAA-канал состоит из двух субканалов, расположенных в верхней и нижней частях диапазона симметрично относительно центральной частоты (если BWAA-канал один, то он включает самый верхний и самый нижний подканалы). В этом канале передаются префикс нисходящего субкадра (для режима Direct Signaling Method), карты UL-MAP и DL-MAP для каждой из пространственно разделенных АС или групп АС. Благодаря точной пространственной настройке AAS данный метод позволяет в одном кадре передавать сообщения множеству пользователей.
В методе прямой сигнализации предусмотрены четыре специальных кодовых сообщения - обучения обратного соединения RLT (reverse link training), доступа в обратном соединении RLA (reverse link access), обучения прямого соединения FLT (forward link training) и инициирования прямого соединения FLI (forward link initiation). Первые два сообщения использует АС, вторые два - БС. Для начальной инициализации или запроса полосы АС посылает сообщение RLA в канале BWAA. Оно предшествует сообщениям запроса полосы или начального доступа и используется БС для точной настройки своей антенной системы на данную АС. В ответ БС передает сообщение FLI - уникальный код для каждой АС (БС может сама инициировать соединение, послав FLI). FLI транслируется в подканале, выделенном для данной АС. Каждая абонентская станция сканирует все подканалы и, обнаружив по кодовой последовательности адресованное ей сообщение начальной инициализации, отправляет в ответ в том же самом канале (в отведенном для нее временном интервале) последовательность RLT, предназначенную для точной настройки антенн БС на АС в данном подканале. В результате, выполнив все необходимые подстройки, БС и АС устанавливают соединение, в течение которого происходит обмен данными. Причем пакетам данных предшествуют тренировочные последовательности FLT (со стороны БС) и RLT (со стороны АС).
4. УСЛУГИ И АРХИТЕКТУРА СЕТЕЙ Mobile WiMAX
4.1 Услуги сетей технологии Mobile WiMAX.
Сети WiMAX предназначены для предоставления сервисов как неподвижным, так и подвижным пользователям. WiMAX поддерживает следующие виды мобильности:
1) фиксированный (fixed). В этом случае с оператором согласовывается положение пользователя, в котором он получает обслуживание, н-р, конкретная сота. Для этого хорошо подходят пользовательские терминалы с закрепленной снаружи здания антенной, направленной на базовую станцию.
2) блуждающий (nomadic), т.е. с изменяемым местоположением. Пользователь имеет возможность подключиться к сети оператора из любого места, где оператор предоставляет покрытие. В течение одной сессии пользователь должен быть неподвижен.
3) передвижной (portable). Пользователь имеет возможность передвигаться со скоростью до 5 км/ч без потери установленной сессии, в том числе (опциональная возможность сети) переходить из одной соты в другую (handover). Во время handover допускаются перерывы в передаче данных (вплоть до значения, максимального для обслуживания текущей TCP/IP сессии), до 2 с. Допускаются потери данных во время handover, заданное качество обслуживания, QoS, восстанавливается только после завершения handover.
4) ограниченная мобильность (simple mobility). Пользователь может передвигаться, в том числе переходить из соты в соту, со скоростью до 60 км/ч без ухудшения качества обслуживания, и до 120 км/ч с допускаемым постепенным ухудшением качества обслуживания. Для приложений нереального (non-real time) времени (работа с e-mail, c Интернет, просмотр видео с буферизацией данных, передача файлов по FTP, IPsec/VPN) качество обслуживания гарантируется. Время handover не должно превышать 1 с при переключении между IP подсетями и 150 мс в пределах одной подсети, время прерывания передачи данных не превышает 150 мс. Обязательна поддержка ждущего (idle), спящего (sleeping) режимов работы пользовательских терминалов, а также вызовов пользователя (paging), см. соответствующие разделы.
5) полная мобильность (full mobility). Пользователь может передвигаться, в том числе переходить из соты в соту, со скоростью до 120 км/ч без ухудшения качества обслуживания. Гарантируется качество обслуживания для приложений реального времени (VoIP, видео-телефония, просмотр видео без буферизации) и нереального времени (см. ограниченная мобильность). Время handover не превышает 50 мс, время прерывания передачи данных не более 5 мс (или не более длительности одного кадра).
