Блочно-симметричные модели и методы проектирования систем обработки данных
Обзор моделей анализа и синтеза модульных систем обработки данных. Модели и методы решения задач дискретного программирования при проектировании. Декомпозиция прикладных задач и документов систем обработки данных на этапе технического проектирования.
Рубрика | Программирование, компьютеры и кибернетика |
Вид | диссертация |
Язык | русский |
Дата добавления | 07.12.2010 |
Размер файла | 423,1 K |
Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже
Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.
Данная задача сведена к целочисленной нелинейной задаче квадратичного программирования, которая введением дополнительных переменных и ограничений, в свою очередь, сводится к линейному виду, что позволяет применить для ее решения стандартные пакеты прикладных программ.
Поставлены и решены задачи синтеза программных модулей ДС при заданных сценариях диалога, известной структуре и характеристиках информационного обеспечения системы с учетом временных характеристик обслуживания запросов пользователей. Диалоговые системы при этом предложено моделировать в виде стохастической замкнутой сети системы массового обслуживания (СМО), что позволяет исследовать эффективность модульных ДС, реализуемых на базе вычислительных систем. Показатели эффективности ДС и ее компонент определяется как показатели эффективности отдельных СМО и сети в целом.
Решены также задачи синтеза оптимальной модульной структуры программного обеспечения ДС при условии, что запросы пользователей обслуживаются в соответствии с различными (бесприоритетными и приоритетными) дисциплинами обслуживания.
Функционирование ДС при этом моделируется в виде СМО с простейшими входящими потоками заявок и произвольными потокам обслуживания. Определены аналитически зависимости показателей эффективности рассматриваемой системы и зависимости от длительности обслуживания заявок каждого типа и интенсивности их поступления, а так же необходимые условия существования установившегося режима в ДС.
Для дисциплин обслуживания с абсолютными и относительными приоритетами проведен сравнительны аналитический анализ эффективности их использования при организации функционирования ДС, определены условия перехода от дисциплины обслуживания с относительными приоритетами к дисциплине обслуживания с абсолютными приоритетами, обеспечивающие выигрыш во времени ожидания.
Задачи синтеза струтуры праграммного обеспечения ДС сведены к задачам нелинейного целочисленного программирование, для решения каторых используются метод «ветвей и границ» и другие методи [72].
Типизация разработки. Под тепизацией при разработке СОД понимается процесс анализа требований и харектеристик заданного множества обьектов автоматизации и выбора методов сведения многообразия индивидуальных проектных решений к огрониченному множеству решений, достаточно эффективно выполняющих требования объектов автоматизаций [31, 73, 74].
Возможности выбора типовых решений основаны на существовании достаточной степени общности требований анализируемых обектов автоматизаций. Чем выше степень этой общности, тем проще и эффективнее процесс выбора, создания и реализации типовых проектных решений. Использование принципов модульности и типизации при разработке СОД позволяет свести их проектирование к синтезу систем функционально независимых типовых модулей, совместно выполняющих заданное множество функций на множестве выбранных обектов автоматизаций с требуемой эффективностью.
Вместе с тем проблема типизаций разработки модульных СОД исключительно сложна, так как ее решение включает выбор уровня и стратегии типизации, многопараметрический анализ обьектов автоматизаций, синтез систем типовых модулей и информационного обеспечения по заданным критериям эффективности.
Можно выделить три основные стратегии типового модульного проектирования СОД: синтез типовых модульных СОД для решения заданного множество задач одного класса; комплектация и настройка программ для решения требуемой задачи из огрониченного набора типовых программных модулей, синтез рабочих программ на основе имеющихся прототипов (аналогов) СОД с учетом специфики и содержательного описания канкретной задачи.
Первая стротегия модульного проектирования является наиболее универсальной и предполагает синтез типовых программных и информационных средств для множеста достаточно близких задач одного класса. Реализация данной стратегии связана в первую очередь с процессом анализа требований и характеристик заданного множество задач или объектов автоматизаций, выявлением общих специфических частей анализируемых задач обработки данных.
Вторая и третья стратегия требуют наличия программных модулей либо готового прототипа, каторые могут быть приняты в качестве базового варианта проектирования.
Целью оптимального проектирования типовой модульной системы обработки данных является синтез системы типовых модулей и технико-экономические характеристики разрабатываемой системы. Множество информационных массивов, обеспечивающих экстремум критерия эффективности с учетом ограничений на допустимых вариантов построения типовой модульной СОД определяется выбранной системой ограничений, а ее параметры - оптимизацией критерия эффективности, являющегося функцией различных технико-экономических показателей, к которым относятся стоимостные и временные затраты на разработку, отладку и эксплуатацию системы, время решения задач обработки данных, число типовых и оригинальных модулей в системе, избыточность системы модулей по отношению к задачам обработки данных, коэффициент готовности к обработке заявок, достоверность обработки данных, наработка на отказ.
При синтезе типовых модульных СОД могут быть использованы общесистемные, минимаксные и сложные критерии проектирования теории активных систем. Первые экстремизируют суммарные показатели качества синтеза для множества пользователей или задач обработки данных, вторые-показатели гарантированного качества синтеза для пользователей обработки данных.Критерии третьего типа используются для выбора типовых проектных решений в случаях несовпадения целевых функций или точек экстремума центра и элементов системы. К числу общесистемных критериев относятся: минимум приведенной стоимости разработки отладки и эксплуатации проектируемой типовой модульной СОД, минимум общего времени разработки и отладки типовой модульной системы, минимум среднего значения межмодульного интерфейса, максимум среднего по множеству показателей информационной производительности проектируемой системы, максимум среднего коэффициента загрузки технических средств. Конкретный выбор степени централизации механизма проектирования, критерия эффективности и согласованной системы ограничений, определяющих постановку задачи синтеза типовых модульных СОД, базируется на использовании результатов анализа технологий решения множества задач обработки данных.
