Экспертная система прогнозирования успеваемости студентов в ВУЗах

Понятие экспертных систем, их классификация, виды и структура. Построение продукционной модели экспертной системы прогнозирования результатов сессии на основании анализа успеваемости, ее реализация в языке логического программирования Visual Prolog.

Рубрика Программирование, компьютеры и кибернетика
Вид дипломная работа
Язык русский
Дата добавления 25.01.2011
Размер файла 1,6 M

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

Нечеткую модель можно построить, основываясь на формальном представлении характеристик исследуемой системы в терминах лингвистических переменных. Основные понятия систем управления - входные и выходные переменные, именно их рассматривают как лингвистические переменные при формировании базы правил в системах нечеткого вывода.

Цель управления заключается в анализе текущего состояния объекта управления, чтобы определить значения управляющих переменных, реализация которых позволяет обеспечить желаемое поведение или состояние объекта управления.

Ниже на рисунках мы представим входные в систему переменные

Теперь их нужно вязать между собой и сделем мы это с помощью Simulink-модели которая представлена ниже.

Листинг программы:

a1 = readfis('pr1')

a2 = readfis('pr2')

a3 = readfis('pr3')

a4 = readfis('pr4')

a5 = readfis('pr5')

a6 = readfis('pr6')

a7 = readfis('pr7')

a8 = readfis('pr8')

a9 = readfis('pr9')

a10 = readfis('pr10')

Рис. 3.5. «Представление системы в MatLab/ Simulink»

3.4.2 Тестирование экспертных систем и расчет эффективности с помощью регрессионного анализа

Протестируем систему в прологе со сведущими исходными данными:LIO=1;

LIK=1;

LSR=1;

LSS=1;

LP=1;

PSL=2;

PSP=1;

PSB=3;

PL=80;

PP=80;

YHB=5;

YHY=1;

YTB=5;

YTS=1;

YSB=5;

YSS=1;

KYRS=1;

Результат:

-------------------------------------------------------------------------------

Student female person Kseniya of 22 years old your estimation -5

А теперь введем те же самые данные в систему в MatLab/ Simulink. Ниже представленный результат. А потом сравним их с помьщью регрессионного анализа

Поскольку в MatLab/ Simulink мы применяем нечеткую логику , то выходные параметры являются не целыми числами и мы их округляем в большую сторону. В результате повторного тестирования мы получаем данные в следствии 10 экспериментов и анализируем их с помощью регрессионного анализа.

Ниже преведены данные и реализация регрессионного анализа:P=[5 5 5 4 5 3 3 4 4 5];

Z=[5 5 5 4 5 3 3 4 4 5];

[m,b,r]=postreg(Z,P)

m = 1.0000

b =9.5844e-016

r =1

Как видно из представленных выше графиков система в разных пакетах немного по разному работает ,это следствие того что в прологе мы не применяем нечеткую логику в отличии от MatLab, но в результате округления можно точно сказать что результаты получаются идентичные , а этьо значит что обе системы работают правильно.

Выводы по разделу 3

В результате проведения исследования можно сказать, что продукционная модель построения знаний в экспертной системе прогнозирования результатов сессии на анализе текущей успеваемости она, являются наиболее наглядным средствами представления знаний и наиболее аффективными для данной модели. Также эта модель легко реализуется в языке MatLat/ Simulink с помощью Fuzzy Logic Toolbox , поскольку логический вывод уже реализован в этом пакете. В результате мы провели сравнения программ с помощью регрессионного анализа.

РАЗДЕЛ 4. РАЗРАБОТКА МЕРОПРИЯТИЙ ПО ОБЕСПЕЧЕНИЮ БЕЗОПАСНОСТИ ЖИЗНЕДЕЯТЕЛЬНОСТИ

4.1 Предмет исследования

Предметом исследования в данной дипломной работе является разрабатываемый программный продукт для прогнозирования результатов сессии на основе анализа текущей успеваемости. Так как полностью безопасных и безвредных производственных процессов не существует, и при различных неисправностях в работе с системой могут возникнуть вредные производственные факторы, то вследствие этого в разделе будут рассмотрены основные требования по безопасности жизнедеятельности для помещений вычислительных центров (ВЦ).

4.1.1 Анализ опасных и вредных производственных факторов, действующих в рабочей зоне проектируемого объекта

Вредные и опасные производственные факторы описывает ГОСТ 12.0.003-74. Согласно данному стандарту они подразделяются на химические, физические, биологические, психофизические.

Химические, опасные и вредные производственные факторы:

- по характеру воздействия: токсические, канцерогенные, раздражающие;

- по пути проникновения в организм человека: через органы дыхания.

Источником возникновения данных факторов чаще всего становится не соблюдение санитарных норм вентиляции рабочего помещения, а также некорректная работа с сыпучими и жидкими токсичными веществами (например, краской для принтеров или копировальных машин).

Физические, опасные и вредны производственные факторы:

- повышенное электрическое напряжение в цепи;

- пониженная контрастность;

- прямая и отраженная блесткость;

- недостаточна освещенность рабочего места;

- повышенный уровень шумов в рабочем помещении.

Данные факторы проявляются при не соблюдении требований к оборудованию, при не соответствии освещения рабочего места санитарным нормам, а также при использовании электронно-лучевых трубок (ЭЛТ) не соответствующих международным стандартам на ЭЛТ (например, ТСО'92).

Биологические, опасные и вредные производственные факторы:

- патогенные микроорганизмы;

- микроорганизмы.

Источником возникновения данных факторов чаще всего становится не соблюдение санитарных норм вентиляции рабочего помещения, а также бактерии, вирусы, грибки и продукты их жизнедеятельности.

Психофизиологические, опасные и вредные производственные факторы:

- умственное перенапряжение;

- перенапряжение анализаторов;

- эмоциональные нагрузки.

Источником возникновения данных факторов являются чрезмерные информационные нагрузки, и превышение рекомендуемого времени работы за компьютером.

Согласно ГОСТ 12.0.003-74 для машинного зала вычислительного центра опасными и вредными факторами, негативно воздействующими на здоровье рабочего персонала, являются:

1. Физические факторы воздействия:

1.1. повышенный уровень электромагнитного поля;

1.2. повышенный уровень статического электричества;

1.3. недостаточная освещенность;

1.4. повышенный уровень шума;

1.5. повышенная или пониженная влажность воздуха;

1.6. повышенная или пониженная температура воздуха;

1.7. повышенная или пониженная подвижность воздуха;

1.8. пожар;

1.9. поражение электрическим током;

2. Психофизические факторы:

2.1. перенапряжение зрительных или слуховых анализаторов;

2.2. монотонность труда;

2.3. эмоциональные перегрузки;

2.4. усталость групп мышц из-за малой подвижности и нерационально спланированное рабочее место.

Той опасной зоной, где возможно возникновение и действие перечисленных выше факторов, является как непосредственное рабочее место разработчика возле персонального компьютера, так и все помещение вычислительного центра в целом.

4.1.2 Анализ возможных последствий влияния выявленных факторов на человека

Химические, опасные и вредные факторы способны вызывать тяжелые легочные заболевания и заболевания верхних дыхательных путей. Особо осторожными необходимо быть при работе с токсичными веществами, использующимися как наполнители в множительной аппаратуре и периферийных устройствах.

Поражение человека электрическим током, в зависимости от величины напряжения в цепи, может быть причиной шока, ожогов различной степени и даже смерти.

Недостаточная освещенность рабочего места, пониженная контрастность символов на экране монитора, прямая и отраженная блесткость - все эти факторы могут послужить причиной снижения остроты зрения и возникновения различных заболеваний органов зрения. Вредные и опасные психофизиологические факторы вызывают снижение трудоспособности человека, умственное истощение, а в худшем случае приводят к психическим заболеваниям.

4.2 Разработка мероприятий по предотвращению или ослаблению возможного воздействия выявленных опасных и вредных факторов на человека

Для предотвращения вредного и опасного влияния выявленных факторов на человека необходимо строгое соблюдение санитарных норм организации труда и соответствие используемого оборудования ГОСТам.