4.2 Принципы построения сетей WiMAX
Существуют следующие принципы построения сетей WiMAX (Release 1 version 4):
1) WiMAX основан на стандарте 802.16
2) архитектура сети WIMAX включает в себя 2 глобальные части: ASN - подсеть доступа, CSN - подсеть, обеспечивающая подключение к сетям IP, см. далее. Поддержка стандарта 802.16 полностью реализована в ASN. Обычно подсетью CSN владеет провайдер IP услуг, NSP - Network Server Provider, подсетью ASN - провайдер радиодоступа, NAP - Network Access Provider. NSP и NAP могут являться одним провайдером.
3) одна подсеть доступа, ASN, может использоваться несколькими провайдерами услуг (NSP), т.е. к одному ASN могут быть подключены несколько CSN, а также один провайдер IP услуг, NSP, может использовать несколько разных подсетей доступа, т.е. к одному CSN может быть подключено несколько ASN.
4) в архитектуре определены стандартные интерфейсы (опорные точки, Reference Points), см. далее, в частности между MS, ASN, CSN для обеспечения работоспособности при использовании оборудования разных производителей.
5) сеть должна подерживать мобильную телефонию на основе VoIP, мультимедийные услуги, а также обязательные функции, определяемые регулятором, такие как экстренный вызов, легальное прослушивание и т.д.
6) сеть должна предоставлять пользователю услуги в соответствие с согласованным уровнем сервиса (SLA), поддерживать, если требуется, одновременно несколько голосовых сессий для одного пользователя, одновременную передачу голоса и данных, приоритезацию экстренных вызовов.
7) сеть должна быть способна взаимодействовать с шлюзами, обеспечивающими существующие услуги, основанные на IP: SMS over IP, MMS, WAP и другие;
8) сеть должна поддерживать широковещательные (broadcast) и многоабонентские (multicast) услуги;
9) сеть должна поддерживать взаимную аутентификацию MS и сети, как определено в стандарте 802.16;
10) сеть должна поддерживать аутентификацию пользователя с помощью логина/пароля, SIM, USIM, RUIM;
11) сеть должна поддерживать конфиденциальность (confidentiality) и целостность (integrity) передаваемых данных с помощью функций, реализованных в ASN;
12) сеть должна поддерживать установление/удаление VPN (Virtual Private Network), инициированное MS
13) сеть не должна препятствовать переключению (handover) мультистандартной MS на сеть другой технологии -- Wi-Fi, 3GPP, 3GPP2, DSL;
14) сеть должна поддерживать мобильность IPv4 или IPv6;
15) сеть не должна препятствовать роумингу между провайдерами услуг (NSP). Сеть должна позволять провайдеру доступа (NAP) обслуживать MS, использующие различные доменные имена, (обслуживаемые разными провайдерами услуг) ;
16) сеть должна поддерживать бесшовный handover при скоростях движения транспорта;
17) сеть должна поддерживать разные уровни качества обслуживания QoS;
18) сеть должна поддерживать взаимодействие с другими беспроводными (3GPP, 3GPP2) или проводными (DSL) сетями. Интерфейс, используемый для такого взаимодействия, должен быть основан на протоколах IETF и IEEE;
19) сеть должна поддерживать роуминг с другими операторами WiMAX
20) сеть должна поддерживать изменение параметров и обновление ПО абонентских устройств через радиоинтерфейс Over-the-Air (OTA) ;
21) архитектура сети должна обеспечивать взаимную работоспособность устройств разных производителей;
внутри ASN (BS и транспортной сетью), между разными ASN, а также разными элементами ASN и CSN;
22) архитектура сети должна поддерживать следующие виды CS (из перечня CS, определенного в 802.16).
Укрупненно WiMAX сеть состоит из следующих логических объектов:
1) SS (Subscriber Station) ;
2) ASN (Access Service Network) ;
3) CSN (Connectivity Service Network) .
Каждый объект может быть реализован в одном физическом модуле (н-р, SS) или в нескольких (ASN, CSN).
Несколько CSN могут быть подключены к одному ASN, и наоборот; несколько ASN могут быть подключены к одному CSN. ASN и CSN могут принадлежать одному оператору или разным:
Архитектура сети, согласно WiMAX, показана на рисунке 17:
Рисунок 17 - Архитектура сети WiMAX.
Рисунок 18 - Компоненты архитектура сети WiMAX.
Оператор может владеть WiMAX сетью полностью или частично. Оператор, предоставляющий радио-доступ, называется NAP -- Network Access Provider. Ему может принадлежать один или несколько ASN. Оператор, предоставляющий сервисы сети (доступ в Интернет, передачу голоса, доступ к определенному контенту) называется NSP -- Network Service Provider, ему могут принадлежать один или несколько CSN.