Задачи синтеза типовых модульных СОД сведены к задачам нелинейного и линейного целочисленного программирования и решаются с использованием известных стандартных пакетов и специальных методов, основанных на схеме «ветвей и границ».
Синтез структур баз данных. Создание модульных СОД нового поколения тесно связано с широким внедрением сетей ЭВМ, локальных и распределенных баз данных (РБД) и систем передачи информации [75-81].
Синтез логической структуры РБД рассматривается как процесс поиска оптимального варианта отображения канонической структуры РБД в логическую, которая обеспечивает оптимальную значение заданного критерия эффективности функционирования РБД и удовлетворяет основным требованиям и ограничениям, накладываемым на логическую структуру на этапе разработки технического задания. Для отображения канонической структуры в логическую используются метод объединения групп канонической структуры РБД в типы логических записей с одновременным распределением их по узлам вычислительной сети.
Исходной информацией для этапа синтеза оптимальных компонент логического уровня представления информации в РБД являются характеристики канонической структуры, полученные на этапе анализа и нормализации внешних моделей предметных областей пользователей.
Основными критериями синтеза оптимальных логических структур РБД являются минимум общего времени выполнения множества запросов и корректировок пользователей, минимум суммарной стоимости хранения информации и реализации процедур обработки данных, минимум максимального времени (стоимости) реализации множество запросов и заданий на корректировку, инициируемых различными пользователями.
В качестве основных ограничений используется ограничения на временных и стоимостные характеристики процесса реализации запросов и корректировок, на объём доступной внешней памяти и узлах вычислительной сети (ВС), пропускную способность каналов связи, надежность доступа к заданному узлу ВС и др.
Решение задач синтеза оптимальных логических структур РБД позволяет определить состав типов логических записей, структуры и типы отношений между ними, размещение типов записей по узлам ВС, характеристики типов записей, использование типов записей при реализации процедур обработки.
В процесс проектирования РБД выделяются следующие взаимосвязанные этапы: синтез оптимальных логической структуры РБД, проектирование структуры сетевого каталога и проектирование логических структур локальных баз данных (БД). Синтезируемые оптимальная по заданному критерию эффективности логическая структура РБД, сетевой каталог и логические структуры локальных БД должны обеспечивать сохранение семантических свойств информационных элементов и связей между ними, зафиксированных в канонической структуре РБД с учетом ограничений, накладываемых параметрами локальных СУБД и аппаратных средств передачи данных, топологией ВС и требованиями различных режимов функционирования распределенных банков данных (РБнД).
Синтез оптимальной логической структуры РБД рассматривается как процесс поиска оптимального варианта отображения канонической структуры РБД в логическую, обеспечивающего оптимальное значение заданного критерия эффективности функционирования РБнД и удовлетворяющего основным системным, сетевым и структурным ограничениям. При отображении канонической структуры в логическую группу канонической структуры РБД объединяются в типы логических записей с одновременным распределением их по узлам ВС. Сложность решения задач синтеза определяется их большой трудоемкостью, связанной с необходимостью учета большого числа параметров и характеристик хранимой в РБД информации, запросов и заданий на корректировку.
Результаты полученные на этапе синтеза оптимальной логической структуры РБД, является исходными для проектирования структуры сетевого каталога, логических структур локальных БД, а также для проектирования эффективных сетевых протоколов, обеспечивающих предотвращение взаимоблокировок и появления тупиковых ситуаций при функционировании РБнД.
Важным компонентом структуры логического уровня РБиД является сетевой каталог, которой обеспечивает эффективное выполнение основных функций управление РБиД и содержит информацию о расположении типов записей в локальных БД (узлах ВС) о характеристиках информационных элементов групп и типов записей учетные данные по обеспечению секретности доступа пользователей к информации, статистику работы с различными типами записей в локальных БД и др. Проектирование структуры сетевого каталога осуществляется на основе информации полученной на этапах проектирования канонической структуры и синтеза оптимальной логической структуры РБД.
В процессе проектирования структуры сетевого каталога решаются задачи выбора оптимального типа его структуры, оптимального размещения в ВС главного каталога (для централизованного типа структуры), оптимальных маршрутов доступа пользователей ВС к сетевым каталогам, оптимальных параметров организации сетевых каталогов, размера и состава страниц обмена между оперативной памятью и внешними запоминающими устройствами (ВЗУ).
Результатом решения задач данного этапа логического проектирования является оптимальная структура сетевого каталога обеспечивающая оптимальное количество сетевых обращений к нему в процессе реализаций запросов пользователей и корректировок каталога с учетом географического размещения пользователей в ВС и характеристик запросов а также оптимальное количество обменов между оперативной памятью и ВЗУ в процессе локального функционирования сетевого каталога в РБиД.
Логическая структура сетевого каталога фиксирована, так как количество уровней иерархии соответствующее количеству уровней отображения информации в РБнД и другие параметры логической организации являются детерминированными и не зависят от специфики предметных областей пользователей. Поэтому основной задачей проектирования сетевого каталога является выбор типа его структуры который определяет наличие и характер взаимодействия между главными и локальными каталогами в процесс реализации функции управления выполнением процедур обработки информации в РБнД
Выбор типа структуры сетевого каталога определяется характеристиками запросов, заданий на корректировку, топологией ВС, интенсивностью внесений изменений в логическую структуру РБД, стоимостными характеристиками хранения информации и т.д.
Поставлены и решены задачи синтеза оптимальных по заданным критериям эффективности логических и физических структур локальных баз данных. При проектировании оптимальных логических структур локальных баз данных возможны два подхода, каждый из которых детально исследован [69, 76, 79, 80].
Первый подход основывается на синтезе логических структур локальных баз данных, эффективность которых определяется единым критерием оптимальности функционирования РБД. Исходной информацией, используемой в этом случае при проектировании логических структур локальных БД являются характеристики логической структуры РБД и сетевого каталога. Проектирование осуществляется путем нормализации графа логической структуры отдельного узла ВС, формируемого в результате синтеза оптимальной логической структуры РБД и определения в графе несвязных и слабо связных подграфов, являющихся основой логических структур локальных БД, поддерживаемых конкретными СУБД.