Санитарно - технические требования к помещениям ВЦ определяются санитарными нормами СН 245 - 71. Объем производственного помещения на одного рабочего не менее 15 м3 и площадь помещения выгороженного сенами или глухими перегородками не менее 4,5 м2 . Площадь помещения для хранения магнитных носителей информации ( если конечно разместить потребное количество стеллажей, шкафов, столиков и пр. Двери должны быть металлическими или деревянными, обитыми листовым жезлом. Помещение, где хранятся магнитные носители, должно находится вдали от сильных электрических и магнитных полей и экранироваться от их влияния. Общие рабочие комнаты и кабинеты должны иметь естественное освещение. В остальных помещениях допускается искусственное освещение.

При планировке рабочего места оператора необходимо принимать во внимание эргономические факторы. Необходимо учитывать зоны досягаемости рук оператора при расположении дисплеев, пульта ЭВМ, принтера. Эти зоны, установленные на основании антропометрических данных, человеческого тела дают возможность рационально разместить как по горизонтали, так и по вертикали клавиатуру пульта, его сигнализацию и т.п. Также большое значение имеет рациональное расположение на пультах управления средств сигнализации и контрольных приборов.

4.2.1 Микроклимат в помещениях оборудованных ПЭВМ

Рабочие помещения должны быть оснащены вентиляционными установками - устройствами, обеспечивающими в помещении такое состояние воздушной среды, при котором человек чувствует себя нормально.

С точки зрения комфортных производственных условии, атмосфера производственной среды должна иметь:

- определенное соотношение газов, входящих в воздушную среду;

- определенную температуру;

- определенную влажность;

- определенное давление;

- определенную скорость перемещения воздуха.

Комфортное для работы человека является давление 750-760 мм ртутного столба.

Уровень давления и газовый состав воздуха в рассматриваемой производственной среде, т.е. в помещениях ВЦ зависят в большей мере т состояния окружающей его атмосферы. Но существуют и нормы запыленности воздуха в помещении ВЦ, которые нежелательно превышать, чтобы обеспечить сохранность здоровья человека и бесперебойную работу техники. В устройства вычислительных машин должен подаваться воздуха:

- с температурой от до С;

- максимальной запыленностью 0.75 мг/ м3

Метеорологические условия в рассматриваемом производственном помещении определяются температурой, влажностью и скоростью движения воздуха. При легкой (1а) категории выполняемых работ в рабочей зоне вычислительных центров должны обеспечиваться нормы, приведенные в следующей таблице:

Таблица 4.1.

«Допустимые нормы температуры, относительно влажности и скорости движения воздуха для ВЦ»

Период года

Температура воздуха, С

Относительная влажность воздуха, %

Скорость движения воздуха, м/с

Холодные и переходные периоды (температура наружного воздуха

< 10С

18-25

75

не более 0.2

Теплый период (температура наружного воздуха > 10С)

20-25

не более 70

не более 0.5

Для обеспечения требуемой температуры и влажности необходимо оборудовать помещение ВЦ приборами центрального или индивидуального отопления. Для обеспечения заданных метеорологических условий и чистоты воздуха необходимо организовать систему вентиляции помещения.

Вентиляция может быть:

- естественная;

- искусственная;

- смешанная;

- по месту действия: общеобменная и местная.

Помещение рассматриваемого ВЦ оборудовано общеобменной вытяжкой системой вентиляции и кондиционирующими установками, а также приборами центрального отопления.

Принятые меры обеспечивают в достаточной мере поддержание комфортных условий: температуры, влажности, чистоты и скорости движения воздуха в помещении для работы оператора ПЭВМ или программиста, выполняющего проектирование программного обеспечения для данной дипломной работы в помещении вычислительного центра.

4.2.2 Освещенность рабочего места пользователя ПК

В помещении ВЦ должно быть соответствующее освещение. Согласно действующим Строительным нормам и правилам СНиП II-4-79 для искусственного освещения регламентирована наименьшая допустимая освещенность рабочих мест, а для естественного и совмещенного - коэффициент естественной освещенности - КЕО. Расчет требуемого освещения приведен ниже. Рекомендуемая освещенность для работы в экраном дисплея составляет 200 лк, а при работе с экраном в сочетании с работой над документами - 400 лк. Рекомендуемые яркости в поле зрения операторов должны лежать в пределах 1:5-1:10.

4.2.3 Уровень звуковых шумов в помещениях с ЭВМ

Шум является одним из наиболее распространенных в производстве вредных факторов. По происхождению шум делят на механический, аэродинамический и шумы электрических машин. На рабочем месте оператора ЭВМ могут присутствовать все эти виды шумов. Так принтер создает механический шум, установки кондиционирования, вентиляторы - аэродинамический, преобразователи напряжения, блоки бесперебойного питания - электромагнитный. Шумы подразделяют по характеру спектра и по временным характеристикам. В нашем случае шум может создавать работающий принтер и внутренняя система вентиляции компьютера.

Шум имеет следующие характеристики: тональный, непостоянный и прерывистый. Средства индивидуальной защиты от шума наушники, вкладыши. Средства общей защиты: специальное покрытие поверхности стен шумопоглощающими материалами.

Уровень шума не должен превышать 75 дБ. Для IВМ совместных компьютеров, которые получили в нашей стране наибольшее распространение, уровень издаваемого ими шумов составляет 25 дБ.

4.2.4 Пожарная безопасность

При работе необходимо соблюдать пожарную безопасность. В помещениях ВЦ, где расположены ЭВМ, для тушения пожаров рекомендуется применять инертные газы или огнетушащие порошковые составы. Это обусловлено тем, что применять воду или пену недопустимо ввиду опасности повреждения или полного выхода из строя дорогостоящего электронного оборудования.

Для ликвидации пожаров в начальной стадии могут применять порошковые огнетушители типа ОП-5-01 или углекислотные огнетушители (ОУ-2, ОУ-5, ОУ-8). Ручные углекислотные огнетушители устанавливаются в помещениях ВЦ из расчета один огнетушитель на 40 - 50 м2 площади, но не менее двух в помещении. Запрещается хранение в помещении пустых упаковочных коробок от оборудования, легковоспламеняющегося мусора.

Для приема пищи должна быть оборудована отдельная комната. Запрещается включать электрокипятильники, чайники и т.п. в помещении ВЦ. Кондиционеры, приборы вентиляционной системы и другие электрические приборы необходимо содержать в исправном состоянии и соответствующие специалисты должны регулярно их проверять на исправность.

Пути эвакуации на случай возникновения пожара должны быть свободны. Помещение ВЦ должно быть оборудовано пожарной сигнализацией.

Работники ВЦ должны быть знакомы с правилами обращения со средствами огнетушения, которые находятся в помещении ВЦ. Необходимо, чтобы на стендах были доступно и понятно описаны правила поведения при пожаре, правила использования приборами огнетушения, средствами защиты при пожаре, планом эвакуации, правилами оказания первой помощи при получении ожогов. Должен быть также оформлен документ работниками предприятия о том, что они ознакомлены с правилами пожарной безопасности.

Для своевременного обнаружения очагов возгорания и оповещения применяются системы автоматической пожарной и охранно-пожарной сигнализации. Учитывая стоимость оборудования, наличия систем вентиляции, большого числа скрытых коммуникаций, а также специфику возгорания ЭВМ, предпочтение следует отдавать дымовым пожарным извещателям. Количество извещателей определяется необходимостью обнаружения возгорания по всей контролируемой зоне помещений. Нормы расстановки дымовых пожарных извещателей представлены в таблице 6.2.

Таблица 4.2.