Более подробно архитектура сети показана на рисунке 19:
Рисунок 19 - Элементы сети WiMAX.
User terminal или Mobile Station, MS, или Subscriber Station, SS - устройство, обеспечивающее соединение между оборудованием пользователя (н-р, компьютером) и сетью. MS может представлять собой CPE, Customer Premises Equipment, обеспечивающее подключение к сети нескольких компьютеров.
Base Station, BS, базовая станция - логический элемент сети, выполняющий обработку физического и МАС уровней по стандарту 802.16. BS представляет один сектор с одной частотой. BS может подключаться к нескольким ASN GW для обеспечения резервирования и/или балансировки нагрузки. Одно физическое изделие может включать в себя несколько BS (логических объектов).
ASN-GW, шлюз радиоподсети - логический элемент сети, выполняющий агрегирование (объединение) сигнальных функций, а также, если необходимо, маршрутизацию потоков данных пользователей. ASN-GW может быть связан с другими ASN-GW для обеспечения резервирования и балансировки нагрузки.
AAA server, Authentication, Authorisation, Accounting, - устройство (сервер), выполняющий процедуры:
- аутентификации пользователя, т.е. проверки его подлинности и возможности доступа в сеть
- авторизации - выделение ему ресурсов сети в соответствии с услугами, на которые он подписан
- аккаунта - подсчет потребленных пользователем ресурсов (кол-во времени или размер переданных данных) для формирования счета за пользование сетью.
MIP HA - Mobile IP Home Agent. Применяется для поддержки мобильности, заанкерной в CSN, см. гл. «Обеспечение мобильности». Он же обычно является edge-роутером - роутером-шлюзом, расположенном на границе WiMAX сети и внешних сетей.
IMS, Content services, Billing Support System (BSS), Operator Support System (OSS) - стандартные системы, не являющиеся специфичными для WiMAX, предоставляют вспомогательные функции оператору.
Роуминг - это возможность предоставления абоненту сервисов при его нахождении в чужой сети (в visited network). Абонент может пользоваться теми услугами, которые определены соглашением между домашней (home network) и чужой сетью. Основным достоинством роуминга является бОльшая зона предоставления услуг при наличии единого счета на оплату.
Основные характеристики SI3000 Light ASN:
- Инфраструктура с наименьшими затратами, базирующаяся на коммерческих маршрутизаторах
- Доступны услуги мобильной связи
- Доступны услуги стационарной связи
- Совместимость с будущими решениямислужит гарантией защиты инвестиций
- Взаимодействие SI3000 ASN-GW
4.3 Решения WiMAX с усовершенствованными функциями и рабочими характеристиками.
Рисунок 20 - Архитектура сети WiMAX с усовершенствованными функциями
Эффективные решения WiMAX с усовершенствованными функциями и рабочими характеристиками
Для достижения более высокого энергетического потенциала линий связи (link budget), уменьшения затухания сигналов и лучшего покрытия микро-спотов (micro-spot), могут быть использованы различные технологии разнесения.
Примечание: Iskratel поддерживает обе технологии: STC/MRC в настоящее время и MIMO с ее платформами 16e. Прибыльная бизнес-модель WiMAX с более высоким покрытием пользователей, удовлетворенностью пользователей и улучшающая энергетические потенциалы линий связи (link budget) WiMAX может быть достигнута при использовании передовых антенных технологий (MIMO и AAS): MIMO A/B & STC: Эффект MIMO A/B заключается в ее способности переключаться между MIMO A и MIMO B.
Вариант MIMO A с одной принимающей антенной известен также как режим STC (Space Time Coding - прием с пространственно-временным кодированием) и особенно пригоден в условиях NLOS.
ААS - адаптивные антенные системы: в AAS используется несколько антенн для динамического формирования направленного луча. Этот луч контролируется базовой станцией (BS) для направления его к абонентской станции (SS), с которой она (BS) осуществляет коммуникацию. Системы AAS особенно годятся для использования в сценариях
с ограниченными интерференциями и могут обеспечить значительные выгоды в среде с прямой видимостью (LOS). Системы Iskratel по умолчанию поддерживают MIMO A/B & STC, а системы AAS будут добавляться там, где это будет технически и коммерчески выгодно.
Рисунок 21 - Общий вид развертывание технологии WiMAX в Егорьевском районе.