Результатом данного этапа являются оптимальные логические структуры локальных БД спроектированные с учетом характеристик оптимальной логической структуры РБД, ограничений конкретных СУБД и операционной среды.
Второй подход позволяет синтезировать логические структуры баз данных по локальным целевым функциям, отражающим специфические требования пользователей отдельных узлов ВС, с учетом единого критерия эффективности функционирования РБД, который определяет оптимальное распределение информаций по узлом ВС.
В этом случае синтез логической структуры локальной БД рассматривается как поиск оптимального варианта отображения канонической структуры отдельного узла ВС, полученной при решений задачи распределения информаций, в такую логическую структуру базы данных, в которой сохраняются семантические свойства элементов предметной области пользователей и обеспечивается эффективность функционирования РБиД для рассматриваемого множества пользователей в условиях заданных требований обработки данных.
Разработанные модели и постановки задач синтеза позволяют учесть особенности функционирования локальных БД в режимах ввода информаций, оперативного обслуживания запросов пользователей, решения регламентных задач и задач обработки данных реального времени. Решение поставленных задач обеспечивает определение записей выбираемых в качестве точек входа в логическую структуру локальной БД.
Основными критериями эффективности, используемыми при синтезе логической структуры локальной БД, являются минимум суммарного времени ввода информации и обслуживания заданного множества запросов, минимум суммарного числа связей между записями, минимум суммарной длины путей доступа к искомым информационным элементом, а также критерии, коррелируемые с достоверностью информации в локальной БД.
В качестве ограничений используются ограничения на число и состав логических записей, на структуру связей между ними, на число точек входа в логическую структуру хранения, которая обеспечивает экстремум заданного критерия эффективности функционирования РБиД на физическом уровне.
Критериями эффективности, используемыми при решении комплекса задач синтеза физической структуры локальной БД, являются минимум суммарного среднего времени доступа к информационным массивам БД, минимум суммарного числа обрабатываемых страниц памяти при обслуживании заданного множества запросов в локальной БД, максимум достоверности информации в БД при реализации процедур обработки данных. В качестве ограничений используется ограничения на объем доступной памяти, на среднее время доступа к отдельным массивам БД, на объем на количество страниц памяти, на допустимый нижний уровень достоверности информации и др.
Синтез логической структуры локальной БД обеспечивает оптимальное распределение массивов по типам памяти и экземпляров логических записей по страницам памяти , выбор оптимальных методов организации записей и связей по страницам памяти, выбор оптимальных методов организации записей и связей пределах каждого массива или станицы памяти.
Разработанные методы, модели, алгоритмы и комплексы программ нашли широкое практическое использование при проектировании модульных СОД различного класса и назначения.
С использованием полученных результатов сформулированы принципы построения и рассмотрены основные элементы, структура и алгоритмическое обеспечение автоматизированной системы проектирования оптимальных модульных СОД, а также имитационные модели для анализа технологии обработки информации на системном уровне. На этой основе разработаны системы автоматизированного проектирования СОД семейства “Модуль”.
Модели проектирования модульных СОД сводятся к задачам дискретного программирования, теории графов и их модификациями. Известно, что такие задачи весьма сложны и часто не решают практические задачи большой размерности. Ниже рассмотрим краткий обзор моделей, методов и алгоритмов решения дискретных задач.
1.2 Модели и методы решения задач дискретного программирования при проектировании систем обработки данных
В настоящее время системы обработки данных различного класса и назначения используются во всех сферах человеческой деятельности. В процессе создания таких систем используется современные инструментальные средства программирования, системы управления базами данных, системы автоматизации проектирования и управления разработками, элементы искусственного интеллекта, современная техническая база в виде различного уровня вычислительных сетей.
Вместе с тем быстроизменяющиеся условия и требования к разработке и эксплуатации информационных систем, необходимость адаптации к потребностям предприятий и организаций, быстрое перепрофилирование их деятельности в условиях рынка обуславливают необходимость постоянного решения актуальных задач создания СОД. Поэтому задачи анализа, проектирования, эксплуатации, модернизации, надежности систем обработки данных являются весьма актуальными.
Большое число вышеуказанных прикладных задач, как правило, сводится к задачам дискретного программирования, постановка и решение которых в свою очередь взывают значительных сложности. Прежде всего имеется в виду вычислительная сложность (NP-полные задачи), размерность решаемых прикладных задач, точность и эффективность разработанных алгоритмов для практических приложений.
Как показал анализ проектирования модульных системы обработки данных в подавляющем большинстве задач анализа и синтеза СОД сводится к задачам дискретного программирования.
Приведем краткий обзор моделей и методов задач дискретного программирования (ДП), используемых в процессе проектирования систем обработки данных.
Определим задачу дискретного программирования следующим образом. [83]
Задачей дискретного программирование (ДП) будем называть задачу отыскания экстремума (max, min) скалярной функции, заданной на дискретном (несвязном) множестве, т.е. такую задачу математического программирования (МП), у которой на все или на часть переменных, определяющих область допустимых решений, наложено требование дискретности. Запишем задачу МП в виде:
, (1.2.1)
где - -мерный вектор; - скалярный функция; -некоторое множество в , .
Если - конечное (или счетное) множество или декартово произведение конечного (счетного) множества на множество мощности континиума, то будет иметь место задача ДП. В этом случае условие принадлежности некоторому множеству может быть записано в виде:
, ;
, ; ; . (1.2.2)
При - задача частично дискретного программирования.
Если - множество всех целочисленных векторов, то при - имеем задачу целочисленного программирования (ЦП). А при - задачу частичного целочисленного программирования (ЧЦП).
