Разработка и исследование имитационной модели локальных вычислительных сетей

Обеспечение правильной работы и обслуживания сети посредством разработки и исследования имитационной модели локальной вычислительной сети. Анализ основных проблем: организационная структура, расположение, испытание, проверка сети и экономическая выгода.

Рубрика Программирование, компьютеры и кибернетика
Вид дипломная работа
Язык русский
Дата добавления 14.10.2010
Размер файла 606,9 K

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

Поэтому в локальных сетях, покрывающих большие территории, часто используется другой вариант построения сети - с распределенной магистралью. Пример такой сети приведен на рис. 5.

рис. 5 Распределенная магистраль на коммутаторах

Распределенная магистраль - это разделяемый сегмент сети, поддерживающий определенный протокол, к которому присоединяются коммутаторы сетей рабочих групп и отделов. На примере распределенная магистраль построена на основе двойного кольца FDDI, к которому подключены коммутаторы этажей. Коммутаторы этажей имеют большое количество портов Ethernet, трафик которых транслируется в трафик протокола FDDI, когда он передается по магистрали с этажа на этаж.

Распределенная магистраль упрощает связи между этажами, сокращает стоимость кабельной системы и преодолевает ограничения на расстояния.

Однако, скорость магистрали в этом случае будет существенно меньше скорости магистрали на внутренней шине коммутатора. Причем скорость эта фиксированная и не превышает в настоящее время 100 Мб/c. Поэтому распределенная магистраль может применяться только при невысокой интенсивности трафика между этажами или зданиями.

Пример рисунка демонстрирует сочетание использования двух базовых структур, так как на каждом этаже сеть построена с использованием магистрали на внутренней шине коммутатора.

4.2 Коммуникационное оборудование сетей

4.2.1 Повторители

Повторители Ethernet, в контексте сетей 10Base-T, часто называемые концентраторами или хабами, работают в соответствии со стандартом IEEE 802.3. Повторитель просто передает полученные пакеты во все свои порты независимо от адресата.

С точки зрения производительности повторители просто передают пакеты с использованием всей полосы канала. Задержка, вносимая повторителем весьма мала (в соответствии с IEEE 802.3 - менее 3 микросекунд). Сети, содержащие повторители имеют полосу 10 Mbps подобно сегменту на основе коаксиального кабеля и прозрачны для большинства сетевых протоколов, таких как TCP/IP и IPX.

4.2.2 Мосты

Мосты функционируют в соответствии со стандартом IEEE 802.1d. Подобно коммутаторам Ethernet мосты не зависят от протокола и передают пакеты порту, к которому подключен адресат. Однако, в отличие от большинства коммутаторов Ethernet, мосты не передают фрагменты пакетов при возникновении коллизий и пакеты с ошибками, поскольку все пакеты буферизуются перед их пересылкой в порт адресата. Буферизация пакетов (store-and-forward) приводит к возникновению задержки по сравнению с коммутацией на лету. Мосты могут обеспечивать производительность, равную пропускной способности среды, однако внутренняя блокировка несколько снижает скорость их работы.

4.2.3 Маршрутизаторы

Работа маршрутизаторов зависит от сетевых протоколов и определяется связанной с протоколом информацией, передаваемой в пакете. Подобно мостам, маршрутизаторы не передают адресату фрагменты пакетов при возникновении коллизий. Маршрутизаторы сохраняют пакет целиком в своей памяти прежде, чем передать его адресату, следовательно, при использовании маршрутизаторов пакеты передаются с задержкой. Маршрутизаторы могут обеспечивать полосу, равную пропускной способности канала, однако для них характерно наличие внутренней блокировки. В отличие от повторителей, мостов и коммутаторов маршрутизаторы изменяют все передаваемые пакеты.

4.2.4 Коммутаторы

Коммутаторы Ethernet подобно мостам и маршрутизаторам способны сегментировать сети Ethernet. Как и многопортовые мосты коммутаторы передают пакеты между портами на основе адреса получателя, включенного в каждый пакет. реализация коммутаторов обычно отличается от мостов в части возможности организации одновременных соединений между любыми парами портов устройства - это значительно расширяет суммарную пропускную способность сети. Более того, мосты в соответствии со стандартом IEEE 802.1d должны получить пакет целиком до того, как он будет передан адресату, а коммутаторы могут начать передачу пакета, не приняв его полностью

4.2.4.1 Классы коммутаторов

Хотя все коммутаторы имеют много общего, целесообразно разделить их на два класса, предназначенных для решения разных задач.

4.2.4.1.1 Коммутаторы для рабочих групп

Коммутаторы для рабочих групп обеспечивают выделенную полосу при соединении любой пары узлов, подключенных к портам коммутатора. Если порты имеют одинаковую скорость, получатель пакета должен быть свободен, чтобы не возникло блокировки

Основным преимуществом коммутаторов для рабочих групп является высокая производительность сети на уровне рабочей группы за счет предоставления каждому пользователю выделенной полосы канала (10 Mbps). Кроме того, коммутаторы снижают (в пределе до нуля) количество коллизий - в отличие от магистральных коммутаторов, описанных ниже, коммутаторы рабочих групп, не будут передавать коллизионные фрагменты адресатам. Коммутаторы для рабочих групп позволяют полностью сохранить сетевую инфраструктуру со стороны клиентов, включая программы, сетевые адаптеры, кабели. Стоимость коммутаторов для рабочих групп в расчете на один порт сегодня сравнима с ценами портов управляемых концентраторов.

4.2.4.1.2 Магистральные коммутаторы

Магистральные коммутаторы обеспечивают соединение со скоростью передачи среды между парой незанятых сегментов Ethernet. Если скорость портов для отправителя и получателя совпадают, сегмент получателя должен быть свободен во избежание блокировки.

Магистральный коммутатор обеспечивает одновременную передачу пакетов со скоростью среды между любыми парами своих портов. Подобно коммутаторам для рабочих групп, магистральные коммутаторы могут поддерживать различную скорость для своих портов. Магистральные коммутаторы могут работать с сегментами 10Base-T и сегментами на основе коаксиального кабеля. В большинстве случаев использование магистральных коммутаторов обеспечивает более простой и эффективный способ повышения производительности сети по сравнению с маршрутизаторами и мостами.

4.2.4.2 Технические реализации коммутаторов

В настоящее время коммутаторы используют в качестве базовой одну из трех схем взаимодействия своих блоков или модулей:

коммутационная матрица;

разделяемая многовходовая память;

общая шина.