«Нормы расстановки дымовых пожарных извещателей»

Высота установки извещателя, м

Площадь контролируемая одним извещателем, м2

Максимальное расстояние, м

Между извещателями

от извещателя до стены

до 3,5

85

9,0

4,5

с 3,5 до 6,0

70

8,5

4,0

с 6,0 до 10,0

65

8,0

4,0

с 10,0 до 12,0

55

7,5

3,5

4.2.5 Экологическая безопасность

Спектр излучения компьютерного монитора включает в себя рентгеновскую, ультрафиолетовую и инфракрасную области, а также широкий диапазон электромагнитных волн других частот. Действие этих излучений на человека еще не до конца излучено, однако считается, что наиболее вредны низкочастотные электромагнитные поля, а не рентгеновские лучи, опасность которых специалисты считают сейчас пренебрежимо малой, поскольку этот вид излучения поглощается веществом экрана. Поэтому большое значение имеет защита оператора ЭВМ от электромагнитных излучений.

Основным средством защиты пользователя от излучений, генерируемых монитором, являются специальные фильтры. Хотя большинство фильтров и не полностью поглощают магнитное поле, они все же частично экранируют его, а также устраняют статические поля. Фильтр обязательно должен быть заземлен, иначе его применение бессмысленно.

Необходимо строгое соблюдение регламентированных перерывов, введение 2-3-х дополнительных перерывов по 10 мин. Кроме этого необходимо применять электронно-лучевые трубки с минимальными показателями ионизирующего излучения.

Оператор непосредственно может находиться на расстоянии от 0.5 до 2 м от экрана монитора. Экраны для защиты от - излучений обычно делают двухслойными: со стороны источника применяются материалы с малым атомным номером, чтобы тормозное излучение было менее приникающим, а за ним помещается слой материала с большим атомным номером для поглощения тормозного излучения.

Перспективным является применение жидкокристаллических дисплеев.

4.2.6 Расчет искусственного освещения в помещении вычислительного центра

Для расчета общего равномерного освещения применяется метод светового потока, учитывающий световой поток, отраженный от полка и стен.

Схема компьютерного класса изображена на рисунке 4.1. Расстояние между рабочими столами с компьютерами в направлении тыла поверхности одного видеомонитора и экрана другого видеомонитора должно быть не менее 2 м, а расстояние между боковыми поверхностями видеомониторов - не менее 1,2 м.

Рис.4.1. «Схема компьютерного класс»

Световой поток лампы (лм) при люминесцентных лампах рассчитывают по формуле (6.1):

(4.1)

где Е - нормированная минимальная освещенность, лк;

S - площадь освещаемого помещения, кВ.

z - коэффициент минимальной освещенности, равный 1,15;

k - коэффициент запаса для рассматриваемого случая равен 1,5 (для газоразрядных ламп);

N - число светильников в помещении;

n - коэффициент использования светового потока ламп, зависящий от КПД и кривой распределения силы света светильника, коэффициента отражения потолка и стен , высоты подвеса светильников и показатели помещения , вычисляемого по формуле (4.2):

, (4.2)

где: А и В - два характерных размера помещения;

- высота подвеса светильников над рабочей поверхностью. Для рассматриваемого случая, т.е. для помещения вычислительного центра А и В - это ширина и длина помещения А=5м, В=6м, высота подвеса светильников =3м. Итак, показатель освещения равен:

Коэффициент использования светового потока n определяется по таблицам: по выбранному типу светильника (ПВЛМ - ДР) и по вычислительному параметру i. Таким образом n=41. Нормированную минимальную освещенность также определяем по таблицам: E=300лк.

Площадь освещаемого помещения: S=30 кв.м.

Число светильников в помещении: N=6шт.

Итак, определены все необходимые параметры для определения светового потока . Отсюда:

лк

Подсчитав световой поток лампы , по таблицам, подбираем ближайшую стандартную лампу ЛБ 40-4, у которой =3000 лм, со световой отдачей 75 лм/Вт. Мощность осветительной системы составляет 480 Вт.Система освещения изображена на рисунке 4.2.

Рис. 4.2. «Схема искусственного освещения»

4.3 Анализ возможных чрезвычайных ситуаций. Разработка мероприятий по уменьшению вероятности их возникновения

Основной задачей гражданской обороны (ГО) является предотвращение чрезвычайных ситуаций (ЧС), организация и проведение спасательных работ в районе возникновения ЧС.

Чрезвычайная ситуация - нарушение нормальных условий жизнедеятельности людей, которая явилась причиной материальных и человеческих потерь.

Рассмотрим перечень вероятных чрезвычайных ситуаций на территории вычислительного центра атомной электростанции:

1. Пожары, взрывы (10200)

- пожары, взрывы на коммунальном технологическом оборудовании промышленных объектов (10201);

1. Внезапные разрушения сооружений (10600)

- разрушение зданий и сооружений производственного назначения (10602);

3. Аварии на электроэнергетических системах (10700)

- аварии на электроэнергетических сетях (10706);

4. Аварии в системах жизнеобеспечения (10800)

- аварии в канализационных системах с массовым выбросом загрязняющих веществ (10802);

- аварии на теплосетях ( в системах обеспечения горячей водой) в зимний период (10802).

Рассмотрим более детально одну из ЧС, возникновение которой наиболее вероятно. Проанализируем физическую стойкость вычислительного центра атомной электростанции к воздействию инфракрасного излучения, возникшего в результате пожара.

Пожарная обстановка на объекте - это обстановка, которая может возникнуть при возникновении чрезвычайных ситуаций, связанных с воздействием световых импульсов от ядерных и других взрывов, с действием инфракрасного излучения открытого огня, с действием вторичных факторов, а также действием стихийных бедствий.

Возникновение, развитие и распространение пожаров на объекте зависит:

- от степени огнестойкости зданий и сооружений элементов объекта;

- от категории взрывопожарной безопасности технологических процессов;

- от характера застройки территории объекта.

Предположим, пожар возник по причине несоблюдения правил техники безопасности либо по причине короткого замыкания электропроводки.

Наша задача состоит в том, чтобы рассчитать границы зон возможных сплошных и отдельных пожаров.

- зона сплошных пожаров;

- зона отдельных пожаров;

- величина плотности потока мощности светового излучения.

В случае проведения прогноза последствий пожара, который возник в здании, рекомендуется определять, радиусы границ возможных сплошных () и границ возможных отдельных пожаров () по формулам (6.3) и (6.4) соответственно:

(4.3)

(4.4)

где К- удельная тепловая нагрузка Вт/м2. Принимаем К = 233000 Вт/м2.

, , … - общая площадь 1-го, 2-го, i-го элементов конкретного здания, м2.

- коэффициент, что характеризует «доступность» элемента к возгоранию.

Общая площадь вычислительного центра: 100 м2.

Площадь, занимаемая компьютерной техникой: 10 м2.

Материалы

Все вещества, которые находятся в открытом виде 1

Деревянные полы, уложенные на несгораемую основу 0.15

На схеме 6.3. показаны радиусы поражения пожаром.

Рис. 4.3. «Схема распространения пожара в помещении»

Определим необходимое количество первичных средств пожаротушения. Для вычислительных центров на 100 м2 требуется:

- углекислотных огнетушителей ручных ОУ-2, ОУ-5, ОУ-8 - 1шт.;

-пенных огнетушителей химических, воздушно пенных, жидкостных - 1шт.;

-войлок (1x1м), кошма (2x1.5м) или асбест (2x2м) - 1шт.

Следовательно, для рассматриваемого ВЦ необходимо:

- углекислотных огнетушителей ручных ОУ-8-1шт.;

- воздушно-пенных огнетушителей-1шт.;

- войлок (1x1м)-1шт.

Выводы: по оценке ожидаемой пожарной обстановки, которая может возникнуть на территории ВЦ в результате возгорания электропроводки.

1. В какой из зон пожаров может оказаться исследуемый объект?

Согласно прогнозу, исследуемый объект окажется в зоне сплошных и отдельных пожаров.

2. Возможная величина потерь основных производственных фондов.

Согласно с нормативами ГО прогнозируются потери основных производственных фондов до 30% их общего объема.

3. Возможные места возникновения источников вторичных поражающих факторов и их характеристика.

Вследствие возгорания электропроводки возникают такие вторичные поражающие факторы как световое излучение, задымление, выделение СДОР.

4. Возможный характер и объем спасательных и других нетложных работ.