В наибольшей степени изучены методы решения задач целочисленного линейного программирования (ЦЛП):
;(1.2.3)
Здесь - множество всех неотрицательных целых чисел, частный случай задач ЦЛП задачи с булевыми переменными, где в (1.2.3):
, ;
В ряде задач ЦП требование целочисленности накладывается и на целевую функцию.
При постановке и решении задач дискретного программирования традиционно можно выделить следующие классы: задачи с неделимостями, экстремальные комбинаторные задачи, задачи с неординарной разрывной целевой функцией, задачи на неклассических областях, многоэкстремальные задачи, дискретные задачи, связанные с нахождением экстремумов на конечных множествах.
Прикладные задачи этих классов в свою очередь могут иметь различные математические постановки и методы их реализации. Поэтому развитие дискретного программирования осуществляется по следующей схеме: постановка прикладной задачи, разработка математической модели дискретного программирования, разработка метода (алгоритма) решения задачи.
Обычно эффективное решение задачи тесно связанно с математической моделью задачи, со структурой модели и ее особенностями.
Рассмотрим некоторые математические модели дискретного программирования и методы их решения.
Модели задач ДП. Классическим примером моделей этого класса являются модели целочисленного линейного программирования, в которых переменными являются неделимые величины. Модели этого класса в свою очередь генерировали различные варианты постановки прикладных задач и определены как модели с неделимостями.
В процессе развития теории дискретного программирования выделился класс комбинаторных моделей. [83]
В этих моделях необходимо определить экстремум целочисленной функции, заданной на конечном множестве элементов, либо элементы этого конечного множества, доставляющих экстремум целевой функции.
Одним из типичных примеров комбинаторной модели является задача о коммивояжере. [84]
В данной задаче имеется кратчайший замкнутый путь, проходящий по одному разу через все города, при условии, что имеется n городов и задана матрица расстояний между ними.
В комбинаторной постановке необходимо определить такую перестановку, которая минимизирует величину целевой функции.
Постановка различных комбинаторных задач может часто формулироваться в виде модели с булевыми переменными, которые принимают только два значения 0 или 1.
К булевым моделям сводятся большое число прикладных задач, что свидетельствует о перспективности моделей этого класса. [85]
В постановках ряда прикладных задач имеются некоторые особенности, касающихся целевой функции либо области ограничений. К примеру, необходимо определить, экстремум неординарной разрывной функции на выпуклом многограннике вида
где
Эти модели образуют класс моделей с неоднородной разрывной целевой функцией.
Модели нахождения экстремума на области, задаваемой не только линейными неравенствам (ограничениями) но и логическими условиями. Такие области оказываются невыпуклыми либо несвязными. Эти задачи образуют модели на не классических областях. [84]
Особый интерес исследователей вызывают многоэкстремальные модели, в которых необходимо определить оптимальные значения более одной целевой функции при наличии (либо отсутствии) систем ограничений. Как правило, модели этого класса сложны в вычислительном отношении. Вместе с тем, постановки целого ряда прикладных задач сводятся к моделям данного класса. Решение указанных задач является актуальным. [103, 105, 107]
Одной из первоначальных моделей, безусловно, является модель транспортной задачи с которой связаны многие исследования в области дискретного программирования. Эти исследования привели к моделям потоков в сетях и другим модификациям указанных задач.
Следует отметить, что разработка моделей тесно связана с методом ее реализации, и наоборот разработка новых методов, в свою очередь, приводит к появлению новых моделей для постановки прикладных задач.
Методы решения задач дискретного программирования (ДП). В задачах ДП методы их решения зачастую связаны с их математической постановкой и особенностями. Имеется большое число методов для решения этих задач. В этой связи целесообразно выделить следующие методы решения задач ДП: точные и приближенные. Среди точных методов наиболее распространены комбинаторные методы и методы отсечения.
Типичным примером комбинаторных методов является метод ветвей и границ [115]. Суть данного метода заключается в направленном переборе допустимых решений на основе вычисления оценок. Основное этапы подхода заключается в следующем:
1. Исходное множество решений разбиваются не подмножества (процесс ветвления);
2. Для каждого из подмножеств вычисляется значения оценок (нижние или верхние границы);
3. На основе выбранного значения оценок вычисляются допустимые решения;
4. Итерационный процесс ветвления по заданному правилу и вычисление оценок продолжается до тех пор, пока не будет получено оптимальное решение.
Идея метода отсечений заключается в следующем. Решается исходная задача. Если полученное решение удовлетворяет условию целочисленности, то задача решена. В противном случае к ограничениям исходной задачи добавляется новое линейное ограничение. Далее решается задача с дополнительно введенным ограничением. Итеративный процесс повторяется, до тех пор, пока не будет получено целочисленное решение.
Примерами успешной реализации методов отсечения являются алгоритмы Гомори [83] .
Вместе с тем, следует отметить ограниченное использование точных методов для решения прикладных задач большой размерности. Несмотря на использование мощных вычислительных систем с большой памятью, совершенствование и развитие математического аппарата «проклятье дискретности» остается и на сегодняшний день.
Поэтому для эффективного решения прикладных задач и преодоления вычислительной сложности точных методов возникла необходимость разработки приближенных и эвристических методов, которые тесно связаны со структурой и особенностями постановки этих задач.
В отличие от точных методов, приближенные позволили решать задачи большой размерности и полученные решения удовлетворяют потребностям практики. При этом в ряде случаев появилась возможность оценить отклонение от оптимального решения либо определить ближайшие окрестности от оптимального решения.
Все это позволило использовать приближенные методы в качестве эффективного инструментария для решения практических задач.
В ряде случаев при проектировании систем обработки данных необходимо учитывать вектор критериев, которые могут противоречить друг другу. Такие постановки задач сводятся к многокритериальным задачам дискретного программирования.
Математическая постановка - критериальной задачи предпологает, что задано множество допустимых решений , на котором определена векторная целевая функция (ВЦФ) [98,99].