Часто эти три способа взаимодействия комбинируются в одном коммутаторе

4.2.4.2.1 Коммутаторы на основе коммутационной матрицы

Коммутационная матрица - основной и самый быстрый способ взаимодействия процессоров портов, именно он был реализован в первом промышленном коммутаторе локальных сетей. Однако, реализация матрицы возможна только для определенного числа портов, причем сложность схемы возрастает пропорционально квадрату количества портов коммутатора

4.2.4.2.2 Коммутаторы с общей шиной

Коммутаторы с общей шиной используют для связи процессоров портов высокоскоростную шину, используемую в режиме разделения времени. Эта архитектура похожа на архитектуру коммутаторов на основе универсального процессора, но отличается тем, что шина здесь пассивна, а активную роль выполняют специализированные процессоры портов.

Кадр должен передаваться по шине небольшими частями, по несколько байт, чтобы передача кадров между несколькими портами происходила в псевдопараллельном режиме, не внося задержек в передачу кадра в целом. Размер такой ячейки данных определяется производителем коммутатора. Некоторые производители, например, LANNET (сейчас подразделение компании Madge Networks), выбрали в качестве порции данных, переносимых за одну операцию по шине, ячейку АТМ с ее полем данных в 48 байт. Такой подход облегчает трансляцию протоколов локальных сетей в протокол АТМ, если коммутатор поддерживает эти технологии

Шина, так же как и коммутационная матрица, не может осуществлять промежуточную буферизацию, но так как данные кадра разбиваются на небольшие ячейки, то задержек с начальным ожиданием доступности выходного порта в такой схеме нет

4.2.4.2.3 Коммутаторы с разделяемой памятью
Третья базовая архитектура взаимодействия портов - двухвходовая разделяемая память.

Входные блоки процессоров портов соединяются с переключаемым входом разделяемой памяти, а выходные блоки этих же процессоров соединяются с переключаемым выходом этой памяти. Переключением входа и выхода разделяемой памяти управляет менеджер очередей выходных портов. В разделяемой памяти менеджер организует несколько очередей данных, по одной для каждого выходного порта. Входные блоки процессоров передают менеджеру портов запросы на запись данных в очередь того порта, который соответствует адресу назначения пакета. Менеджер по очереди подключает вход памяти к одному из входных блоков процессоров и тот переписывает часть данных кадра в очередь определенного выходного порта. По мере заполнения очередей менеджер производит также поочередное подключение выхода разделяемой памяти к выходным блокам процессоров портов, и данные из очереди переписываются в выходной буфер процессора.

Память должна быть достаточно быстродействующей для поддержания скорости переписи данных между N портами коммутатора. Применение общей буферной памяти, гибко распределяемой менеджером между отдельными портами, снижает требования к размеру буферной памяти процессора порта.

4.2.4.3 Оценка необходимой общей производительности коммутатора

В реальной практике коммутатор всегда вносит некоторые задержки при передаче кадров, а также может некоторые кадры терять, то есть не доставлять их адресатам. Из-за различий во внутренней организации разных моделей коммутаторов, трудно предвидеть, как тот или иной коммутатор будет передавать кадры какого-то конкретного образца трафика. Однако, существуют несложные расчеты, которые могут дать представление о том, как коммутатор будет вести себя в реальной ситуации.

Общая производительность коммутатора должна быть больше или равна суммарной интенсивности передаваемого трафика.

Номинальная максимальная производительность протокола каждого порта коммутатора должна быть не меньше средней интенсивности суммарного трафика, проходящего через порт.

Производительность процессора каждого порта должна быть не меньше средней интенсивности суммарного трафика, проходящего через порт.

Производительность внутренней шины коммутатора должна быть не меньше средней интенсивности суммарного трафика, передаваемого между портами, принадлежащими разным модулям коммутатора.

4.3 Сетевые стандарты

4.3.1 Стандарт Ethernet

4.3.1.1 История развития

Когда говорят Ethernet, то под этим обычно понимают любой из вариантов этой технологии.

В более узком смысле, Ethernet - это сетевой стандарт, основанный на технологиях экспериментальной сети Ethernet Network, которую фирма Xerox разработала и реализовала в 1975 году (еще до появления персонального компьютера). В 1980 году фирмы DEC, Intel и Xerox совместно разработали и опубликовали стандарт Ethernet версии II для сети, построенной на основе коаксиального кабеля.

Поэтому стандарт Ethernet иногда называют стандартом DIX по заглавным буквам названий фирм.

На основе стандарта Ethernet DIX был разработан стандарт IEEE 802.3, который во многом совпадает со своим предшественником, но некоторые различия все же имеются.

В то время, как в стандарте IEEE 802.3 различаются уровни MAC и LLC, в оригинальном Ethernet оба эти уровня объединены в единый канальный уровень. В Ethernet определяется протокол тестирования конфигурации (Ethernet Configuration Test Protocol), который отсутствует в IEEE 802.3.

Несколько отличается и формат кадра, хотя минимальные и максимальные размеры кадров в этих стандартах совпадают.

Для передачи двоичной информации по кабелю для всех вариантов физического уровня технологии Ethernet используется манчестерский код.

Все виды стандартов Ethernet используют один и тот же метод разделения среды передачи данных - метод CSMA/CD.

4.3.1.2 Метод доступа CSMA/CD

В сетях Ethernet используется метод доступа к среде передачи данных, называемый методом коллективного доступа с опознаванием несущей и обнаружением коллизий (carrier-sense-multiply-access with collision detection, CSMA/CD).

Этот метод используется исключительно в сетях с общей шиной. Простота схемы подключения - это один из факторов, определивших успех стандарта Ethernet. Говорят, что кабель, к которому подключены все станции, работает в режиме коллективного доступа (multiply-access,MA).

Все данные, передаваемые по сети, помещаются в кадры определенной структуры и снабжаются уникальным адресом станции назначения. Затем кадр передается по кабелю. Все станции, подключенные к кабелю, могут распознать факт передачи кадра, и та станция, которая узнает собственный адрес в заголовках кадра, записывает его содержимое в свой внутренний буфер, обрабатывает полученные данные и посылает по кабелю кадр-ответ. Адрес станции-источника также включен в исходный кадр, поэтому станция-получатель знает, кому нужно послать ответ.

При описанном подходе возможна ситуация, когда две станции одновременно пытаются передать кадр данных по общему кабелю. Для уменьшения вероятности этой ситуации непосредственно перед отправкой кадра передающая станция слушает кабель (то есть принимает и анализирует возникающие на нем электрические сигналы), чтобы обнаружить, не передается ли уже по кабелю кадр данных от другой станции. Если опознается несущая (carrier-sense, CS), то станция откладывает передачу своего кадра до окончания чужой передачи, и только потом пытается вновь его передать. Но даже при таком алгоритме две станции одновременно могут решить, что по шине в данный момент времени нет передачи, и начать одновременно передавать свои кадры. Говорят, что при этом происходит коллизия, так как содержимое обоих кадров сталкивается на общем кабеле, что приводит к искажению информации.