4.3.1 Определение социально-экономических последствий воздействия светового излучения пожаров

Согласно «Положение о классификации ЧС» в перечень возможных аварий при работе на данной технологической установке входят:

- пожар вследствие замыкания электропроводки (10201, 10205);

- взрыв баллонов высокого давления (10201, 10206, 10205).

Первичными поражающими факторами при пожаре являются:

- световое излучение;

- задымление окружающей среды.

Действие светового излучения на людей может привести к их поражению (ожоги, повреждения органов зрения и др.) и даже гибели. Действие этого поражающего факторов на здания, сооружения, технологическое оборудование, транспортные средства и другие материальные объекты может вызывать их возгорание и другие повреждения.

Действие задымления окружающей среды на людей может привести к ожогам верхних дыхательных путей и поражение органов зрения, затрудняет дыхание или вызывает кислородный голод, резко уменьшаются возможности визуального осмотра окружающей среды. Действие на материальные объекты задымление окружающей среды приводит к их закопчению и покрытием слоем пыли продуктов сгорания, а в некоторых случаях может вызывать другие повреждения этих объектов.

При прогнозировании возможной степени поражений людей под воздействием светового излучения первичного пожара рекомендуется предполагать, что все люди, которые оказались в зоне всеобщих пожаров, могут получить ожоги открытых участков кожи первой, второй, третьей и четвертой степени, поражение органов зрения (в виде временного ослепления) и даже погибнуть.

Организм человека плохо приспособлен к воздействию тепловых нагрузок. Большинство людей, например, выдерживает без негативных последствий на протяжении длительного времени действие светового излучения первичного пожара интенсивностью кВт/м2. Тем не менее рекомендуется прогнозировать, что ожоги первой степени открытых участков кожного покрова человека возникают практически сразу, если плотность потока мощности светового излучения первичного пожара (в том месте, где находится человек) кВт/м2. Ожоги второй степени возникают при кВт/м2, ожоги третьей степени при кВт/м2, ожоги четвертой степени - при кВт/м2.

Брезентовая одежда и одежда светлого цвета из природных (особенно хлопковых) тканей надежно защищает кожные покровы человека, а очки с темными светофильтрами защищают его органы зрения от воздействия светового излучения пожара, но даже одетые люди могут получать ожоги в результате прямого контакта с пламенем или в результате возгорания.

Учитывая сказанное выше, рекомендуется расчеты возможных потерь людей от воздействия светового излучения первичного пожара производить с использованием соотношения (5.5):

, (4.5)

Где - общие потери людей (т.е. количество людей, которые погибнут или получат ожоги разной степени) в случае возникновения пожара;

- количество людей, которые в момент возникновения пожара могут работать (находились) на открытой местности в зоне возможного пожара.

4.3.2 Определение социально- экономических последствий воздействия задымления

Задымление производственного помещения затрудняет процессы дыхания людей (которые находятся в нем) и может привести к возникновению кислородного голодания и отравления.

Рекомендуется прогнозировать возможный уровень поражения людей от воздействия кислородного голодания по величине содержания кислорода - в воздухе рабочей зоны задымленного (в результате пожара) производственного помещения, которое можно определить с использованием состояния (5.6):

(4.6)

где - содержание кислорода в воздухе рабочей зоны задымленного (вследствие пожара) производственного помещения, %;

Q - масса запасов объекта -прототипа (который находится в рабочем помещении), кг;

- удельная масса воздуха рабочей зоны, кг/м (кг/м);

- свободный объем производственного помещения, м.

Следовательно,

При снижении кислорода в воздухе производственного помещения ( от 19 до 15%) люди для поддержания своей жизнедеятельности рефлекторно увеличивают частоту и глубину своего дыхания.

Аналогично спрогнозируем возможный уровень поражений людей от воздействия задымления по величине концентрации угарного газа (СО) в воздухе производственного помещения:

, (4.7)

где - концентрация угарного газа в воздухе производственного помещения, мг/ м;

- масса угарного газа при пожаре, мг;

Q - масса запасов объекта-прототипа, кг;

- свободный объем производственного помещения, м.

Отсюда:

Определив значение , следует отметить, что полученная величина превышает гранично-допустимую концентрацию угарного газа (2*10).

Таким образом, могут наступить поражения людей:

- потеря сознания;

- нарушение дыхания;

- нарушение сердечнососудистой системы организма.

Однако такая концентрация не приведет к гибели людей.

В результате можно спрогнозировать тот или иной уровень поражения всех членов производственного персонала, которые могут находится в помещении.

, (4.8)

где - общие потери людей при задымлении, чел.

При работе на данной технологической установке задействован персонал в количестве 4 человек. Поэтому:

Прогнозируется необходимость проведения таких видов спасательных и других неотложных работ:

- локализация и гашение пожара;

-эвакуация людей и оказание медицинской помощи пораженным;

- локализация аварии на электроэнергетической сети ВЦ, ее ремонт и обновление.

Вывод по разделу 4

В результате анализа безопасности жизнедеятельности в компьютеризированных кабинетах был выявлен ряд факторов, негативно воздействующих на человека. Рассмотрены мероприятия по предотвращению или ослаблению их воздействия.

Также был проведен анализ факторов влияющих на человека в производственных помещениях. Для предотвращения влияния этих воздействий, также рассмотрены соответствующие мероприятия.

При соблюдении всех норм безопасности достигается максимальная производительность труда сотрудников, работающих с информационной, производственной и управляющей подсистемами.

РАЗДЕЛ 5. ЭКОНОМИЧЕСКАЯ ЧАСТЬ

5.1 Разработка комплексного плана работ по теме

Предлагаемое изделие - программный продукт в виде экспертной система, которая прогнозирует результаты сдачи сессии студентом на основе анализа текущей успеваемости.

Продукт разработан в программной среде SWI-Prolog. Для функционирования ПП необходима ПЭВМ, удовлетворяющая следующим условиям: процессор 300 МНr; 128 Mb ОП; HDD - 20 Mb; дисковод; операционная система Windows XP.

Данная конфигурация предложена из соображений приемлемого времени выполнения.

Занимает 1,38 Mb и предназначен для использования на ПК. Скорость выполнения функций ПП зависит от количества одновременно подключаемых внешних модулей и от конфигурации ПК.

Программа проста в использовании, удобна, имеет дружественный пользовательский интерфейс.

Для ведения всего проекта в целом и руководства ходом работ необходима должность руководителя темы. Для проектирования подсистемы и ее последующей наладки и введения в эксплуатацию необходимо участие программиста.

Рассчитаем продолжительность разработки по видам работ. Результаты расчетов содержит табл. 5.1.

Таблица 5.1

«Перечень работ»

Код

Наименование

Продолжит. дни

Трудоемкость, чел/днях

Исполнит.

Руководи-тель

Програ-

ммист

0-1

1. Организационная подготовка к созданию ПО

1

1

1

0-2

2. Разработка ТЗ на постановку задачи

14

14

14

Постановка задачи

0-5

1. Разработка мат. модели и алгоритмов

16

16

16

3-6

2. Техническое обеспечение

3

3

3

1-4

3. Разработка схем программ

5

5

5

2-8

4. Страхование риска

1

1

1

1-7

5. Разработка описания задачи и ТЗ

7

7

7

Разработка модели

2-5

1. Анализ данных в ПП

17

17

17

5-6

2. Разработка модели экспертной системы и ее реализация в среде SWI-Prolog

20

20

20

2-7

3. Разработка документации

11

11

11

6-7

4. Разработка тех. документации

2

2

2

6-8

5. Создание резервных копий

1

1

1

9-7

6. Выпуск комплекта рабочего документа

3

3

3

ВСЕГО

101

101

31

70

Расчет себестоимости работ начнем с расчета фонда основной заработной платы по стадиям и теме в целом.
Продолжительность рабочего месяца в среднем будет 22 дня. Данные занесены в табл. 5.2.
Таблица 5.2

«Состав исполнителей работы»

Исполнители

Должностные оклады, грн.

Месячные

Дневные

Руководитель

3300

150

Программист

2000

100

Рассчитаем ОЗП исполнителям. Для этого количество дней, отработанных отдельными исполнителями по стадиям, умножают на их дневные оклады:

ОЗП=

где n - количество работников.