,(1.2.4)
Причем критерии ВЦФ считаем минимизируемыми:
Fv(x)>min, v=1,2,…,N.(1.2.5)
Элемент называется Парето-оптимальным, если не существует такого допустимого решения , что выполняются неравенства , v=1, 2,…, N, среди которых хотя бы одно является строгим.
Через обозначаем паретовское множество (ПМ), состоящее из всех Парето-оптимальных элементов рассматриваемой задачи с ВЦФ (1) на множестве . Эта задача называется дискретной, если мощность множества ее допустимых решений конечна.
Первоначальная формулировка проблемы многокритериальной (векторной) оптимизации восходит к [98, 99] и состоит в нахождении одного или всех элементов ПМ . Заметим, что в однокритериальном случае () ПМ представляет собой множество всех оптимумов данной оптимизационной задачи. Для последней, однако, более естественной является проблема нахождения какого-либо («первого попавшегося») оптимума. Как обобщение этой проблемы для многокритериального случая в настоящей работе в качестве основной рассматриваем проблему нахождения полного множества альтернатив (ПМА). Подмножество назовем ПМА, если оно удовлетворяет двум условиям: его мощность минимально и выполняется , где , где
.
Множество и будем называть множествами альтернатив (МА). В литературе наряду с МА изучается и другие подмножество паретовского множества.
В системном моделировании, в частности, в теорий выбора и принятия решений наиболее распространенными способами нахождения МА являются следующие.
1. Построение (определение) детерминированного формального механизма, позволяющего генерировать альтернативы с помощью параметров алгоритма или с помощью параметров формулы . [100-103]
2. Представление МА в неявном виде с помощью системы соотношений (ограничений ). [104-105]
3. Перечисление всех элементов МА, т.е. представление каждого элемента МА в явном виде. [108, 109]
В работе [121], именно в контексте алгоритмической проблемы, относящейся к последнему из указанных выше трех способов, осуществляется обоснование оценок мощности МА для таких многокритериальных дискретных задач, как задачи о совершенных паросочетаниях, о коммивояжере, о цепях между парой вершин и другие при этом нахождение МА понимается как перечисления с предъявлением всех его элементов [110, 100]. При определенных условиях нижние оценки мощности ПМ и ПМА перечисленных задач оказывается экспоненциальным. Последнее означает, что для рассматриваемых задач проблема нахождения МА является труднорешаемой [110,111]. Или (в терминологии [112,113]) она имеет экспоненциальную вычислительную сложность.
Следуя, [112], рассматриваемую - критериальную задачу назовем индивидуальной, если все ее параметры имеют фиксированные значения. Говорим о массовой - критериальной задаче или, коротко, о задаче, если для некоторых параметров заданы не фиксированные значения, а диапазоны их изменения.
Анализируя приложения той или другой задачи, нетрудно убедиться, что состав критериев ВЦФ обычно меняется. Например, в системах автоматизированного проектирования электронной техники [114-118] возникает многокритериальные задачи на графах, в которых остовное дерево (связывающая сеть) может оценивается такими критериями, как вес, «узкое место» (минимаксный критерий), степень, диаметр и т.д. [119,120]. При этом по мере необходимости эти критерии входят в состав ВЦФ в разнообразных комбинациях, порождая различные варианты задач об остовных деревьях. Общим у этих задач является лишь множество допустимых решений , каждый элемент которого является связным остовным подграфом данного графа.
Используя понятие «задача» как переменное, употребляем для ее обозначения символ [120]. Конкретизируя рассматриваемую задачу, т.е. определяя для нее множество допустимых решений , присваиваем ей общепринятое наименование и собственное, отличающее её от других задач, обозначение .
Перечислим рассматриваемые здесь дискретные многокритериальные задачи:
1. - задача о совершенных паросочетаниях, в которой - совершенное паросочетание графа с четным числом вершин ;
2. - задача об остовных деревьях, - остовное дерево связного -вершинного графа;
3. - задача о цепях, - простая цепь между выделенной парой вершин графа ;
4. - задача о коммивояжере, - гамильтонов цикл в -вершинном графе;
5. - задача о покрытии -вершинного графа цепями, - остовной подграф, компонентами связности которого являются простые цепи, причем покрытие может представлять собой либо совершенное паросочетание, либо трисочетание, либо состоять из 2- и 3-вершинных цепей.
6. - задача о назначениях, т.е. задача о совершенных паросочетаниях на двудольном графе , , - совершенное паросочетание на .
Таким образом, решение многокритериальных задач ДП весьма сложно в вычислительном отношении, о чем свидетельствует результаты исследований.
По мере развития моделей и методов дискретного программирования, постановки новых задач и других приложений появляется необходимость разработки новых подходов моделей и методов решения задач.
1.3 Постановка задачи исследования
Проектирование систем обработки данных многоэтапный и длительный процесс в зависимости от сложности проектируемой информационной системы.
В настоящее время в процессе проектирования СОД широко используются системы управления базами данных (СУБД), система автоматизации процесса проектирования программного и информационного обеспечения и множество других вспомогательных инструментальных средств. Вместе с тем процесс проектирования систем обработки данных остается творческим процессом, зависящим от опыта знаний и способностей разработчиков. При этом наиболее сложным и длительным является разработка прикладного программного и информационного обеспечения систем обработки данных.
Как показал анализ известных исследований наиболее эффективным подходом является разработка формализованных моделей и методов проектирования модульных систем, обеспечивающее качественную и ускоренную разработку таких систем. Принцип модульности предполагает декомпозицию сложных систем на отдельные части (модули) на основе заданных критериев эффективности.
В данной работе необходимо разработать формализованные модели, методы, алгоритмы и программные средства проектирования модульных систем обработки данных на основе новых подходов.
Одним из этапов проектирования систем обработки данных является определение переченя и последовательности решения функциональных (прикладных) задач обработки данных и состава исходных документов, в которых содержится необходимая входная информация (информационные элементы) и установленные взаимосвязи между ними.