Метод CSMA/CD определяет основные временные и логические соотношения, гарантирующие корректную работу всех станций в сети:

Между двумя последовательно передаваемыми по общей шине кадрами информации должна выдерживаться пауза в 9.6 мкс; эта пауза нужна для приведения в исходное состояние сетевых адаптеров узлов, а также для предотвращения монопольного захвата среды передачи данных одной станцией.

При обнаружении коллизии (условия ее обнаружения зависят от применяемой физической среды) станция выдает в среду специальную 32-х битную последовательность (jam-последовательность), усиливающую явление коллизии для более надежного распознавания ее всеми узлами сети. Каждый узел, который передавал кадр и столкнулся с коллизией, после некоторой задержки пытается повторно передать свой кадр. Узел делает максимально 16 попыток передачи этого кадра информации, после чего отказывается от его передачи. Величина задержки выбирается как равномерно распределенное случайное число из интервала, длина которого экспоненциально увеличивается с каждой попыткой. Такой алгоритм выбора величины задержки снижает вероятность коллизий и уменьшает интенсивность выдачи кадров в сеть при ее высокой загрузке.

Четкое распознавание коллизий всеми станциями сети является необходимым условием корректной работы сети Ethernet. Если какая-либо передающая станция не распознает коллизию и решит, что кадр данных ею передан верно, то этот кадр данных будет утерян, так как информация кадра исказится из-за наложения сигналов при коллизии

Все параметры протокола Ethernet подобраны таким образом, чтобы при нормальной работе узлов сети коллизии всегда четко распознавались. Именно для этого минимальная длина поля данных кадра должна быть не менее 46 байт (что вместе со служебными полями дает минимальную длину кадра в 72 байта или 576 бит). Длина кабельной системы выбирается таким образом, чтобы за время передачи кадра минимальной длины сигнал коллизии успел бы распространиться до самого дальнего узла сети. Поэтому для скорости передачи данных 10 Мб/с, используемой в стандартах Ethernet, максимальное расстояние между двумя любыми узлами сети не должно превышать 2500 метров.

4.3.1.3 Форматы кадров технологии Ethernet

Стандарт на технологию Ethernet, описанный в документе 802.3, дает описание единственного формата кадра МАС-уровня. Так как в кадр МАС-уровня должен вкладываться кадр уровня LLC, описанный в документе 802.2, то по стандартам IEEE в сети Ethernet может использоваться только единственный вариант кадра канального уровня, образованный комбинацией заголовков МАС и LLC подуровней. Тем не менее, на практике в сетях Ethernet на канальном уровне используются заголовки 4-х типов. Это связано с длительной историей развития технологии Ethernet до принятия стандартов IEEE 802.

Различия в форматах кадров могут иногда приводить к несовместимости аппаратуры, рассчитанной на работу только с одним стандартом, хотя большинство сетевых адаптеров, мостов и маршрутизаторов умеет работать со всеми используемыми на практике форматами кадров технологии Ethernet.

Ниже приводится описание всех четырех модификаций заголовков кадров Ethernet (причем под заголовком кадра понимается весь набор полей, которые относятся к канальному уровню):

Кадр 802.3/LLC (или кадр Novell 802.2)

Кадр Raw 802.3 (или кадр Novell 802.3)

Кадр Ethernet DIX (или кадр Ethernet II)

Кадр Ethernet SNAP

Заголовок кадра 802.3/LLC является результатом объединения полей заголовков кадров, определенных в стандартах 802.3 и 802.2.

Стандарт 802.3 определяет восемь полей заголовка:

Поле преамбулы состоит из семи байтов синхронизирующих данных. Каждый байт содержит одну и ту же последовательность битов - 10101010. При манчестерском кодировании эта комбинация представляется в физической среде периодическим волновым сигналом.

Начальный ограничитель кадра состоит из одного байта с набором битов 10101011. Появление этой комбинации является указанием на предстоящий прием кадра.

Адрес получателя - может быть длиной 2 или 6 байтов (MAC-адрес получателя). Первый бит адреса получателя - это признак того, является адрес индивидуальным или групповым: если 0, то адрес указывает на определенную станцию, если 1, то это групповой адрес нескольких (возможно всех) станций сети. При широковещательной адресации все биты поля адреса устанавливаются в 1. Общепринятым является использование 6-байтовых адресов.

Адрес отправителя - 2-х или 6-ти байтовое поле, содержащее адрес станции отправителя. Первый бит - всегда имеет значение 0.

Двухбайтовое поле длины определяет длину поля данных в кадре.

Поле данных может содержать от 0 до 1500 байт. Но если длина поля меньше 46 байт, то используется следующее поле - поле заполнения, чтобы дополнить кадр до минимально допустимой длины.

Поле заполнения состоит из такого количества байтов заполнителей, которое обеспечивает определенную минимальную длину поля данных (46 байт). Это обеспечивает корректную работу механизма обнаружения коллизий. Если длина поля данных достаточна, то поле заполнения в кадре не появляется. Поле контрольной суммы - 4 байта, содержащие значение, которое вычисляется по определенному алгоритму (полиному CRC-32). После получения кадра рабочая станция выполняет собственное вычисление контрольной суммы для этого кадра, сравнивает полученное значение со значением поля контрольной суммы и, таким образом, определяет, не искажен ли полученный кадр.

Кадр 802.3 является кадром MAС-подуровня, в соответствии со стандартом 802.2 в его поле данных вкладывается кадр подуровня LLC с удаленными флагами начала и конца кадра.

Результирующий кадр 802.3/LLC изображен в левой части рисунка 4. Так как кадр LLC имеет заголовок длиной 3 байта, то максимальный размер поля данных уменьшается до 1497 байт.

рис. 6 Форматы кадров Ethernet

Справа на рис. 6 приведен кадр, который называют кадром Raw 802.3 (то есть "грубый" вариант 802.3) или же кадром Novell 802.3. Из рисунка видно, что это кадр MAC-подуровня стандарта 802.3, но без вложенного кадра подуровня LLC. Компания Novell долгое время не использовала служебные поля кадра LLC в своей операционной системе NetWare из-за отсутствия необходимости идентифицировать тип информации, вложенной в поле данных - там всегда находился пакет протокола IPX, долгое время бывшего единственным протоколом сетевого уровня в ОС NetWare.