ОЗП=31*150+70*100=11650грн

Рассчитаем стоимость материалов и комплектующих, необходимых для написания программы и занесем результаты расчетов в табл. 5.3.

Таблица 5.3

«Стоимость материалов и комплектующих»

Материалы

Кол-во

Цена, грн

Сумма., грн.

Назначение

Диск CD-RW

5 шт.

3

15

Хранение резервных копий

Бумага

500 л.

0.15

75

Документация,

распечатки

Печать

документации

500 л.

0,10

50

Печать

Итого

140

Определим затраченное машинное время: будем считать, что программист, следуя нормам охраны труда в среднем 5 часов проводит за компьютером. Получим

Тмаш =

Тмаш = 31*2 + 70*5 = 412 часа.

Стоимость часа машинного времени Чмч будем считать равной 2 грн.

Чмч=412 ч•2 грн=824 грн

Накладные расходы примем в размере 20% от суммы основной заработной платы. Расчет себестоимости и договорной цены приводим в таблице 5.4.

Таблица 5.4

«Расчет себестоимости и цены темы»

Наименования затрат

Формула

Сумма, грн

1. ОЗП

31*150+70*100

11650

2. ДЗП

ОЗП•15%

1747.5

3. Отчисления в соц. нужды:

- пенсионный фонд;

- безработица;

- соц. страхование;

- несчастные случаи

(32.3+1.6+2.9+0.86)%* *•(ОЗП+ДЗП),

5045.5

4. Стоимость материалов

Зм

140

5. Стоимость машинного времени

Чмч•Тмв

824

6. Накладные расходы

20%•ОЗП

2330

7. Прочие расходы

3%•ОЗП

349.5

Себестоимость

21674

Прибыль (35%)

7586

Цена без НДС

29260

НДС (20%)

5852

Цена с НДС

35524

Следовательно, полная цена разрабатываемой модели составит 35524 грн.

5.2 Оценка риска страхования

Риск -- это возможность нежелательного события. Следует отличать плохие события от событий, лишь при некоторых обстоятельствах приводящих к плохому результату (причинных событий). Первые всегда являются нежелательными для рассматриваемого объекта. Вторые сами по себе не являются негативными и не обязательно влекут за собой плохие последствия.

Страхованием называется «система мероприятий по созданию денежного (страхового) фонда за счет взносов его участников, из средств которого возмещается ущерб, причиненный стихийными бедствиями, несчастными случаями, а также выплачиваются иные денежные суммы в связи с наступлением определенных событий»

Для данной модели, являющегося объектом интеллектуальной собственности разработчика возможны следующие виды риска:

Несанкционированное копирование с целью дальнейшего использования в собственных целях (вероятность -3%);

Несанкционированное копирование с целью продаж (вероятность -5%);

Уменьшить степень риска в данной ситуации можно с помощью самострахования и страхования с помощью страховых компаний.

В виду того что вероятность несанкционированного копирования не достаточно большая из-за специфики продукта, то для страхования продукта будет использоваться метод самострахования.

Самострахование - метод образования страхового фонда хозяйствующим субъектом в целях обеспечения бесперебойности производства, подверженного различным рисковым обстоятельствам. Самострахование выступает в денежной и натурально-вещественной формах. Порядок использования средств страхового фонда в условиях самострахования предусматривается в уставе хозяйствующего субъекта.

Самострахование предусматривает обеспечение контроля за системой защиты информации и за ЭВМ, а именно: не допускать несанкционированного копирования исходных текстов программного продукта путем контроля за доступом к терминалам, создания резервных копий, хранящихся в памяти ЭВМ.

5.3 Обобщенные показатели качества

Поскольку, в классе задач прогнозирования результатов сдачи сессии на анализе текущей информации аналоги не обнаружены, то для оценки уровня качества используем существующие разработки, выполняющие некоторые аналогичные функции, предоставляемых разработанным программным продуктом и не удовлетворяющие пользователя по ряду причин (интерфейс, достоверность выдаваемых данных и др.).

Можно рассмотреть гипотетический вариант, имеющий максимальную оценку по всем выбранным показателям.

Перечень основных показателей качества:

требования к ресурсам;

служба помощи ПП;

точность результатов;

визуализация результатов;

работа под Windows;

интерфейс пользователя.

Показатели делятся на минимизируемые и максимизируемые Минимизируемые показатели рассчитываются по формуле (5.1), а максимизируемые - по формуле (5.2).

(5.1)

(5.2)

Где - относительный показатель i-го показателя для j-го варианта, - абсолютный показатель i-го показателя для j-го варианта, - показатель i-го показателя для гипотетического варианта.

Показателям качества присваивают коэффициенты весомости , при этом и . После чего рассчитывают обобщенные показатели качества по j-варианту:

(5.3)

Затем рассчитываем уровни качества нового (базового) программного продукта по сравнению с изделиями-конкурентами (j-ми вариантами):

(5.4)

Обобщенный показатель качества является уровнем качества рассматриваемого j-го варианта к гипотетическому.

Примечания: P1 - разработанный программный продукт; - гипотетический программный продукт.

Невозможно вычислить конкурентно-способность нашего товара поскольку похожих программных продуктов не было разработано до настоящего времени .

Выводы по разделу 5

В результате разработки экономической части можно сказать, что компьютерное моделирование модель мотивации и стимулирования является конкурентно способной, имеет потенциального покупателя для покрытия всей совокупности затрат, связанных с разработкой, внедрением и сопровождением данного программного продукта.

Указанная цена одной копии программного продукта (35128 грн) является приемлемой для потенциальных покупателей.

ЗАКЛЮЧЕНИЕ

В данной работе была разработана система прогнозирования результатов сессии на основе анализа текущей успеваемости, для ее реализации была выбрана продукционная модель, поскольку она по средствам вывода близка к логическим моделям, а по наглядности проста, также она обладает высокой модульностью и простотой реализации. Всю область знаний разбили на три самых важных класса знаний: успеваемость, посещение занятий, личные факторы.

Также эта модель легко реализуется в языке логического программирования SWI-Prolog , поскольку логический вывод уже реализован в этом пакете, также этот язык программирования позволяет создать удобный графический интерфейс.

В результате реализации системы был получен результат, который потом был подтвержден с помощью регрессионного анализа при сравнении этой же системы только реализованной с помощью нечеткой логики в MatLab/ Simulink.

СПИСОК ЛИТЕРАТУРЫ

1. Марселлус Д. Программирование экспертных систем на Турбо Прологе: Пер. с англ. - М.: Финансы и статистика, 1994 г.

2. Муромцев Д.И. Введение в технологию экспертных систем. СПб: СПб ГУ ИТМО, 2005.

3. Попов Э.В. Экспертные системы: Решение неформализованных задач в диалоге с ЭВМ. - М.: Наука. Гл. ред. физ.-мат. Лит., 1987 г.

4. Андрейчиков А.В., Андрейчикова О.Н. Интеллектуальные информационные системы: М. Наука, 2004 г.

5. http://www.swi-prolog.org/ - официальный сайт SWI-Prolog.