При большом числе прикладных задач и требуемых для их решения исходных документов, появляется необходимость декомпозиции этой структуры с целью разделения ее на слабосвязанные фрагменты для облегчения процесса проектирования.
В последующем каждый фрагмент представляется в виде множества процедур обработки данных и взаимосвязанным с ними информационных элементов. На этом этапе необходимо сформулировать структуру модульной системы обработки данных, представляющую собой совокупность процедур обработки данных, объединенных в модули и совокупности информационных элементов, объединены в массивы (таблицы) базы данных и установить между ними оптимальные взаимосвязи.
Необходимо обосновать и выбрать критерии оптимизации в процессе формализованного проектирования систем обработки данных.
Большие размерности задач, решаемые на каждом этапе проектирования обусловливают необходимость исследования и разработки новых подходов, моделей, методов и алгоритмов проектирования систем обработки данных.
Одним из новых направлении постановки и решения задач эффективного проектирования СОД являются блочно-симметричные модели и методы, которые позволяют решать задачи большой размерности. Разработка и развитие этих методов является весьма актуальной проблемой.
В процессе проектирования СОД возникает необходимость учета вектора критериев оптимизации, которые часто бывают противоречивым.
В этом случае решается многокритериальная задача дискретного программирования, алгоритмы решения которых являются сложными и требуют новых подходов.
Анализ существующих методов проектирования модульных систем обработки данных (МСОД), алгоритмов реализации этих моделей и проведенные исследования показали необходимость разработки новых подходов и классов моделей и методов проектирования систем обработки данных.
На основе проведенного анализа моделей и методов проектирования СОД сформулированы задачи исследования.
Необходимо разработать взаимосвязанный комплекс моделей и методов, алгоритмов и программ формализованного проектирования систем обработки данных, включающий следующие задачи:
-разработать общую блочно-симметричную модель проектирования систем обработки данных;
- сформулировать и решить задачу декомпозиции систем обработки данных на кластеры функциональных задач и исходных документов;
- разработать методы синтеза модульных блок-схем обработки данных;
- разработать многокритериальные блочно-симметричные модели и методы проектирования модульных блок-схем обработки данных;
- разработать подход, эффективные методы и алгоритмы решения блочно-симметричных задач и программное обеспечение.
Выводы к разделу 1
- Приведен анализ существующих моделей и методов проектирования модульных систем обработки данных.
- Приведен краткий обзор методов и алгоритмов дискретного программирование для решения задач проектирование систем обработки данных.
- Сформулированы задачи диссертационного исследования.
2. БЛОЧНО-СИММЕТРИЧНЫЕ МОДЕЛИ И МЕТОДЫ ПРОЕКТИРОВАНИЯ СИСТЕМ ОБРАБОТКИ ДАННЫХ
В данном разделе рассматриваются общая постановка блочно-симметричной задачи дискретного программирования, её особенности и свойства. Разработан общий подход решения задач данного класса.
Сформулирована постановка задачи декомпозиции функциональных задач обработки данных и исходных документов в виде блочно-симметричной задачи дискретного программирования.
Указанная задача решается на этапе технического проектирования систем обработки данных. С использованием результату этой задачи поставлена задача проектирования модульных блок-схем обработки данных, обеспечиваем разработку прикладного программного обеспечения и базы данных.
Сформулирован также частные задачи проектирования модульных блок-схем обработки данных [142]
2.1 Общая постановка блочно-симметричных задач дискретного программирования
Ряд прикладных задач: проектирования модульного программного обеспечения и массивов базы данных информационных систем, распределение программных модулей и массивов базы данных по узлам вычислительных сетей, выбор проектов в условиях ограниченных ресурсов можно сформулировать в виде нового класса задач - блочно-симметричных моделей дискретного программирования. В отличие от традиционных моделей модели этого класса позволяют формулировать задачи с несколькими типами переменных различной природы, проводить декомпозицию сложных задач на блоки с единой целевой функцией и разрабатывать эффективные алгоритмы, имеющие полиномиальную вычислительную сложность.
Рассмотрим общую постановку блочно-симметричных задач дискретного программирования [126, 127].
Постановка задачи. Пусть задано множество объектов и множество объектов с элементами различных типов, а также взаимосвязи между элементам этих множеств, которые определяются матрицей
, ,,
Элементы которой целочисленные и булевы. Необходимо объединить элементы множество в непересекающиеся подмножества , а элементы множества - непересекающейся подмножества , таким образом, чтобы доставить экстремум целевой функции .
Для формализованной постановки задачи введем следующие переменные. Пусть - булева матрица, где , если -й элемент распределяется в -ю группу, в противном случае. Аналогично , где , если -й элемент распределяется в -ю группу и в противном случае. В общем случае матрицы переменных и могут быть целочисленными [136].
Определим на множестве функцию , зависящую от распределения элементов множеств и по подмножествам и . Соответственно на множестве - функции , а на множестве - функции , определяющие ограничения на множествах и .
Блочно-симметричная задача дискретного программирования формулируется следующим образом:
,(2.1.1)
при ограничениях
(2.1.2)
(2.1.3)
В множестве ограничений (2.1.2) и (2.1.3) в зависимости от постановок задач знаки неравенств могут меняться на противоположеные.
В общем случае двухиндексные матрицы - переменных и и заданная матрица могут быть целочисленными.
Рассмотрим задачу при условии, когда переменные , и - булевы матрицы. В качестве функции часто используют функцию вида , где
(2.1.4)
Рассмотрим выражение (2.1.4), которое представляет собой произведение матриц переменных и и заданной матрицы , на которой определена целевая функция. В отличие от традиционных постановок задач дискретного программирования в данной постановке имеются два типа переменных и , переменные и симметричны относительно заданной матрицы .
