Проектирование адаптивной сети нейро-нечеткого вывода для контроля критической зависимости параметров гемодинамики по модели измерений предрейсовых осмотров
Методы, системы, типы и способы проводимых измерений в автоматизированных системах медицинского обеспечения безопасности на транспорте. Проектирования нечеткого алгоритма предрейсовых медицинских осмотров на основе адаптивной сети нейро-нечеткого вывода.
Рубрика | Программирование, компьютеры и кибернетика |
Вид | дипломная работа |
Язык | русский |
Дата добавления | 06.05.2011 |
Размер файла | 6,5 M |
Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже
Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.
для
(2.8)
, (2.9)
где означает отрицание в нечеткой логике, L указывает нижнюю границу (см. дополнение об операциях в нечеткой логике). Зададим наблюдаемые симптомы ,- и знания ,
Рисунок 2.3 Связь между ЛЗИ, а и значениями принадлежности
, и обнаружим все болезни {}. можно получить, найдя общее решение формул (2.8) и (2.9). При этом достоверности знаний ,, можно определить через интервал их значений ([нижнее значение, верхнее значение]) следующим образом:
(2.10)
Кроме того, определим расстояние между симптомом и знаниями следующим образом:
, (2.11)
. (1.12)
Введем следующие множества интервалов значений для знаний и расстояний: для любых i, j
, , . (2.13)
Записи , , обозначают, что для любых i, j
, , . (2.14)
Обратная задача для D.6) сводится к нахождению следующего вектора
, (2.15)
где а-вектор, элементами которого являются множества интервалов значений. Используя алгоритм для обратной задачи, основанный на нечетких неравенствах, получаем решение
, , (2.16)
где
(2.17)
Где ,
(обозначения , объяснены в дополнении).
Кроме того, решение для выражения (2.9) можно получить, найдя вектор
, (2.18)
Это решение имеет следующий вид:
, . (2.19)
Следовательно, решение, удовлетворяющее формулам (2.15), (2.19), для любых имеет вид
, , (2.20)
где определяется следующим образом:
. (2.21)
Если , решения не существует. В этом случае можно рекомендовать следующие способы решения:
1) уменьшить значение параметра а (а-сечение), отражающего точность выводов, и делать повторные выводы, приближая этот параметр к нулю;
2) повторно расспросить больного о симптоме, исправить данные на уточненные и вновь сделать выводы.
Первый способ позволяет легко получить результаты с достаточно высокой степенью нечеткости в целом, но он не слишком эффективен. Поэтому целесообразно применить второй способ.
2.2.4 Усовершенствованный метод диагностики
Выше мы рассмотрели случай, когда существует решение обратной задачи при некотором заданном значении а. Однако, например, если а = 0,6, решение существует, но при а > 0,8 уже не существует, т. е. прийти к решению не всегда возможно. Обычно в подобных случаях недостаточно информации о симптомах, и лучше повторить диагностику после получения более полной информации. Следовательно, необходимо рассмотреть какие-либо методы выбора нужных симптомов. Например, в случае ошибочных исходных данных можно использовать усовершенствованную диагностику, которая позволяет прийти к правильному диагнозу. Такая диагностика состоит в следующем.
Прежде всего рассмотрим следующий вектор , элементами которого являются ЛЗИ элементов нечеткого множества болезней по отношению к симптомам:
. (2.22)
i-й базовый вектор А определим следующим образом:
, , (2.23)
где а. л. означает «абсолютная ложь».
-вектор, в котором только i-й элемент есть , а все остальные элементы - а.л. Другими словами, учитывается только возможность появления болезни i, а уровень ЛЗИ для всех остальных болезней есть а.л. Кроме того, предложим следующие варианты ЛЗИ, относящиеся к :
L = {ложь, неизвестно, истина, абсолютная истина}. Если применить к формулам (2.6), (2.7) правила нечеткий «модус поненс» и нечеткий «модус олленс» соответственно, то для i, j получим следующие формулы:
, (2.24)
. (2.25)
Приближение (среднее арифметическое ожидаемое значение) полученное с помощью ЧЗИ для симптома, предсказанного в случае , есть вектор, элементы которого имеют следующий вид:
, . (2.26)
Аналогично определим среднее арифметическое значение b для реально наблюдаемых симптомов. Элементы зададим следующим образом:
, . (2.27)
Направление новых наблюдений можно определить с учетом геометрической формы и , т.е. чтобы определить группу симптомов, которые следует проверить, вычислим разность и . Алгоритм вычислений заключается в следующем. Сначала рассмотрим обычное расстояние :
. (2.28)
есть разность ожидаемых значений истинности симптомов при . Это один из способов определения расстояния, кроме него можно рассматривать другие расстояния. Кратчайшее расстояние определим следующим образом:
, , (2.29)
а именно
. (2.30)
Запомним , удовлетворяющую следующему условию:
, . (2.31)
представляет собой значение, при котором является минимальным для при любой болезни i. При этом пусть -это , задающее . Затем вычислим такое, что
. (2.32)
определяет для болезней, среди которых есть номер болезни с самым маленьким . Учитывая значения истинности симптомов, определим базовый вектор для болезни, разность ожидаемых и наблюдаемых значений для которой наименьшая:
. (2.33)
Этот вектор позволяет создать относительный критерий истинности значений для симптомов. Кроме того, получим , т.е. , который можно сравнить с для каждого элемента.