ПРИЛОЖЕНИЕ 1

% Author:

% Date: 30.03.2010

:- pce_global(@name_prompter, make_name_prompter).

make_name_prompter(P) :-

new(P, dialog),

send(P, kind, transient),

send(P, append, new(BI, box(600,0))),

send(P, append, label(prompt)),

send(P, append,

new(TI, text_item(name, '',

message(P?ok_member, execute)))),

send(P, append, button(ok, message(P, return, TI?selection))),

send(P, append, button(cancel, message(P, return, @nil))).

ask_name(Prompt, Label, Name) :-

send(@name_prompter?prompt_member, selection, Prompt),

send(@name_prompter?name_member, label, Label),

send(@name_prompter?name_member, clear),

get(@name_prompter, confirm_centered, RawName),

send(@name_prompter, show, @off),

RawName \== @nil,

Name = RawName.

study1(LIO,LIK,LI):-LIO=='No',LIK=='No',LI is 0.

study1(LIO,LIK,LI):-LIO=='Yes',LIK=='Yes',LI is 1.

study1(LIO,LIK,LI):-LIO=='Yes',LIK=='No',LI is 1.

study1(LIO,LIK,LI):-LIO=='No',LIK=='Yes',LI is 1.

study2(LSR,LSS,LS):-LSR=='Yes',LSS=='Yes',LS is 1.

study2(LSR,LSS,LS):-LSR=='Yes',LSS=='No',LS is 0.

study2(LSR,LSS,LS):-LSR=='No',LSS=='Yes',LS is 1.

study2(LSR,LSS,LS):-LSR=='No',LSS=='No',LS is 0.

study3(LSR,LSS,LIO,LIK,LS,LI,LP,L):-study1(LIO,LIK,LI),study2(LSR,LSS,LS),LS=1,LI=1,LP=='Yes',L is 1.

study3(LSR,LSS,LIO,LIK,LS,LI,LP,L):-study1(LIO,LIK,LI),study2(LSR,LSS,LS),LS=1,LI=1,LP=='No',L is 1.

study3(LSR,LSS,LIO,LIK,LS,LI,LP,L):-study1(LIO,LIK,LI),study2(LSR,LSS,LS),LS=1,LI=0,LP=='Yes',L is 1.

study3(LSR,LSS,LIO,LIK,LS,LI,LP,L):-study1(LIO,LIK,LI),study2(LSR,LSS,LS),LS=1,LI=0,LP=='No',L is 1.

study3(LSR,LSS,LIO,LIK,LS,LI,LP,L):-study1(LIO,LIK,LI),study2(LSR,LSS,LS),LS=0,LI=1,LP=='No',L is 1.

study3(LSR,LSS,LIO,LIK,LS,LI,LP,L):-study1(LIO,LIK,LI),study2(LSR,LSS,LS),LS=0,LI=1,LP=='Yes',L is 0.

study3(LSR,LSS,LIO,LIK,LS,LI,LP,L):-study1(LIO,LIK,LI),study2(LSR,LSS,LS),LS=0,LI=0,LP=='Yes',L is 0.

study3(LSR,LSS,LIO,LIK,LS,LI,LP,L):-study1(LIO,LIK,LI),study2(LSR,LSS,LS),LS=0,LI=0,LP=='No',L is 0.

study4(PSL,PSP,PSB,PS):-PSL=='1',PSP=='1',PSB=='1',PS is 1.

study4(PSL,PSP,PSB,PS):-PSL=='1',PSP=='1',PSB=='2',PS is 1.

study4(PSL,PSP,PSB,PS):-PSL=='1',PSP=='1',PSB=='3',PS is 2.

study4(PSL,PSP,PSB,PS):-PSL=='1',PSP=='2',PSB=='1',PS is 2.

study4(PSL,PSP,PSB,PS):-PSL=='1',PSP=='2',PSB=='2',PS is 3.

study4(PSL,PSP,PSB,PS):-PSL=='1',PSP=='2',PSB=='3',PS is 3.

study4(PSL,PSP,PSB,PS):-PSL=='1',PSP=='3',PSB=='1',PS is 3.

study4(PSL,PSP,PSB,PS):-PSL=='1',PSP=='3',PSB=='2',PS is 3.

study4(PSL,PSP,PSB,PS):-PSL=='1',PSP=='3',PSB=='3',PS is 3.

study4(PSL,PSP,PSB,PS):-PSL=='2',PSP=='1',PSB=='1',PS is 2.

study4(PSL,PSP,PSB,PS):-PSL=='2',PSP=='1',PSB=='2',PS is 2.

study4(PSL,PSP,PSB,PS):-PSL=='2',PSP=='1',PSB=='3',PS is 3.

study4(PSL,PSP,PSB,PS):-PSL=='2',PSP=='2',PSB=='1',PS is 2.

study4(PSL,PSP,PSB,PS):-PSL=='2',PSP=='2',PSB=='2',PS is 2.

study4(PSL,PSP,PSB,PS):-PSL=='2',PSP=='2',PSB=='3',PS is 3.

study4(PSL,PSP,PSB,PS):-PSL=='2',PSP=='3',PSB=='1',PS is 3.

study4(PSL,PSP,PSB,PS):-PSL=='2',PSP=='3',PSB=='2',PS is 3.

study4(PSL,PSP,PSB,PS):-PSL=='2',PSP=='3',PSB=='3',PS is 3.

study4(PSL,PSP,PSB,PS):-PSL=='3',PSP=='1',PSB=='1',PS is 2.

study4(PSL,PSP,PSB,PS):-PSL=='3',PSP=='1',PSB=='2',PS is 2.

study4(PSL,PSP,PSB,PS):-PSL=='3',PSP=='1',PSB=='3',PS is 3.

study4(PSL,PSP,PSB,PS):-PSL=='3',PSP=='2',PSB=='1',PS is 3.

study4(PSL,PSP,PSB,PS):-PSL=='3',PSP=='2',PSB=='2',PS is 3.

study4(PSL,PSP,PSB,PS):-PSL=='3',PSP=='2',PSB=='3',PS is 3.

study4(PSL,PSP,PSB,PS):-PSL=='3',PSP=='3',PSB=='1',PS is 3.

study4(PSL,PSP,PSB,PS):-PSL=='3',PSP=='3',PSB=='2',PS is 3.

study4(PSL,PSP,PSB,PS):-PSL=='3',PSP=='3',PSB=='3',PS is 3.

study5(PSL,PSP,PSB,PL,PP,PS,P):-study4(PSL,PSP,PSB,PS),PL=='1',PP=='1',PS=1,P is 1.

study5(PSL,PSP,PSB,PL,PP,PS,P):-study4(PSL,PSP,PSB,PS),PL=='1',PP=='1',PS=2,P is 1.

study5(PSL,PSP,PSB,PL,PP,PS,P):-study4(PSL,PSP,PSB,PS),PL=='1',PP=='1',PS=3,P is 2.

study5(PSL,PSP,PSB,PL,PP,PS,P):-study4(PSL,PSP,PSB,PS),PL=='1',PP=='2',PS=1,P is 1.

study5(PSL,PSP,PSB,PL,PP,PS,P):-study4(PSL,PSP,PSB,PS),PL=='1',PP=='2',PS=2,P is 2.

study5(PSL,PSP,PSB,PL,PP,PS,P):-study4(PSL,PSP,PSB,PS),PL=='1',PP=='2',PS=3,P is 2.

study5(PSL,PSP,PSB,PL,PP,PS,P):-study4(PSL,PSP,PSB,PS),PL=='1',PP=='3',PS=1,P is 2.

study5(PSL,PSP,PSB,PL,PP,PS,P):-study4(PSL,PSP,PSB,PS),PL=='1',PP=='3',PS=2,P is 2.

study5(PSL,PSP,PSB,PL,PP,PS,P):-study4(PSL,PSP,PSB,PS),PL=='1',PP=='3',PS=3,P is 3.

study5(PSL,PSP,PSB,PL,PP,PS,P):-study4(PSL,PSP,PSB,PS),PL=='2',PP=='1',PS=1,P is 1.

study5(PSL,PSP,PSB,PL,PP,PS,P):-study4(PSL,PSP,PSB,PS),PL=='2',PP=='1',PS=2,P is 2.

study5(PSL,PSP,PSB,PL,PP,PS,P):-study4(PSL,PSP,PSB,PS),PL=='2',PP=='1',PS=3,P is 2.

study5(PSL,PSP,PSB,PL,PP,PS,P):-study4(PSL,PSP,PSB,PS),PL=='2',PP=='2',PS=1,P is 2.

study5(PSL,PSP,PSB,PL,PP,PS,P):-study4(PSL,PSP,PSB,PS),PL=='2',PP=='2',PS=2,P is 2.

study5(PSL,PSP,PSB,PL,PP,PS,P):-study4(PSL,PSP,PSB,PS),PL=='2',PP=='2',PS=3,P is 3.