В задаче (2.1.1) -(2.1.3) можно выделить множество ограничений вида (2.1.2), которые зависят от переменной , и множество ограничений вида (2.1.3), которые зависят от переменной .
Функционал вида можно представить следующим образом:
(2.1.5)
(2.1.6)
(2.1.7)
(2.1.8)
(2.1.9)
В постановке задачи (2.1.5) - (2.1.9) выделим блок функции (2.1.6), (2.1.7), зависящий только от переменной , и блок функций (2.1.8), (2.1.9), зависящий только от переменной , объединенных единым функционалом вида (2.1.5). Заметим, что в ряде постановок задач может быть блок ограничений вида
(2.1.10)
зависящий от переменных и .
В этом случае можно выделить блок функционала цели вида (2.1.5), (2.1.10).
Отсюда следует.
Определение 2.1. Блочно-симметричной задачей дискретного программирования назовем задачу вида (2.1.5) - (2.1.9), где переменные и и значения функций , , - целые, либо булевые
Рассмотрим выражение (2.1.4). из него следует что переменные и симметричны относительно заданной матрицы и функция (2.1.4) может быть определена как слева направо, так и наоборот, т.е.
(2.1.11)
На основе общей постановки определим основные свойства сформулированного класса задач, отличающие его от традиционных постановок задач дискретного программирования.
Свойство 1. В блочно-симметричной задаче имеется два типа переменных и различного содержания, определенных как целочисленные (булевы) матрицы на заданной матрице .
В общем случае переменных может быть и больше в зависимости от постановок задач.
Свойство 2. Блочность задачи заключается в выделении в постановке отдельных блоков функций вида (2.1.5), (2.1.10); (2.1.6), (2.1.7) и (2.1.8), (2.1.9), которые соответственно зависят от переменных и .
Как видно из указанных соотношении каждый из блоков имеет свою целевую функцию и координируется общим функционалом вида (2.1.5).
Свойство 3. Блочно-симметричную задачу в большинстве случаев можно представить в матричной форме вида (2.1.11).
Матричная форма постановки блочно-симметричных задач позволяет использовать аппарат теории матриц и разрабатывать эффективные алгоритмы решения задач этого класса.
Свойство 4. Симметричность задачи заключается в возможности вычисления (2.1.11) как слева направо, так и обратном направлении.
Указанные свойства и особенности блочно-симметричных задач ДП позволяют синтезировать алгоритмы, обеспечивающих решение практических задач большой размерности.
В ряде постановок задач функционал (2.1.1) можно представить в виде вектора функций . В этом случае формулируется многокритериальная блочно-симметричная задача дискретного программирования.
Анализ постановки, свойств и особенности блочно-симметричных задач позволил разработать и предложить подход и схему метода решения общей задачи на основе следующего утверждения.
Утверждение. Распределение элементов множества по непересекающим подмножествам соответствует логическому сложению строк матриц , а распределение элементов множества по непересекающимся подмножествам - логическому сложению столбцов матрицы . [132, 133] Результаты данного утверждения позволяют просто вычислить оценки и направления поиска решения для разработки эффективных алгоритмов.
Введем понятие базиса решения задач. Под базисом понимается заранее заданный состав элементов подмножеств и .
В матрице базис находится как некоторая матрица элементы которых определены. Данную матрицу путем перестановки номеров строки столбцов матрицы и их перенумировки всегда можно определить в левом верхнем углу. Такое представление упрощает процедуру оценок и определения направления поиска решения.
Для решения блочно-симметричной задачи дискретного программирования при условии, когда , и - булевы матрицы, разработана и предложена эффективная схема решения задачи. Схема поиска решения состоит из следующих основных этапов:
1. В булевой матрице выделим подматрицу , , и определим её как базис решения задачи.
2. Определим матрицу , , направления поиска решения путем логического сложения небазисных строк матрицы со строками базиса и вычислим значения оценок только по позициям базиса.
3. В соответствии с полученными оценками осуществим распределение элементов множества по множествам . В результате зафиксируем решение и промежуточную. Матрицу , , .
4. Определим матрицу , , . направления поиска решения путем логического сложения небазисных столбцов промежуточной матрицы со столбцами базиса и вычислим значения оценок только по позициям базиса матрицы .
5. В соответствии с полученными оценками матрицы распределим элементы множества по множествам. В результате фиксируем решение и целевую матрицу , на которой определено значение целевой функции .
6. Следует отметить, что поиск решения задачи может осуществляться как в прямом направлении по схеме , так и в обратном направлении по схеме .
При заданном базисе решение данного класса задач имеет полиноминальную вычислительную сложность.
2.2 Декомпозиция прикладных задач и исходных документов систем обработки данных на этапе технического проектирования
При проектировании систем обработки данных на этапе предпроектного анализа объектов определяется перечень прикладных задач обработки данных, подлежащих автоматизации, последовательность их решения, исходные документы, используемые для решения прикладных задач, характеристики прикладных задач и документов. Создание масштабных и сложных систем связано с большим числом прикладных задач и документов, которые необходимо анализировать, систематизировать и обрабатывать с целью сокращения затрат и времени на проектирование систем обработки данных. При этом в зависимости от сложности систем, необходимо разделить её на слабосвязанные компоненты (кластеры прикладных задач и документов), чтобы в дальнейшем передать полученные компоненты различным группам разработчиков проекта. В процессе декомпозиции (разделения) множество задач на отдельные компоненты могут быть учтены квалификация и опыт специалистов, а так же затраты и время проектирования. Поэтому декомпозиция прикладных задач и множества исходных документов является актуальной задачей, позволяющей разрабатывать эффективные системы обработки данных. Компоненты системы позволяют разработчикам тщательно провести анализ и изучение системы, определить взаимосвязи (интерфейс) с другими прикладными (функциональными) задачами, особенности и характеристики решаемых функциональных задач и документооборота.