Решением SI3000 Light ASN предусматривается простой сетевой дизайн и использование «commodity» элементов (т.е. однородных элементов, элементов массовой продукции с одинаковыми свойствами) для установления мобильных соединений на сети провайдера услуг. Результатом этого является наличие механизма хэндовера и продолжения IP-сеанса, обеспечивающего хэндовер не в реальном масштабе времени для фиксированной WiMAX сети и хэндовер операторского класса для мобильной WiMAX сети. Решение SI3000 Light ASN поддерживает также стандартные сетевые элементы, находящиеся за пределами ASN. Помимо этого, возможна миграция типа SI3000 ASN - GW Mobile WiMAX. Когда рынок и технология пересекутся, вы уже будете готовы предложить полную поддержку роуминга и взаимодействия с широким диапазоном приложений CSN.
Рисунок 22 - Физическое соединение сети WiMAX.
Light ASN от Iskratel можете предложить:
- мобильные услуги со значительно меньшими затратами на инфраструктуру.
- SI3000 Light ASN - новая сетевая архитектура
- В решении SI3000 Light ASN используется новая сетевая архитектура (New Network Architecture), представляющая собой уникальную структуру, позволяющую использовать недорогие и однородные (commoditized) сетевые элементы для создания управляемых, мобильных, насыщенных мультимедийными услугами сетей.
Новая сетевая архитектура SI3000 Light ASN, основанная на простой иерархии со сконфигурированными однородными (commodity) сетевыми элементами, обеспечивает структуру между базовой сетью CSN и радиосетью WiMAX.
Рисунок 23 - Логические соединения сети WiMAX.
Преимущества новой сетевой архитектуры:
- Уникальная и новаторская архитектура;
- Развертывание однородных (commodity) элементов (коммутатор, маршрутизатор) с небольшими затратами;
- Достаточен WiMAX SS/SSM; отсутствие MobileIP стека на SSM;
- «Подрывное» воздействие (disruptive impact);
- Обеспечивается механизм хэндовера и продолжения IP-сеанса;
- Обеспечивает возможность управления QoS для доставки услуг Triple Play.
5. РАЗРАБОТКА СЕТИ WiMAX ДЛЯ РЕАЛИЗАЦИИ УСЛУГИ ШИРОКОПОЛОСНОГО ДОСТУПА В ИНТЕРНЕТ
5.1 Выбор характеристик радиоинтерфейса
Базовая станция WiMAX представляет собой модульное решение, которое может по мере необходимости дополняться различными блоками, например, модулями для связи с магистральной сетью провайдера. В минимальной конфигурации устанавливается модуль радиоинтерфейса и модуль соединения с проводной сетью.
При выборе оборудования WiMAX кроме его технических характеристик и цены важное и зачастую определяющее значение представляет такой фактор, как специфические для России трудности оформления частотных разрешений. Дело в том, что в России практически не существует «безлицензионных» диапазонов. Для разных типов оборудования предусмотрен различный порядок получения частотных разрешений. Для работы в любых диапазонах операторы связи должны получить достаточно сложные и многоуровневые разрешения как частотных служб, так и служб надзора за связью [5].
Очевидно, что в нашей стране главным фактором, влияющим на скорость внедрения систем WiMAX, являются вопросы регулирования спектра, так как развитие рынка услуг WiMAX напрямую зависит от выделения операторам необходимого частотного ресурса. Сегодня наиболее перспективными с точки зрения будущего развития технологии WiMAX являются диапазоны в районе 2,4, 3,5 и 5,6 ГГц.
Следует учитывать, что распространение радиоволн в различных участках спектра имеет свои особенности, которые во многом определяют дальность действия оборудования, а также устойчивость к многолучевости.
Оборудование должно производиться специализированной компанией, имеющий опыт разработки и производства беспроводного оборудования, что является некоторой гарантией качества.
Технические характеристики оборудования, предоставляемые производителем, должны быть достаточно полными, для того чтобы по ним можно было сделать вывод о его возможностях. Представление таких характеристик говорит о профессионализме сотрудников и в определенной мере гарантирует, что речь идет об оригинальном продукте, а не о перепродаже малоизвестного бренда под торговой маркой продавца.
Желательно, чтобы базовая станция имела возможность секторирования и поэтапного наращивания производительности, для чего она должна иметь возможность подключения внешней антенны. Тогда на первом этапе достаточно одной базовой станции с всенаправленной антенной, на следующем -- двух, с антеннами с шириной диаграммы 180°, и так далее.
Оборудование должно быть сертифицировано.
Должна быть возможность получения разрешения на использование частот в диапазонах, используемых оборудованием.
Система должна обладать приемлемой стоимостью, причем в первую очередь важна минимальная стоимость абонентского оборудования.