study5(PSL,PSP,PSB,PL,PP,PS,P):-study4(PSL,PSP,PSB,PS),PL=='2',PP=='3',PS=1,P is 2.

study5(PSL,PSP,PSB,PL,PP,PS,P):-study4(PSL,PSP,PSB,PS),PL=='2',PP=='3',PS=2,P is 3.

study5(PSL,PSP,PSB,PL,PP,PS,P):-study4(PSL,PSP,PSB,PS),PL=='2',PP=='3',PS=3,P is 3.

study5(PSL,PSP,PSB,PL,PP,PS,P):-study4(PSL,PSP,PSB,PS),PL=='3',PP=='1',PS=1,P is 1.

study5(PSL,PSP,PSB,PL,PP,PS,P):-study4(PSL,PSP,PSB,PS),PL=='3',PP=='1',PS=2,P is 2.

study5(PSL,PSP,PSB,PL,PP,PS,P):-study4(PSL,PSP,PSB,PS),PL=='3',PP=='1',PS=3,P is 3.

study5(PSL,PSP,PSB,PL,PP,PS,P):-study4(PSL,PSP,PSB,PS),PL=='3',PP=='2',PS=1,P is 3.

study5(PSL,PSP,PSB,PL,PP,PS,P):-study4(PSL,PSP,PSB,PS),PL=='3',PP=='2',PS=2,P is 3.

study5(PSL,PSP,PSB,PL,PP,PS,P):-study4(PSL,PSP,PSB,PS),PL=='3',PP=='2',PS=3,P is 3.

study5(PSL,PSP,PSB,PL,PP,PS,P):-study4(PSL,PSP,PSB,PS),PL=='3',PP=='3',PS=1,P is 3.

study5(PSL,PSP,PSB,PL,PP,PS,P):-study4(PSL,PSP,PSB,PS),PL=='3',PP=='3',PS=2,P is 3.

study5(PSL,PSP,PSB,PL,PP,PS,P):-study4(PSL,PSP,PSB,PS),PL=='3',PP=='3',PS=3,P is 3.

study6(YHB,YHY,YH):-YHB=='3',YHY=='Yes',YH is 3.

study6(YHB,YHY,YH):-YHB=='3',YHY=='No',YH is 3.

study6(YHB,YHY,YH):-YHB=='4',YHY=='Yes',YH is 4.

study6(YHB,YHY,YH):-YHB=='4',YHY=='No',YH is 3.

study6(YHB,YHY,YH):-YHB=='5',YHY=='Yes',YH is 5.

study6(YHB,YHY,YH):-YHB=='5',YHY=='No',YH is 5.

study7(YTB,YTS,YT):-YTB=='3',YTS=='Yes',YT is 3.

study7(YTB,YTS,YT):-YTB=='3',YTS=='No',YT is 4.

study7(YTB,YTS,YT):-YTB=='4',YTS=='Yes',YT is 3.

study7(YTB,YTS,YT):-YTB=='4',YTS=='No',YT is 5.

study7(YTB,YTS,YT):-YTB=='5',YTS=='Yes',YT is 5.

study7(YTB,YTS,YT):-YTB=='5',YTS=='No',YT is 5.

study8(YSB,YSS,YS):-YSB=='3',YSS=='Yes',YS is 3.

study8(YSB,YSS,YS):-YSB=='3',YSS=='No',YS is 3.

study8(YSB,YSS,YS):-YSB=='4',YSS=='Yes',YS is 4.

study8(YSB,YSS,YS):-YSB=='4',YSS=='No',YS is 4.

study8(YSB,YSS,YS):-YSB=='5',YSS=='Yes',YS is 5.

study8(YSB,YSS,YS):-YSB=='5',YSS=='No',YS is 5.

study9(YHB,YHY,YTB,YTS,YSB,YSS,KYRS,YH,YT,YS,Y):-study6(YHB,YHY,YH),study7(YTB,YTS,YT),study8(YSB,YSS,YS),KYRS=='1',YH=3,YT=3,Y is 3.

study9(YHB,YHY,YTB,YTS,YSB,YSS,KYRS,YH,YT,YS,Y):-study6(YHB,YHY,YH),study7(YTB,YTS,YT),study8(YSB,YSS,YS),KYRS=='1',YH=3,YT=4,Y is 4.

study9(YHB,YHY,YTB,YTS,YSB,YSS,KYRS,YH,YT,YS,Y):-study6(YHB,YHY,YH),study7(YTB,YTS,YT),study8(YSB,YSS,YS),KYRS=='1',YH=3,YT=5,Y is 4.

study9(YHB,YHY,YTB,YTS,YSB,YSS,KYRS,YH,YT,YS,Y):-study6(YHB,YHY,YH),study7(YTB,YTS,YT),study8(YSB,YSS,YS),KYRS=='1',YH=4,YT=3,Y is 3.

study9(YHB,YHY,YTB,YTS,YSB,YSS,KYRS,YH,YT,YS,Y):-study6(YHB,YHY,YH),study7(YTB,YTS,YT),study8(YSB,YSS,YS),KYRS=='1',YH=4,YT=4,Y is 4.

study9(YHB,YHY,YTB,YTS,YSB,YSS,KYRS,YH,YT,YS,Y):-study6(YHB,YHY,YH),study7(YTB,YTS,YT),study8(YSB,YSS,YS),KYRS=='1',YH=4,YT=5,Y is 5.

study9(YHB,YHY,YTB,YTS,YSB,YSS,KYRS,YH,YT,YS,Y):-study6(YHB,YHY,YH),study7(YTB,YTS,YT),study8(YSB,YSS,YS),KYRS=='1',YH=5,YT=3,Y is 4.

study9(YHB,YHY,YTB,YTS,YSB,YSS,KYRS,YH,YT,YS,Y):-study6(YHB,YHY,YH),study7(YTB,YTS,YT),study8(YSB,YSS,YS),KYRS=='1',YH=5,YT=4,Y is 5.

study9(YHB,YHY,YTB,YTS,YSB,YSS,KYRS,YH,YT,YS,Y):-study6(YHB,YHY,YH),study7(YTB,YTS,YT),study8(YSB,YSS,YS),KYRS=='1',YH=5,YT=5,Y is 5.

study9(YHB,YHY,YTB,YTS,YSB,YSS,KYRS,YH,YT,YS,Y):-study6(YHB,YHY,YH),study7(YTB,YTS,YT),study8(YSB,YSS,YS),KYRS=='2',YS=3,YT=3,Y is 3.

study9(YHB,YHY,YTB,YTS,YSB,YSS,KYRS,YH,YT,YS,Y):-study6(YHB,YHY,YH),study7(YTB,YTS,YT),study8(YSB,YSS,YS),KYRS=='2',YS=3,YT=4,Y is 4.

study9(YHB,YHY,YTB,YTS,YSB,YSS,KYRS,YH,YT,YS,Y):-study6(YHB,YHY,YH),study7(YTB,YTS,YT),study8(YSB,YSS,YS),KYRS=='2',YS=3,YT=5,Y is 4.

study9(YHB,YHY,YTB,YTS,YSB,YSS,KYRS,YH,YT,YS,Y):-study6(YHB,YHY,YH),study7(YTB,YTS,YT),study8(YSB,YSS,YS),KYRS=='2',YS=4,YT=3,Y is 4.

study9(YHB,YHY,YTB,YTS,YSB,YSS,KYRS,YH,YT,YS,Y):-study6(YHB,YHY,YH),study7(YTB,YTS,YT),study8(YSB,YSS,YS),KYRS=='2',YS=4,YT=4,Y is 4.

study9(YHB,YHY,YTB,YTS,YSB,YSS,KYRS,YH,YT,YS,Y):-study6(YHB,YHY,YH),study7(YTB,YTS,YT),study8(YSB,YSS,YS),KYRS=='2',YS=4,YT=5,Y is 5.

study9(YHB,YHY,YTB,YTS,YSB,YSS,KYRS,YH,YT,YS,Y):-study6(YHB,YHY,YH),study7(YTB,YTS,YT),study8(YSB,YSS,YS),KYRS=='2',YS=5,YT=3,Y is 4.