Кадр стандарта Ethernet DIX, называемый также кадром Ethernet II, похож на кадр Raw 802.3 тем, что он также не использует заголовки подуровня LLC, но отличается тем, что на месте поля длины в нем определено поле типа протокола (поле Type). Это поле предназначено для тех же целей, что и поля DSAP и SSAP кадра LLC - для указания типа протокола верхнего уровня, вложившего свой пакет в поле данных этого кадра. Для кодирования типа протокола используются значения, превышающие значение максимальной длины поля данных, равное 1500, поэтому кадры Ethernet II и 802.3 легко различимы.

Еще одним популярным форматом кадра является кадр Ethernet SNAP (SNAP - SubNetwork Access Protocol, протокол доступа к подсетям). Кадр Ethernet SNAP определен в стандарте 802.2H и представляет собой расширение кадра 802.3 путем введения дополнительного поля идентификатора организации, которое может использоваться для ограничения доступа к сети компьютеров других организаций.

В таблице приведены данные о том, какие типы кадров Ethernet обычно поддерживают реализации популярных протоколов сетевого уровня.

табл. 1 Типы кадров, поддерживаемые различными реализациями протоколов сетевого уровня

Тип кадра

Сетевые протоколы

Ethernet_II

IPX, IP, AppleTalk Phase I

Ethernet 802.3

IPX

Ethernet 802.2

IPX, FTAM

Ethernet_SNAP

IPX, IP, AppleTalk Phase II

4.3.1.4 Спецификации физической среды Ethernet

Исторически первые сети технологии Ethernet были созданы на коаксиальном кабеле диаметром 0.5 дюйма. В дальнейшем были определены и другие спецификации физического уровня для стандарта Ethernet, позволяющие использовать различные среды передачи данных в качестве общей шины. Метод доступа CSMA/CD и все временные параметры Ethernet остаются одними и теми же для любой спецификации физической среды.

Физические спецификации технологии Ethernet на сегодняшний день включают следующие среды передачи данных:

10Base-5 - коаксиальный кабель диаметром 0.5 дюйма, называемый "толстым" коаксиалом. Имеет волновое сопротивление 50 Ом. Максимальная длина сегмента - 500 метров (без повторителей).

10Base-2 - коаксиальный кабель диаметром 0.25 дюйма, называемый "тонким" коаксиалом. Имеет волновое сопротивление 50 Ом. Максимальная длина сегмента - 185 метров (без повторителей).

10Base-T - кабель на основе неэкранированной витой пары (Unshielded Twisted Pair, UTP). Образует звездообразную топологию с концентратором. Расстояние между концентратором и конечным узлом - не более 100 м.

10Base-F - оптоволоконный кабель. Топология аналогична стандарту на витой паре. Имеется несколько вариантов этой спецификации - FOIRL, 10Base-FL, 10Base-FB.

Число 10 обозначает битовую скорость передачи данных этих стандартов - 10 Мб/с, а слово Base - метод передачи на одной базовой частоте 10 МГц (в отличие от стандартов, использующих несколько несущих частот, которые называются broadband - широкополосными).

4.3.1.5 Правило 4-х повторителей

При описании топологии сети стандарта 10Base-5 приводились ограничения на длину одного непрерывного отрезка коаксиального кабеля, используемого в качестве общей шины передачи данных для всех станций сети. Отрезок кабеля, завершающийся на обоих концах терминаторами и имеющий общую длину не более 500 м называется физическим сегментом сети. Однако при расчете окна коллизий общая максимальная длина сети 10Base-5 считалась равной 2500 м. Противоречия здесь нет, так как стандарт 10Base-5 (впрочем как и остальные стандарты физического уровня Ethernet) допускает соединение нескольких сегментов коаксиального кабеля с помощью повторителей, которые обеспечивают увеличение общей длины сети.

Повторитель прозрачен для станций, он обязан передавать кадры без искажений, модификации, потери или дублирования. Говорят, что сегменты, соединенные повторителями, образуют один домен коллизий (collision domain).

В общем случае стандарт 10Base-5 допускает использование до 4-х повторителей, соединяющих в этом случае 5 сегментов длиной до 500 метров каждый, если используемые повторители удовлетворяют ограничениям на допустимые величины задержек сигналов. При этом общая длина сети будет составлять 2500 м, и такая конфигурация гарантирует правильное обнаружение коллизии крайними станциями сети. Только 3 сегмента из 5 могут быть нагруженными, то есть сегментами с подключенными к ним трансиверами конечных станций.

4.3.2 Стандарт Fast Ethernet как развитие стандарта Ethernet

В мае 1995 года комитет IEEE принял спецификацию Fast Ethernet в качестве стандарта 802.3u, который не является самостоятельным стандартом, а представляет собой дополнение к существующему стандарту 802.3 в виде глав с 21 по 30. Отличия Fast Ethernet от Ethernet сосредоточены на физическом уровне.

Более сложная структура физического уровня технологии Fast Ethernet вызвана тем, что в ней используется три варианта кабельных систем - оптоволокно, 2-х парная витая пара категории 5 и 4-х парная витая пара категории 3, причем по сравнению с вариантами физической реализации Ethernet (а их насчитывается шесть), здесь отличия каждого варианта от других глубже - меняется и количество проводников, и методы кодирования. А так как физические варианты Fast Ethernet создавались одновременно, а не эволюционно, как для сетей Ethernet, то имелась возможность детально определить те подуровни физического уровня, которые не изменяются от варианта к варианту, и остальные подуровни, специфические для каждого варианта.

Официальный стандарт 100Base-T (802.3u) установил три различных спецификации для физического уровня (в терминах семиуровневой модели OSI) для поддержки следующих типов кабельных систем:

100Base-TX для двухпарного кабеля на неэкранированной витой паре UTP категории 5, или экранированной витой паре STP Type 1;

100Base-T4 для четырехпарного кабеля на неэкранированной витой паре UTP категории 3, 4 или 5;

100Base-FX для многомодового оптоволоконного кабеля.

Форматы кадров технологии Fast Ethernet не отличаются от форматов кадров технологий 10-Мегабитного Ethernet'a.

Все времена передачи кадров Fast Ethernet в 10 раз меньше соответствующих времен технологии 10-Мегабитного Ethernet'а: межбитовый интервал составляет 10 нс вместо 100 нс, а межкадровый интервал - 0.96 мкс вместо 9.6 мкс соответственно.