Принцип действия Mobile WiMAX идентичен сетям сотовой связи: несколько рядом расположенных базовых станций Mobile WiMAX образуют соту, соты объеденяются между собой и обеспечивают непрерывное покрытие целого города. Оборудование Mobile WiMAX обеспечивает большую скорость передачи данных, по сравнению с сотовыми сетями, и сравнима со скоростью доступа в проводных сетях. Основные характеристики WiMAX устройства:
Технические характеристики WiMax:
· Дальность действия: до 50 км;
· Максимальная скорость передачи данных: до 70 Мбит/с на сектор одной базовой станции;
· Рабочая частота: 2-11 ГГц;
· Спектральная эффективность: до 5 бит/сек/Гц;
· Покрытие: расширенные возможности работы вне прямой видимости значительно улучшают качество покрытия обслуживаемой зоны;
· Скорость доступа в интернет в пределах сектора базовой станции на клиентских устройствах - до 10 Мбит/c;
· Зона действия одного сектора базовой станции в условиях плотной застройки - от 800 до 1500 метров;
· Мобильность: мгновенное переключение клиентского Mobile WiMAX оборудования между базовыми станциями на скорости движения до 120 км/ч.
5.2 Расчет частотных каналов
Общее число частотных каналов, выделенных для развертки сотовой сети связи в данном месте, определяется по формуле
, (10)
где int(x) - целая часть числа х;
Fk - полоса частот, занятая одним частотным каналом системы (частотный разнос между каналами).
5.3 Определения размерности кластера
Для определения необходимой размерности кластера С при заданных значениях p0 и pt используют соотношение
, (11)
где p(C) - процент времени, в течение которого соотношения мощность сигнала/ мощность помехи на входе приемника MS будет находиться ниже защитного отношения .
Интеграл представляет собой табулированную Q-функцию:
. (12)
Нижний придел этого интервала имеет вид:
, (13)
где и выражены в дБ;
- определяется соотношением
. (14)
В свою очередь значения и определяются по формулам
, (15)
, (17)
- параметр, который определяет диапазон случайных флуктуаций уровня сигнала в точке приема:
. (18)
Коэффициент в (17) представляет собой медианное значение затухания радиоволн на i-му направлении увеличении помехи. Эти коэффициенты обратно пропорциональны четверти ступени расстояния до источника помехи. Величина М обозначает число базовых станций, которые «мешают», расположенных в соседних кластерах.
Сначала рассмотрим случай, для всенаправленной антенны, где
, , и , , ;
где - число секторов.
Выберем значение С=3.
, (19)
Определим
Вычислив квадратный корень, из получившегося значение получаем
Отсюда следует
Теперь вычислим нижнюю границу Q-функции:
Этому значению в таблице соответствует величина, равная , это значение приблизительно равно единице. Считая по формуле (3.2), получаем
Получившееся значение явно больше , которое из задания равно 10. Отсюда следует, что данный тип антенны и выбранное значение кластера не подходит для указанного стандарта.
Теперь рассмотрим случай для направленной антенны, у которой угол диаграммы направленности , , М=2 и , .
Выберем значение С=4.
Определим
Вычислив квадратный корень из получившегося значение получаем
Отсюда следует:
Теперь вычислим нижнюю границу Q-функции:
Этому значению в таблице соответствует величина, равная 0,0838. Считая по формуле (3.2), получаем
Получившееся значение немного меньше , отсюда вытекает, что данный тип антенны является наиболее оптимальным.
5.4 Расчет частотных каналов, которые используются для обслуживания абонентов БС
Число частотных каналов, которые используются для обслуживания абонентов в одном секторе, определяется по формуле:
(20)
где - число секторов.
5.5 Расчет допустимой нагрузки БС
Величина допустимой нагрузки в одном секторе определяется соотношением:
(21)
при условии, что
, (22)
где ;
- число абонентов, которые могут одновременно использовать один частотный радиоканал. В данном случае величина =1, т.к. используется аналоговый стандарт.
Подкоренное выражение больше, чем величина , т.к. .
5.6 Расчет числа абонентов, обслуживающихся одной БС
При заданной активности одного абонента в час наибольшей нагрузки можно рассчитать число абонентов, которые обслуживаются одной БС по формуле
(23)
5.7 Расчет количества БС
Необходимое число базовых станций на заданной территории обслуживания определяется соотношением:
, (24)
где - заданное число абонентов, которых обслуживает сотовая сеть связи.