study9(YHB,YHY,YTB,YTS,YSB,YSS,KYRS,YH,YT,YS,Y):-study6(YHB,YHY,YH),study7(YTB,YTS,YT),study8(YSB,YSS,YS),KYRS=='2',YS=5,YT=4,Y is 5.

study9(YHB,YHY,YTB,YTS,YSB,YSS,KYRS,YH,YT,YS,Y):-study6(YHB,YHY,YH),study7(YTB,YTS,YT),study8(YSB,YSS,YS),KYRS=='2',YS=5,YT=5,Y is 5.

study10(YHB,YHY,YTB,YTS,YSB,YSS,KYRS,YH,YT,YS,Y,PSL,PSP,PSB,PL,PP,PS,P,LSR,LSS,LIO,LIK,LS,LI,LP,L,B):-study9(YHB,YHY,YTB,YTS,YSB,YSS,KYRS,YH,YT,YS,Y),study5(PSL,PSP,PSB,PL,PP,PS,P),study3(LSR,LSS,LIO,LIK,LS,LI,LP,L),Y=3,P=1,L=0,B is 3,!.

study10(YHB,YHY,YTB,YTS,YSB,YSS,KYRS,YH,YT,YS,Y,PSL,PSP,PSB,PL,PP,PS,P,LSR,LSS,LIO,LIK,LS,LI,LP,L,B):-study9(YHB,YHY,YTB,YTS,YSB,YSS,KYRS,YH,YT,YS,Y),study5(PSL,PSP,PSB,PL,PP,PS,P),study3(LSR,LSS,LIO,LIK,LS,LI,LP,L),Y=3,P=1,L=1,B is 3,!.

study10(YHB,YHY,YTB,YTS,YSB,YSS,KYRS,YH,YT,YS,Y,PSL,PSP,PSB,PL,PP,PS,P,LSR,LSS,LIO,LIK,LS,LI,LP,L,B):-study9(YHB,YHY,YTB,YTS,YSB,YSS,KYRS,YH,YT,YS,Y),study5(PSL,PSP,PSB,PL,PP,PS,P),study3(LSR,LSS,LIO,LIK,LS,LI,LP,L),Y=3,P=2,L=0,B is 3,!.

study10(YHB,YHY,YTB,YTS,YSB,YSS,KYRS,YH,YT,YS,Y,PSL,PSP,PSB,PL,PP,PS,P,LSR,LSS,LIO,LIK,LS,LI,LP,L,B):-study9(YHB,YHY,YTB,YTS,YSB,YSS,KYRS,YH,YT,YS,Y),study5(PSL,PSP,PSB,PL,PP,PS,P),study3(LSR,LSS,LIO,LIK,LS,LI,LP,L),Y=3,P=2,L=1,B is 4,!.

study10(YHB,YHY,YTB,YTS,YSB,YSS,KYRS,YH,YT,YS,Y,PSL,PSP,PSB,PL,PP,PS,P,LSR,LSS,LIO,LIK,LS,LI,LP,L,B):-study9(YHB,YHY,YTB,YTS,YSB,YSS,KYRS,YH,YT,YS,Y),study5(PSL,PSP,PSB,PL,PP,PS,P),study3(LSR,LSS,LIO,LIK,LS,LI,LP,L),Y=3,P=3,L=0,B is 4,!.

study10(YHB,YHY,YTB,YTS,YSB,YSS,KYRS,YH,YT,YS,Y,PSL,PSP,PSB,PL,PP,PS,P,LSR,LSS,LIO,LIK,LS,LI,LP,L,B):-study9(YHB,YHY,YTB,YTS,YSB,YSS,KYRS,YH,YT,YS,Y),study5(PSL,PSP,PSB,PL,PP,PS,P),study3(LSR,LSS,LIO,LIK,LS,LI,LP,L),Y=3,P=3,L=1,B is 4,!.

study10(YHB,YHY,YTB,YTS,YSB,YSS,KYRS,YH,YT,YS,Y,PSL,PSP,PSB,PL,PP,PS,P,LSR,LSS,LIO,LIK,LS,LI,LP,L,B):-study9(YHB,YHY,YTB,YTS,YSB,YSS,KYRS,YH,YT,YS,Y),study5(PSL,PSP,PSB,PL,PP,PS,P),study3(LSR,LSS,LIO,LIK,LS,LI,LP,L),Y=4,P=1,L=0,B is 3,!.

study10(YHB,YHY,YTB,YTS,YSB,YSS,KYRS,YH,YT,YS,Y,PSL,PSP,PSB,PL,PP,PS,P,LSR,LSS,LIO,LIK,LS,LI,LP,L,B):-study9(YHB,YHY,YTB,YTS,YSB,YSS,KYRS,YH,YT,YS,Y),study5(PSL,PSP,PSB,PL,PP,PS,P),study3(LSR,LSS,LIO,LIK,LS,LI,LP,L),Y=4,P=1,L=1,B is 4,!.


Подобные документы

  • Реализация экспертных систем любой сложности, решение любых головоломок и шарад с помощью языка логического программирования Prolog. Основные понятия в языке Prolog. Правила логического вывода и запросы. Процедуры логического вывода и принятия решений.

    курсовая работа [19,0 K], добавлен 24.05.2012

  • Общая характеристика и функциональные возможности языка логического программирования Prolog, а также систем SWI-Prolog и Visual Prolog. Формирование базы знаний относительно определения возможности трудоустройства студента и принципы реализации запросов.

    лабораторная работа [1,3 M], добавлен 07.10.2014

  • Разработка информационной системы анализа успеваемости студентов. Особенности режима просмотра объектов с помощью редактора Visual Basic for Application. Виды диалоговых окон и основных элементов управления. Формирование диаграммы успеваемости группы.

    курсовая работа [1,3 M], добавлен 28.11.2008

  • Рассмотрение экспертных систем: классификация, назначение, общие принципы построения и функционирования. Среда разработки данных систем: BorlandC++ Builder 6.0 и AMZI! Prolog. Описание процесса разработки экспертной системы "Выбор спортивного инвентаря".

    курсовая работа [426,9 K], добавлен 19.08.2012

  • Структура экспертных систем, их классификация и характеристики. Выбор среды разработки программирования. Этапы создания экспертных систем. Алгоритм формирования базы знаний с прямой цепочкой рассуждений. Особенности интерфейса модулей "Expert" и "Klient".

    курсовая работа [1,1 M], добавлен 18.08.2009

  • Основы языка Visual Prolog. Введение в логическое программирование. Особенности составления прологов, синтаксис логики предикатов. Программы на Visual Prolog. Унификация и поиск с возвратом. Использование нескольких значений как единого целого.

    лекция [120,5 K], добавлен 28.05.2010

  • Система учета успеваемости студентов Байкальского государственного университета экономики и права. Действующая Информационная система, организация и требования к подсистеме учета успеваемости БГУЭП. Конструирование подсистемы, построение модели функций.

    дипломная работа [2,2 M], добавлен 20.11.2010

  • Формирование требований к системе учета успеваемости студентов на основе рейтинговой системы. Концептуальное и логическое проектирование структуры информационного обеспечения. Реализация информационного обеспечения и тестирование программного средства.

    курсовая работа [3,1 M], добавлен 28.08.2012

  • Характеристика высшего учебного заведения "МФПА", структура подразделений учебной части. Анализ диаграммы дерева узлов, стадии проектирования информационной системы учета успеваемости студентов. Основные особенности построения модели "Как должно быть".

    курсовая работа [3,1 M], добавлен 12.04.2012

  • Понятия, классификация и структура экспертных систем. Базы знаний и модели представления знаний. Механизмы логического вывода. Инструментальные средства проектирования и разработки экспертных систем. Предметная область ЭС "Выбор мобильного телефона".

    курсовая работа [2,2 M], добавлен 05.11.2014

Работы в архивах красиво оформлены согласно требованиям ВУЗов и содержат рисунки, диаграммы, формулы и т.д.
PPT, PPTX и PDF-файлы представлены только в архивах.
Рекомендуем скачать работу.