4.3.3 Стандарт Gigabit Ethernet

Вопрос "Gigabit Ethernet - это Ethernet или нет?" отнюдь не праздный, и, хотя Gigabit Ethernet Alliance отвечает на него утвердительно на том основании, что эта технология использует тот же формат кадров, тот же метод доступа к среде передачи CSMA/CD, те же механизмы контроля потоков и те же управляющие объекты, все же Gigabit Ethernet отличается от Fast Ethernet больше, чем Fast Ethernet от Ethernet. В Gigabit Ethernet волоконно-оптические кабели становятся доминирующей средой передачи. Кроме того, Gigabit Ethernet ставит несравнимо более сложные технические задачи и предъявляет гораздо более высокие требования к качеству проводки. Иными словами, он гораздо менее универсален, чем его предшественники.

4.3.3.1 Спецификации физической среды Gigabit Ethernet

Основные усилия рабочей группы IEEE 802.3z направлены на определение физических стандартов для Gigabit Ethernet. За основу она взяла стандарт ANSI X3T11 Fibre Channel, точнее, два его нижних подуровня: FC-0 (интерфейс и среда передачи) и FC-1 (кодирование и декодирование). Зависимая от физической среды спецификация Fibre Channel определяет в настоящее время скорость 1,062 гигабод в секунду. В Gigabit Ethernet она была увеличена до 1,25 гигабод в секунду. С учетом кодирования по схеме 8B/10B мы получаем скорость передачи данных в 1 Гбит/с.

Спецификация Gigabit Ethernet изначально предусматривала три среды передачи: одномодовый и многомодовый оптический кабель с длинноволновыми лазерами 1000BaseLX для длинных магистралей для зданий и комплексов зданий, многомодовый оптический кабель с коротковолновыми лазерами 1000BaseSX для недорогих коротких магистралей, симметричный экранированный короткий 150-омный медный кабель 1000BaseCX для межсоединения оборудования в аппаратных и серверных. Однако в настоящее время четырехпарная 100-омная проводка Категории 5 является наиболее распространенной кабельной системой во всем мире. Учитывая это, бюро по стандартам IEEE удовлетворило в марте 1997 г. запрос на создание отдельного комитета по разработке стандарта физического уровня 1000BaseT для четырехпарных кабелей с неэкранированными витыми парами Категории 5 длиной 100 м (т. е. для сетей с диаметром 200 м, как и в 100BaseT). Эта группа получила наименование 803.2ab. Данный стандарт будет опираться на иную схему кодирования, нежели Fibre Channel, и, вероятнее всего, появится на год позже, чем остальные три стандарта.

4.3.3.2 Дифференциальная задержка

Эффект дифференциальной задержки состоит в том, что один излучаемый лазером импульс света возбуждает несколько мод в многомодовом волокне. Эти моды, или пути распространения света, могут иметь разную длину и разную задержку. В результате при распространении по волокну отдельный импульс может даже разделиться на несколько импульсов, а последовательные импульсы могут накладываться друг на друга, так что исходные данные будет невозможно остановить.

Такая рассинхронизация (jitter) встречается все же довольно часто, поэтому 802.3z Task Force и отложила принятие стандарта. Предложенное решение заключается в том, что световой сигнал источника формируется предварительно специальным образом, а именно свет от лазера распределяется равномерно по диаметру волокна, в результате чего он больше напоминает свет от светоизлучающего диода. Цель подобной процедуры состоит в более равномерном распределении энергии сигнала между всеми модами.

4.3.3.3 Расширение несущей

Один из ключевых вопросов для Gigabit Ethernet - это максимальный размер сети. Перенос без изменения всех отличительных составляющих Ethernet - минимального размера кадра, времени обнаружения коллизии (или кванта времени - time slot) и CSMA/CD - на Gigabit Ethernet обернулся бы сокращением диаметра сети до 20 м. Рабочий комитет 802.3z предложил увеличить время обнаружения коллизии с тем, чтобы сохранить прежний диаметр сети в 200 м. Такое переопределение подуровня MAC необходимо для Gigabit Ethernet, иначе отстоящие друг от друга на расстоянии 200 м станции не смогут обнаружить конфликт, когда они обе одновременно передают кадр длиной 64 байт.

Предложенное решение было названо расширением несущей (carrier extension). Суть его в следующем. Если сетевой адаптер или порт Gigabit Ethernet передает кадр длиной менее 512 байт, то он посылает вслед за ним биты расширения несущей, т. е. время обнаружения конфликта увеличивается. Если за время передачи кадра и расширения несущей отправитель зафиксирует коллизию, то он реагирует традиционным образом: подает сигнал затора (jam signal) и применяет механизм отката (back-off algorithm).

Очевидно, однако, что если все станции (узлы) передают кадры минимальной длины (64 байт), то реальное повышение производительности составит всего 12,5% (125 Мбит/с вместо 100 Мбит/с). С целью повышения эффективности Gigabit Ethernet комитет предложил метод пакетной передачи кадров. В соответствии с этим методом короткие кадры накапливаются и передаются вместе. Передающая станция заполняет интервал между кадрами битами расширения несущей, поэтому другие станции будут воздерживаться от передачи, пока она не освободит линию.

Проведенное AMD моделирование показывает, что в полудуплексной топологии с коллизиями сеть Gigabit Ethernet позволяет достичь пропускной способности 720 Мбит/с при полной нагрузке сети. Тем не менее подобные ухищрения (расширение несущей и пакетная передача кадров) свидетельствуют о том, что метод доступа к среде CSMA/CD в его теперешнем виде себя практически изжил.

Естественно, такие нововведения необходимы только для полудуплексного режима, так как для полнодуплексной передачи CSMA/CD не нужен. Действительно, в полнодуплескном режиме данные передаются и принимаются по разным путям, так что ждать завершения приема для начала передачи не требуется. Таким образом, в полнодуплескной топологии без коллизий реальная пропускная способность может превзойти указанный 72-процентный барьер и приблизиться к теоретическому максимуму в 2 Гбит/с.

5. РАЗРАБОТКА СИСТЕМЫ МОДЕЛИРОВАНИЯ

Разработка системы моделирования сводится к модификации исходных текстов Орлана с тем, чтобы он отвечал предъявленным к нему требованиям (см. раздел 1). Многие функции уже реализованы в Орлане. В частности, Орлан позволял:

графически строить конфигурацию исследуемой сети;

задавать параметры рабочих стангций, серверов, концетраторов коммутаторов и хранить их в базе данных;

соединять узлы и задавать параметры соединений;

проводить аналитическое моделирование заданной сети;

представлять результаты моделирования в виде графиков;

проводить экспресс-анализ сети;

сохранять конфигурацию сети в виде файлов проекта.