Результатом данного этапа проектирования являются компоненты разрабатываемой СОД, в каждой из которых в последующем выделяются процедуры обработки данных и информационные элементы, устанавливаются взаимосвязи между ними, с целью разработки модульных блок-схем прикладного программного обеспечения и базы данных.
Рассмотрим постановку задачи декомпозиции сложных систем обработки данных на этапе технического проектирования.
Этап технического проектирования является наиболее сложным и длительным. На данном этапе формируется общая функциональная структура, состав и последовательность решения прикладных задач, структура прикладного программного обеспечения, структура базы данных, определяется общесистемное программное обеспечение проектируемой системы обработки данных.
При большом числе прикладных задач и сложном документообороте возникает необходимость декомпозиции системы на кластеры.
Под кластером прикладных задач понимается объединение задач в подмножества, а кластерами документов объединение документов в подмножества и установление взаимосвязей между соответствующими подмножествами. Таким образом, разрабатываемая система может быть представлена в виде двудольного графа, вершинами верхнего уровня которого являются функциональные задачи, а вершинами нижнего уровня - документы используемые при реализации задач. Дуги двудольного графа отражают взаимосвязи между задачами и документами в процессе решения задач. Результатом декомпозиции системы является также двудольный граф, вершинами верхнего уровня которого являются кластеры функциональных задач, вершинами нижнего уровня кластеры исходных документов. Взаимосвязи между ними отражают интегрированные связимежду кластерами (рис 2.2.1). Опыт проектирования систем обработки данных и проведенные исследования показали, необходимость декомпозиции исходной системы, которая позволяет на этапе технического проектирования глубже проанализировать кластеры задач и документов, распараллелить объемы работ между проектировщиками, выделить процедуры обработки данных и информационные элементы для разработки прикладного программного обеспечения и базы данных СОД.
Поэтому в качестве критерия эффективности процесса декомпозиции исходной системы используем минимум информационных взаимосвязей между кластерами задач и документов. Для математической постановки задачи декомпозиции системы введём следующие переменные и обозначения. Пусть, , , - переменная отражающая распределенные - ой прикладной задачи в -ой кластер (группу) задач. В данном случае
Аналогично введём переменную
, , , где
В ряде случаев на данном этапе определяются характеристики задач и документов.
Введем - время разработки -ой задачи, - объем -ого документа, - общая стоимость разработки -ой задачи и -го документа, - время разработки и подготовки -го документа, -стоимость разработки -ой задачи, - стоимость подготовки -го документа.
Пусть, - множество прикладных задач обработки данных, подлежащие автоматизации; - множество исходных документов, используемое для решения прикладных задач. Задана, матрица , , , где , если -й исходный документ используется для решения -ой прикладной задачи системы и , в противном случае.
Необходимо разбить систему на подмножества прикладных задач и используемых ими документов таким образом, чтобы минимизировать взаимосвязи между кластерами прикладных задач и документов в процессе проектирования СОД (рис 2.2.1).
Определим дополнительные переменные следующим образом:
Данная переменная отражает использование -го документа для решения задач -го кластера.
Переменная отражает использование в процессе решения -ой задачи -го кластера документов.
Взаимосвязи между кластерами прикладных задач и документов определяется из выражения:
Задачу декомпозиции СОД сформулируем следующим образом.
Необходимо минимизировать функцию вида
Подобные документы
Термины "логический" и "физический" как отражение различия аспектов представления данных. Методы доступа к записям в файлах. Структура систем управления базами данных. Отличительные особенности обработки данных, характерные для файловых систем и СУБД.
лекция [169,7 K], добавлен 19.08.2013Разработка программы на языке Си++ и осуществление постановки и выбора алгоритмов решения задач обработки экономической информации, создание и редактирование базы данных, сортировка записей по определенному запросу, анализ эффективности обработки данных.
контрольная работа [316,8 K], добавлен 28.08.2012Определения теории баз данных (БД). Элементы приложения информационных систем. Реляционные модели данных. Задача систем управления распределенными базами данных. Средства параллельной обработки запросов. Использование БД при проведении инвентаризации.
курсовая работа [518,9 K], добавлен 01.05.2015Понятие информации, автоматизированных информационных систем и банка данных. Общая характеристика описательной модели предметной области, концептуальной модели и реляционной модели данных. Анализ принципов построения и этапы проектирования базы данных.
курсовая работа [1,7 M], добавлен 18.01.2012Классификация информационных систем по признаку структурированности задач, обработки и хранению данных. Организационные и функциональные подсистемы. Понятие целостности и безопасности ИС. Системы автоматизации делопроизводства и обработки транзакций.
презентация [61,1 K], добавлен 19.09.2016Современные системы обработки данных. Автоматизированная информационная система. Понятие информационной и динамической модели. Появление множества разнотипных систем, отличающихся принципами построения и заложенными в них правилами обработки информации.
презентация [36,0 K], добавлен 14.10.2013Анализ предметной области, этапы проектирования автоматизированных информационных систем. Инструментальные системы разработки программного обеспечения. Роль CASE-средств в проектировании информационной модели. Логическая модель проектируемой базы данных.
курсовая работа [410,6 K], добавлен 21.03.2011Изучение особенностей информационного процесса обработки данных. Процессы, связанные с поиском, хранением, передачей, обработкой и использованием информации. Основные режимы обработки данных на ЭВМ. Организация обслуживания вычислительных задач.
реферат [130,9 K], добавлен 28.09.2014Концепции хранилищ данных для анализа и их составляющие: интеграции и согласования данных из различных источников, разделения наборов данных для систем обработки транзакций и поддержки принятия решений. Архитектура баз для хранилищ и витрины данных.
реферат [1,3 M], добавлен 25.03.2013Навыки использования теоретического материала и практического опыта для решения задач проектирования и разработки программного обеспечения для систем различного назначения на языке Паскаль. Описание логической структуры, входные и выходные данные.
курсовая работа [647,0 K], добавлен 23.04.2009