5.8 Расчет радиуса зоны обслуживания БС
Величину радиуса можно определить, используя выражение
(25)
км
6. ПРОВЕРОЧНЫЙ РАСЧЕТ ПОМЕХОУСТОЙЧИВОСТИ ДЛЯ ОБЕСПЕЧЕНИЯ РАБОТЫ СЕТИ
6.1 Расчет величины защитного расстояния
Величина защитного расстояния между BTS с одинаковыми частотными каналами определяется соотношением
(26)
6.2 Расчет уровня сигнала на входе приемника
Необходимую мощность на входе приемника при и определяют, пользуясь так называемым первым уравнением передачи.
(27)
где - коэффициент усиления антенны базовой станции, дБ;
f - средняя частота выделенного диапазона частот;
- мощность передатчика BTS, дБВт;
- потери в фидере BTS, дБ;
- длинна фидера, которая может быть равной или больше высоты подвеса антенны BTS;
- погонное ослабление фидера, дБ/м.
6.3 Расчет вероятности ошибки
Для определения вероятности ошибки, когда MS находится на границе зоны обслуживания BTS, необходимо использовать соотношение
(28)
6.4 Расчет эффективности использования радиоспектра
Важным параметром сотовой сети связи является эффективность использования радиоспектра , обусловленная числом активных абонентов на 1 МГц полосы частот на передачу (или прием) BTS, то есть
(29)
где полоса частот на передачу (или прием) , число активных абонентов .
(30)
где - радиус территории, которая обслуживается, .
Отсюда
(31)
.
7. ВЫБОР ОБОРУДОВАНИЯ БАЗОВЫХ АБОНЕНТСКИХ СТАНЦИЙ
Функционально оборудование WiMAX разделяется на базовое и абонентское. Первое поколение чипов для базовых станций обладает меньшим уровнем интеграции, чем для абонентских станций. Для реализации MAC-протокола базовой станции требуется увеличение производительности этих решений. Для этой цели используются внешние процессоры, служащие для выполнения верхнего уровня MAC-протокола. Таким образом, чипсеты WiMAX реализуют функции физического уровня и функции нижнего уровня MAC-протокола.
7.1 Выбор оборудования абонентских станций
Для разработчиков абонентского оборудования WiMAX наиболее перспективными являются «системы на кристалле» от четырех производителей: Fujitsu, Intel, Sequans и Wavesat.
Компания Intel первой предложила разработчикам «систему на кристалле» PRO/Wireless 5116 для абонентских станций WiMAX, в которой были интегрированы функции как физического, так и MAC уровней. Чип MB87M3400 компании Fujitsu предназначен для более широкого диапазона приложений и позволяет разрабатывать как базовое, так и абонентское оборудование. Компания Sequans разработала отдельные чипы SQN1010 и SQN2010 -- для базового и абонентского оборудования соответственно.
«Системы на кристалле» от Fujitsu, Intel и Sequans полностью реализуют функции MAC-протокола для абонентских станций WiMAX. Другой подход к разработке предложила компания Wavesat, выпустив две микросхемы: OFDM-модем DM256 (реализует функции физического уровня) и MC336 (представляет собой вычислительное ядро, реализующее нижний уровень MAC-протокола). Для разработки абонентского модема на базе «системы на кристалле» от Fujitsu, Intel и Sequans не требуется дополнительного внешнего процессора.
Характеристики рассматриваемых чипов, определяемые типом дуплекса, шириной канала и другими параметрами, сильно отличаются. Для организации полнодуплексной работы на базе решения Fujitsu MB87M3400 требуется использование двух чипов. Микросхема Sequans SQN1010 является первой «системой на кристалле», которая поддерживает полнодуплексный режим работы. Решение компании Wavesat DM256/MC336 также позволяет организовывать полнодуплексный режим работы на основе одной микросхемы OFDM-модема DM256.
Микросхемы компаний Fujitsu и Sequans позволяют организовывать каналы шириной до 20 и 28 МГц соответственно, тогда как максимальная ширина канала для чипов Intel и Wavesat составляет 10 МГц с промежуточными значениями 3,5 и 7 МГц.
Радиоинтерфейс рассмотренных «систем на кристалле» содержит блоки АЦП/ЦАП для прямого аналогового соединения с внешним приемопередатчиком. В табл. 2 представлены основные параметры решений для разработки абонентского оборудования WiMAX [6].
Таблица 6. Основные параметры решений для разработки абонентского оборудования WiMAX.