Требовалось внести следующие изменения:

усовершенствовать графический интерфейс

доработать большинство диалоговых окон, удалив неиспользуемые и добавив новые поля; доработать функции разметки узлов и поиска пути в сети; усовершенствовать модуль формирования параметров для аналитического моделирования;

и новые функции:

имитационное моделирование;

прогнозирование характеристик сети;

представление результатов имитационного моделирования в виде графиков и сравнение их с результатами аналитики.

5.1 Состав системы

В целях улучшения повторяемости, расширяемости и повышения общей надежности был выбран принцип модульности системы. Это значит, что все выполняемые функции группировались по их назначению, причем каждая группа функций выполнялась своим модулем Связность модулей по данным выбиралась возможно ниже.

Итак, разработанная система Орлан имеет в своем составе следующие модули:

Модуль ввода данных

Модуль хранения данных.

Модуль быстрой оценки загрузки сети.

Модуль аналитического моделирования.

Модуль имитационного моделирования.

Модуль прогнозирования.

Модуль отображения результатов

Схема взаимодействия между ними приведена в прил. 1, а их назначение будет подробно описано ниже.

5.2 Разработка модуля имитационного моделирования

5.2.1 Входные данные модуля

Для модуля имитационного моделирования входными данными являются:

топология сети;

рабочая нагрузка сети.

Топология сети задается в виде набора, или одномерного массива узлов с заданными связями между ними. Узлом является рабочая станция, коммутатор или сервер. Концетратор, хотя и учитывается при анализе топологии сети, в состав набора связей не включается. Причина этого в том, что концетратор, как и репитер, не изменяет сегментную структуру сети, в отличие от коммутаторов, маршрутизаторов и др.

Каждый узел имеет заданное количество портов. Например, рабочая станция, как правило - один порт Ethernet, сервер - один или два порта, коммутатор - более 16 портов. Каждому порту ставится в соответствие некоторое число, обозначающее номер соединения. Порты разных узлов, имеющие одинаковый номер соединения, считаются соединенными. Порт узла, которому присвоен номер соединения 0, считается свободным.

Рабочая нагрузка задается в виде набора заявок, где для каждой заявки указывается:

маршрут заявки;

размер запроса в байтах Nз;

время подготовки запроса в секундах Tз;

размер ответа в байтах Nо;

время подготовки ответа в байтах Tо;

время цикла заявки Tц;

нужен ли ответ сервера на запрос;

Заявка в данном случае обозначает совокупность запроса, который готовится на клиенте, и необязательного ответа на запрос, который готовится на сервере.

Запрос на своем пути от клиента к серверу обычно проходит через множество коммутаторов. Должен существовать только один путь между двумя любыми узлами сети, и он задается в виде маршрута заявки. Ответ, если он передается, проходит по тому же пути, что и запрос, но в обратном направлении.

Первый узел, на котором обрабатывается запрос - это сам клиент. Под обработкой в данном случае понимается приготовление запроса клиентским приложением в течение времени Tз. Один клиент может одновременно готовить несколько запросов для передачи на один и тот же или разные сервера. Время подготовки запроса на клиенте определяется только Tз и не зависит от Nз.

От размера пакета Nз зависит время его передачи по моноканалу. С увеличением Nт это время увеличивается, однако эта зависимость не линейная и определяется множеством факторов.

Параметры Tо и Nо имеют значение только в том случае, если требуется передать ответ сервера на запрос клиента. Если это так, их смысл аналогичен Tз и Nз соответственно.

Обычно клиентское приложение обращается к серверу с запросами на чтение и запись в базу данных, загрузку WEB-страниц и т.д. В данном случае клиент обычно не посылает следующего запроса до тех пор, пока он не получит ответ на уже посланный запрос. Чтобы задать такое его функционирование, следует указать время цикла Tц равным 0.

Довольно часто (например, на производстве) применяют датчики различных параметров, которые сообщают требуемую информацию через определенные равные промежутки времени. Эти промежутки времени следует указать в качестве времени цикла Tц.

5.2.2 Описание работы модуля

5.2.2.1 Алгоритмическая основа

Так как данный модуль моделирует функционирование сети Ethernet в соответствии со стандартом IEEE 802.3, алгоритм его работы определяется указанным стандартом, подробно описанным в разделах 4.3.1-4.3.3. Однако, имеют место некоторые обобщения и упрощения этого алгоритма, не оказывающие значительного влияния на достоверность имитационной модели.

5.2.2.2 Выбор кванта времени моделирования

Временные параметры функционирования сетей Ethernet обычно выражаются через время передачи одного бита при данной пропускной способности. Аналогично поступим в нашем случае.

Для моделирования был выбран минимальный промежуток, или квант времени tmin, равный 1 нс = 10-9с, умножением которого на целое число nx рассчитываются все необходимые задержки. Число nt определяется следующим образом:

nx = Tx / tmin ,

где Tx = требуемая задержка.

Например, передача одного байта при скорости передачи 1 Гбит/с займет: nx = ( 1 / 109 с) * 8 / 10-9 с = 8 [квантов].

В моделируемой сети может быть несколько участков (доменов коллизий) с разными пропускными способностями. Каждому такому участку назначается свое nx в зависимости от его пропускной способности.

При уменьшении tmin увеличивается точность моделирования, однако значительно возрастает вычислительная нагрузка. Поэтому предусмотрена возможность использования адаптивного минимального промежутка tmin ад. Например, если все участки сети работают на скорости передачи 10 Мбит/c, нет необходимости ждать каждому участку для передачи одного байта nx = ( 1 / 10 * 106 с) * 8 / 10-9 c = 800 [квантов]. В этом случае целесообразней взять

tmin ад = tmin * nx = 10-9 с * 800 = 8 * 10-7 c и адаптивное nx ад = 1.

Значения nx ад и tmin ад определяются участком сети с наибольшей пропускной способностью.

Время, необходимое для передачи одного байта информации в данном участке сети, мы будем называть тактом.

5.2.2.3 Описание структуры данных

Параметры устройств сети и заявок представляются в виде классов объектов на языке Object Pascal. Основными классами модуля являются:

Domain, представляющий домен коллизий сети Ethernet. Он имеет в своем составе переменные:

TicsPerTact : integer - число квантов tmin ад, необходимое для передачи одного байта в этом домене.

TicsLeft : integer - сколько осталось квантов времени до конца текущего такта.

TotalTacts : int64 - суммарное число тактов, промоделированное в этом домене.

FrameMinLength : byte - время, в течение которого возможно обнаружение коллизий.

JobWaitTics : array of int64 - общее время ожидания каждой заявки в данном домене, включая время на ожидание в очереди.