Параметр |
Fujitsu MB87 |
Intel PRO/Wireless 5116 |
Sequans SQN1010 |
Wavesat DM256/MC336 |
|
Функции |
PHY/MAC |
PHY/MAC |
PHY/MAC |
PHY/MAC |
|
Максимальная ширина канала |
20 МГц |
10 МГц |
28 МГц |
10 МГц |
|
Режим дуплекса |
H-FDD, TDD, FDD (2 чипа) |
H-FDD, TDD |
H-FDD, TDD, FDD |
H-FDD, TDD, FDD |
|
Системный интерфейс |
Mill, 32-bit generic |
Mll |
RMLL, PCI |
PCI |
7.2 Выбор оборудования базовых станций
Рассмотрим варианты разработки базовых станций WiMAX на основе известных чипов. Компания Fujitsu разработала чип MB87M3400 как для базовых, так и для абонентских станций. Однако, в отличие от решения Intel, чип Fujitsu имеет интерфейс для внешнего процессора. Для реализации полнодуплексного режима требуется использовать два чипа, один из которых выполняет функции физического уровня и нижнего уровня MAC-протокола, а второй представляет собой внешний процессор (сторонней фирмы) для реализации верхнего уровня MAC-протокола. Для разработки базовых станций компания Fujitsu предоставляет отладочный комплект, реализующий полнодуплексный режим работы, с процессором Freescale MPC8560, но не поставляет программное обеспечение, обеспечивающее функции верхнего уровня MAC-протокола.
Компания PicoChip предлагает решение PC102/PC8520, построенное на двух своих параллельных процессорах PC102. Компания предоставляет программное обеспечение, реализующее физический уровень и функции нижнего уровня MAC-протокола на чипах PC102. Так же как и Fujitsu, компания PicoChip использует процессор Freescale MPC8565 для реализации верхнего уровня MAC-протокола в своем отладочном комплекте. Однако в отличие от Fujitsu, PicoChip лицензировала свое программное обеспечение для верхнего уровня MAC-протокола. Так как в решение PC102/PC8520 не заложены функции шифрования-дешифрования, для их выполнения должен быть использован внешний процессор.
Чип для разработки базовых станций SQN2010 компании Sequans является первой «системой на кристалле», имеющей полнодуплексный режим. SQN2010 реализует все функции физического и MAC уровней, необходимые для полнодуплексной работы базовой станции. Чип SQN2010 отличается от SQN1010 наличием второго центрального процессора, реализующего верхний уровень MAC-протокола. На чипе SQN1010 предусмотрен интерфейс PCI для обеспечения возможности подключения внешнего процессора.
Решение DM256/MC336 компании Wavesat может быть использовано и для разработки базовых станций. Это решение поддерживает полнодуплексный режим работы, но следует отметить, что для реализации функций шифрования-дешифрования оно требует подключения внешнего процессора. Так же как и Fujitsu, Wavesat не предоставляет программное обеспечение для верхнего уровня MAC-протокола, необходимое для разработки базовых станций.
Из четырех описанных решений только чипы PicoChip PC102 не интегрируют в себе функций АЦП/ЦАП. Поэтому для разработок, в которых используется аналоговый радиоинтерфейс, дополнительно потребуются устройства АЦП/ЦАП. Основные параметры рассмотренных решений для разработки базовых станций представлены в табл. 3 [6].
Таблица 7. Основные параметры рассмотренных решений для разработки базовых станций WiMAX.
Параметр |
Fujitsu MB87 |
PicoChip PC102/PC8520 |
Sequans SQN2010 |
Wavesat DM256/MC336 |
|
Функции |
PHY/MAC |
PHY/MAC |
PHY/MAC |
PHY/MAC |
|
Максимальная ширина канала |
20 МГц |
10 МГц |
28 МГц |
10 МГц |
|
Колличество чипов TDD FDD |
1 чип 1 чип |
2 чипа 2 чипа |
1 чип 1 чип |
1 чип 1 чип |
|
Системный интерфейс |
Mill, 32-bit generic |
Mll |
RMLL, PCI |
PCI |
|
Радиоинтерфейс |
Аналоговый и цифровой |
цифровой |
Аналоговый и цифровой |
Аналоговый и цифровой |
Выбор производителя чипов для разработки систем WiMAX является важным стратегическим решением. Для быстрой и эффективной разработки системы требуется максимально полная программная и аппаратная поддержка и средства для разработки и отладки. Наличие отладочных комплектов позволяет значительно увеличить скорость и уменьшить стоимость разработки оборудования WiMAX, что является одним из главных критериев при выборе того или иного продукта.
Развертывание систем WiMAX:
Построение сети фиксированного беспроводного доступа предполагает использование трех типов оборудования -- базовых станций, абонентских станций и оборудования для организации связи между базовыми станциями.
Для того чтобы два и более радиосигнала не мешали работе друг друга, необходимо, чтобы они совпадали (пересекались) по частоте (частотному спектру), времени и в пространстве. Тем самым, каждая система для своего нормального функционирования должна иметь частотно-территориальный разнос (ЧТР) с мешающим сигналом (интерференцией). Кроме того, поскольку мы имеем дело с цифровыми системами, радиосигналы в которых имеют форму импульса, то условие совпадения по времени означает совпадение или наложение по времени импульсов сигналов, приходящих в систему. Тем самым, временной разнос импульсов радиосигналов может быть обеспечен временной синхронизацией работы системы с источниками интерференции.
Сети стандарта IEEE 802.16 WiMAX являются на сегодняшний день наиболее высокотехнологичной системой BWA в области беспроводных телекоммуникаций и предъявляют повышенные требования к параметрам и качеству своего антенно-фидерного тракта. Антенны и СВЧ тракт в целом является самой капризной частью любой системы беспроводного доступа, в случае же сетей WiMAX, неправильная интеграция активного оборудования и СВЧ может свести к нулю все преимущества данной технологии. В базовых станциях сетей WiMAX могут использоваться всенаправленные и секторные антенны с углом сектора на 60, 90 и 120 градусов.
При установке базовых станций используется существующая инфраструктура.
Рисунок 24 - Типовая схема включения БС WiMAX, размещенных на существующих площадках БШД с использованием транспортных каналов NGN
Подобные документы
Классификация и характеристика сетей доступа. Технология сетей коллективного доступа. Выбор технологии широкополосного доступа. Факторы, влияющие на параметры качества ADSL. Способы конфигурации абонентского доступа. Основные компоненты DSL соединения.
дипломная работа [1,6 M], добавлен 26.09.2014Область использования телекоммуникационной технологии. Целесообразность применения WiMAX как технологии доступа, фиксированный и мобильный вариант. Особенности широкополосного доступа, пользовательское оборудование. Режимы работы, MAC-канальный уровень.
контрольная работа [47,0 K], добавлен 22.11.2011Обзор существующих технологий широкополосного доступа (xDSL, PON, беспроводной доступ). Описание особенностей технологии PON. Проект по строительству сети абонентского доступа на технологии пассивной оптической сети. Схема распределительных участков.
дипломная работа [3,9 M], добавлен 28.05.2016Анализ существующих топологий построения сети MetroEthernet. Оценка типовых решение построения сетей абонентского доступа. Расчет оборудования для услуг передачи речи. Разработка топологической и ситуационной схемы. Расчет трафика услуг телефонии.
курсовая работа [2,3 M], добавлен 17.05.2016Развитие и области применения, технические основы PLC и технологические предпосылки внедрения PLC-решений, обзор технологий широкополосного абонентского доступа. Принцип действия и основные возможности оборудования, примерная схема организации сети.
дипломная работа [3,7 M], добавлен 28.07.2010Основные принципы организации сетей абонентского доступа на базе PLC-технологии. Угрозы локальным сетям, политика безопасности при использовании технологии PLC. Анализ функционирования PLC здания инженерно-внедренческого центра ООО "НПП "Интепс Ком".
дипломная работа [3,0 M], добавлен 25.11.2012Организация доступа в Интернет на основе оптических технологий в сетях доступа. Технологии построения городских сетей Интернет-доступа на основе коммутаторов Ethernet второго и третьего уровня. Основные преимущества оптических технологий в сетях доступа.
презентация [135,5 K], добавлен 14.09.2013Периоды развития и основные стандарты современных беспроводных сетей. История появления и области применения технологии Bluetooth. Технология и принцип работы технологии беспроводной передачи данных Wi-Fi. WiMAX - стандарт городской беспроводной сети.
презентация [1,9 M], добавлен 22.01.2014Сеть доступа как система средств связи между местной станцией и терминалом пользователя с замещением части или всей распределительной сети, типы и функциональные особенности, сферы практического применения. Операционные системы управления сети доступа.
реферат [2,1 M], добавлен 14.02.2012Виды и источники атак на информацию. Обзор распространенных методов "взлома". Атакуемые сетевые компоненты. Разработка технологии защиты банковской компьютерной сети. Разработка алгоритма программы контроля доступа пользователей к банковской сети.
дипломная работа [542,3 K], добавлен 06.06.2010