JobServicingTics : array of int64 - общее время ожидания каждой заявки в данном домене, без учета времени на ожидание в очереди

NetNode, представляющий такие узлы сети, как клиент, сервер или коммутатор. Он содержит переменные:

Сonns : array [0..31] of integer - массив номеров доменов, к которым подключен этот узел. Как правило, для рабочей станции используется только одно подключение, для коммутатора - несколько.

MaxTaskNumber : integer - максимальное число заявок, которые могут одновременно обрабатываться в этом узле.

TotalTacts : int64 - суммарное число тактов, промоделированное в этом узле.

JobWaitTics : array of int64 - общее время ожидания каждой заявки в данном узле, включая время на ожидание в очереди.

JobServicingTics : array of int64 - общее время ожидания каждой заявки в данном узле, без учета времени на ожидание в очереди

NetJob, хранящий параметры каждой заявки. Большинство параметров уже описывалось выше. Это

ReqSize : integer - размер запроса в байтах.

AnsSize : integer - размер ответа в байтах.

AnssNumber : integer - сколько нужно ответов на запрос клиента. Может принимать значения 0 или 1.

CycleTyme : int64 - время цикла заявки.

Остальными параметрами заявки являются:

Hops : array of integer - маршрут заявки, составленный из номеров узлов. Первым в этом списке идет номер клиента, последним - номер сервера. Между ними указываются номера коммутатором.

HopDelays : array if int64 - массив задержек заявки в каждом узле. Времена подготовки на клиенте и обработки на сервере стоят в этом массиве на первом и последнем местах соответственно.

FrameState : FrameStateType - текущее состояние заявки. Возможные состояния показаны на структуре имитационной модели в приложении. В программе они обозначены следующим образом:

FrameStateType = (

StInBuffer, - ожидание пакета во входном буфере узла;

StNetNode, - обработка пакета в узле;

StCanCollide, - передача начала пакета в канале;

StTransmission, - передача остатка пакета;

StPostWait, - ожидание полного освобождения канала после передачи;

StRandomWait, - пауза в передаче после возникновения столкновения;

StWaitForFree, - ожидание освобождения канала перед передачей;

StWaitForCycle ) - ожидание окончания цикла, если требуется.

NetWork, объединяющий три вышеперечисленных класса. Он содержит массивы объектов Domain, NetNode и NetJob.

Задание и хранение топологии сети, а также поиск пути между клиентом и сервером возлагается на другие модули Орлана.

5.2.3 Выходные данные модуля

Результаты моделирования хранятся в переменных JobWaitTics, JobServicingTics, TotalTacts, StatSuccCount. Их значения становятся доступными после окончания моделирования, их на их основе рассчитываются характеристики сети, интересующие сетевого администратора и пользователя.

5.2.3.1 Средняя длина очереди

Средняя длина очереди L для каждого узла Node или домена коллизий Dom и заявки Z рассчитывается следующим образом:

L:=Node.JobWaitTacts[Z] / Node.JobWaitTacts;

L:=Dom.JobWaitTacts[Z] / Dom.JobWaitTacts;

Значение JobWaitTacts для данного домена вычисляется так:

Dom.JobWaitTacts[i]:=

Dom.JobWaitTics[i] * Dom.TicsPerTact;

Средняя суммарная длина очереди для каждого узла или домена рассчитывается как сумма L по всем заявкам из массива Jobs.

5.2.3.2 Среднее время ожидания

Среднее время ожидания W в миллисекундах для каждого узла Node или домена Dom и заявки Z рассчитывается следующим образом:

W:=Node.JobWaitTics[Z] / Jobs[Z].StatSuccCount / nX;

W:=Dom.JobWaitTixs[Z] / Jobs[Z].StatSuccCount / nX;

Переменная StatSuccCount хранит число удачных передач заявки типа Z. Значение nX равно 106 / nx min.

Среднее суммарное время ожидания рассчитывается как сумма W по всем заявкам из массива Jobs.

5.2.3.3 Средняя загрузка

Средняя загрузка U в процентах для каждого узла Node или домена Dom от заявки Z рассчитывается так:

U:=Node.JobServicingTics[Z] * 100 / TotalTics;

U:=Dom.JobServicingTics[Z] * 100 / TotalTics;

где TotalTics - число квантов моделирования сети.

Суммарная загрузка узла или домена рассчитывается как сумма U по всем заявкам из массива Jobs.

5.2.3.4 Время отклика сети

Очевидно, что время, через которое пользователь получит ответ от сервера, равно времени обработки заявки W[Z]. Оно рассчитывается как сумма средних времен ожиданий заявки в каждом узле сети.

Имеет смысл также среднее время отклика сети Wzs, которое вычисляется так:

Wzs := Jobs[Z].StatSuccCount /

Lan.StatSuccCount * W[Z],

где Lan.StatSuccCount - сумма Jobs[Z].StatSuccCount по всем заявкам из массива Jobs.

5.2.4 Анализ расхождения результатов в аналитике и имитации при изменения времени моделирования в имитации

При моделировании сети следует решить вопрос о том, какоим выбрать интервал моделирования. Если взять его большим, результаты будут стабильными, то расчет модели потребует значительных ресурсов. Если же взять его слишком малым, может недопустимо уменьшиться точность. Для решения этой задачи были проведены исследования для определенной тестовой конфигурации сети. Одним из условия было малая средняя длина очереди в моноканале, то есть проверялись результаты моделирования для слабозагруженных участков. Фиксировалось:

Расхождение между аналитикой и имитацией для каждого класса заявок

Среднее расхождение между аналитикой и имитацией (для всех классов)

Расхождение между эталонным значением и полученным значением имитации для каждого класа заявок. В качестве эталонного значения берется значение в имитации для времени моделирования 10000 мс.

Среднее расхождение между эталоном и имитацией (для всех классов)

табл. 2. Время моделирования - 10000 мс

Номер класса заявки

Передано пакетов в имитации

Длина очереди

в аналитике

Длина очереди в имитации

Расхождение с аналитикой, %

0

3696

0,0846

0,1206

29,8

1

3127

0,1291

0,1588

18,7

2

5476

0,2680

0,2062

23,0

3

658

0,0869

0,0613

29,4

4

2675

0,4171

0,3264

21,7

Всего:

15632

Среднее:

24,4

табл. 3 Время моделирования - 2000 мс

Номер класса заявки

Передано пакетов в имитации

Длина очереди

в аналитике

Длина очереди в имитации

Расхождение с аналитикой, %

Расхождение с эталоном, %

0

710

0,0846

0,1092

22,5

9,4

1

632

0,1291

0,1505

14,2

5,5

2

1099

0,2680

0,2058

30,2

0,2

3

132

0,0869

0,0657

24,3

6,7

4

533

0,4171

0,3265

21,7

0,1

Всего:

3106

Среднее:

22,2

4,2

табл. 4 Время моделирования - 100 мс

Номер класса заявки

Передано пакетов в имитации

Длина очереди

в аналитике

Длина очереди в имитации

Расхождение с аналитикой, %

Расхождение с эталоном, %

0

34

0,0846

0,1298

35,3

7,1

1

28

0,1291

0,1369

5,7

13,8

2

58

0,2680

0,2064

22,9

0,1

3

6

0,0869

0,0501

42,4

18,2

4

24

0,4171

0,3227

22,6

1,1

Всего:

150

Среднее:

25,6

8,0

табл. 5 Время моделирования - 7 мс

Номер класса заявки

Передано пакетов в имитации

Длина очереди

в аналитике

Длина очереди в имитации

Расхождение с аналитикой, %

Расхождение с эталоном, %

0

2

0,0846

0,0262

69,5

77,7

1

3

0,1291

0,1361

5,1

14,3

2

2

0,2680

0,0988

63,1

52,0

3

1

0,0869

0,0000

100,0

100,0

4

1

0,4171

0,1033

75,2

68,3

Всего:

8

Среднее:

62,6

62,2

Сведем полученные результаты в таблицу, показывающую изменение среднего расхождения в зависимости от вида распределения и времени моделирования.

табл. 6 Среднее расхождение с аналитикой

Время моделирования, мс

7

100

2000

10000

62,6

25,6

22,2

24,4

табл. 7 Среднее расхождение с эталоном

Время моделирования, мс

7

100

2000

10000

62,2

8,0

4,2

-

Таким образом, можно сделать вывод, что среднее расхождение с аналитикой и эталоном достаточно медленно уменьшается при установке времени моделирования более 100 мс.

5.3 Описание других компонентов системы

5.3.1 Модуль ввода данных

5.3.1.1 Модуль ввода топологии сети

Позволяет размещать на рабочем поле узлы сети и соединять их между собой для получения нужной топологии. Параметры коммутаторов и концетраторов определяются с помощью модуля, описанного в п.5.3.2. Параметры рабочих станций и серверов в основном определяются пользователем сразу после их размещения на рабочем поле. Перемещение узлов после их размещения на рабочем поле не нарушает их соединений между собой. Для соединения указывается протокол физического уровня, среда передачи, скорость канала и длина кабеля. Например, на рис. 7 показано соединение узла “Нижний Конц. 3” с узлом “Верхний Комм”.

рис. 7. Соединение двух узлов

5.3.1.2 Модуль задания рабочей нагрузки

Рабочая нагрузка задается в соответствии с описанием входных данных для модуля имитационного моделирования (раздел 5.2.1). Маршрут задается указанием узла-клиента и узла-сервера для каждой заявки (рис. 8).

рис. 8.Задание рабочей нагрузки.

5.3.2 Модуль хранения данных

Данный модуль предназначен для ввода, редактирования и хранения следующей информации об элементах, используемых в системе Орлан, в частности, коммутаторах и концетраторах: производителя, наименования, частоты внутренней шины, стоимости, описания портов и т.д. (см. рис. 9).


Подобные документы

  • Основные этапы обслуживания и модернизации локальной сети предприятия. Вид автоматизированной деятельности на предприятии. Выбор топологии локальной вычислительной сети. Аппаратные и программные средства. Характеристика семиуровневой модели OSI.

    курсовая работа [2,1 M], добавлен 13.02.2016

  • Особенности создания имитационной модели сети кафедры. Проведение экспериментов для получения информации об "узких местах" проектируемой сети. Расчет активного и пассивного оборудования. Построение логической схемы сети. Анализ загрузки каналов связи.

    курсовая работа [4,2 M], добавлен 11.12.2012

  • Разработка компьютерных моделей, позволяющих рационально организовать потоки в железнодорожной сети. Составление списков входных и выходных параметров имитационной модели железнодорожной транспортной сети. Реализация алгоритма, листинг программы.

    курсовая работа [1,4 M], добавлен 05.09.2009

  • Особенности проектирования и анализ современных информационных локальных и глобальных вычислительных сетей. Проведение настройки виртуальной локальной вычислительной сети (VLAN), HTTP и DNS серверов, сетевых протоколов OSPF, RIP, STP, технологий NAT.

    курсовая работа [182,1 K], добавлен 16.01.2014

  • Изучение принципов построения локальных вычислительных сетей. Обоснование выбора сетевой архитектуры для компьютерной сети, метода доступа, топологии, типа кабельной системы, операционной системы. Управление сетевыми ресурсами и пользователями сети.

    курсовая работа [1,8 M], добавлен 25.04.2016

  • Понятие и основные характеристики локальной вычислительной сети. Описание типологии "Шина", "Кольцо", "Звезда". Изучение этапов проектирования сети. Анализ трафика, создание виртуальных локальных компьютерных сетей. Оценка общих экономических затрат.

    дипломная работа [990,2 K], добавлен 01.07.2015

  • Классификация локальных сетей по топологии. Сетевая архитектура Ethernet. Функциональная схема локальной вычислительной сети. Конфигурация сетевого оборудования: количество серверов, концентраторов, сетевых принтеров. Типовые модели использования доменов.

    дипломная работа [447,5 K], добавлен 08.05.2011

  • Общая характеристика локальных вычислительных сетей, их основные функции и назначение. Разработка проекта модернизации локальной компьютерной сети предприятия. Выбор сетевого оборудования, расчет длины кабеля. Методы и средства защиты информации.

    дипломная работа [1,5 M], добавлен 01.10.2013

  • Понятие и структура локальной вычислительной сети как коммуникационной системы, объединяющей компьютеры и подключаемое к ним оборудование. Принципы ее формирования и оценка функционирования. Исследование возможностей и эффективности работы сети.

    дипломная работа [639,1 K], добавлен 19.06.2015

  • Понятия и назначение одноранговой и двухранговой вычислительных сетей. Изучение сетевой технологии IEEE802.3/Ethernet. Выбор топологии локальной сети, рангового типа и протокола с целью проектирования вычислительной сети для предприятия ОАО "ГКНП".

    курсовая работа [432,9 K], добавлен 14.10.2013

Работы в архивах красиво оформлены согласно требованиям ВУЗов и содержат рисунки, диаграммы, формулы и т.д.
PPT, PPTX и PDF-файлы представлены только в архивах.
Рекомендуем скачать работу.