Итак, можно указать группу симптомов, соответствующую номеру с наибольшим значением .
Если прогнозируется появление одновременно двух и более болезней, данный алгоритм предполагается усовершенствовать, например путем изучения комбинации базовых векторов .
2.2.5 Выводы и база знаний
В качестве методов нечетких выводов с использованием нечеткой информации известны продукционные правила, выводы с помощью нечетких отношений и другие методы. В данной системе из-за того, что знания имеют иерархическую структуру (что позволяет делать окончательную оценку с использованием промежуточных гипотез об оценке результатов обследования, рекомендаций по образу жизни и других гипотез) и есть необходимость запуска механизма выводов не в режиме диалога, а по факту ввода данных, использованы выводы с помощью продукционных правил с прямым построением цепочки рассуждений. По мере прослеживания правил метод построения цепочки увеличивает нечеткость, поэтому в системе результаты выдаются на втором или третьем уровне иерархии.
При вводе данных клинических анализов, информации, полученной при расспросе пациента, и при выводе тяжести болезни или других сведений используются непосредственные значения или лингвистические значения
ности. Механизм выводов является независимой подсистемой (рисунок 2.4). На входы поступают данные из базы фактов и базы знаний, а на выход передаются результаты выводов, их достоверность и объяснение процесса выводов.
Рисунок - 2.4 Схема механизма выводов.
Для выводов использован нечеткий «модус поненс», представляющий собой расширение правила «модус поненс» - дедуктивного вывода в классической логике. Это правило можно представить следующим образом:
Если и , тогда , (2.34)
где -нечеткие множества в полных пространствах , соответственно их элементы обозначим через . Знак обозначает импликацию.
Если можно получить информацию о пространстве U для нечеткого отношения между некоторыми объектами и , о которых имеется знание, то как результат можно вывести информацию о V из и .
Нечетким множествам в полном пространстве V можно поставить в соответствие функции принадлежности , где обозначает меру принадлежности элемента . Нечеткое множество а можно также представить в виде
, (2.35)
где - объединение на всем пространстве U, а знак «/» - разделитель.
При нечетких выводах необходимо задать метод преобразования нечеткого условного оператора в нечеткое отношение . Кроме того, заключение можно получить путем свертки фактических данных и нечеткого отношения. Существует несколько традиционных методов преобразования и свертки. В данной системе выводы делаются с помощью следующего метода, обеспечивающего минимальный разброс решений:
, (2.36)
где -заключение, фактические данные.
Блок выводов работает следующим образом. Пусть в предпосылке правил записано несколько тезисов:
Если , тогда . (2.37)
Тогда, если в базе фактических данных заданы и , заключение получается по следующей формуле:
, (2.38)
где-операция максимум-минимум, обозначает .
Последовательность вывода показана на рис. 2.5.
База знаний для выводов составляется из функций принадлежности (в случае оценки входных и выходных значений), правил, диапазона входных и выходных значений и указаний к окончательным выходным данным. Функции принадлежности состоят из названия функции (уровня нечеткости) и значений принадлежности, в системе использованы следующие нечеткие уровни (ниже приведен процесс составления базы знаний):
1. Для каждого пункта клинических анализов, исключая качественные данные, в предпосылках используется пять уровней:
TRS (очень маленький) TPS (довольно малый)
ММ (обычный) ТРВ (довольно большой)
TRB (очень большой)
2. Для пунктов клинических анализов с качественными данными в предпосылках используются
ММ (-) TPS (+ - и ниже) РВ (+ -)
RB (+) ТРВ ( + и выше) ТРВ (+ + и выше)
VB ( + + +)
3. При расспросе о симптомах в предпосылках используются LT1 (не проявляется, проявляется временами, проявляется)
4. Для промежуточных гипотез и тяжести болезни в заключениях используются
CLA (классический) DEF (определенный)
PRO (вероятный) POS (возможный)
SUS (подозреваемый)
5. Для выбора диагноза на экране, выбора способа осмотра и промежуточных гипотез в предпосылках и заключениях используются
YES (да) NO (нет).
Пример функции принадлежности для уровней (1) приведен на рис. 2.6 а), для уровней (4)-на рис. 2.6 б). В правилах можно описать до десяти нечетких тезисов предпосылки и до двух нечетких тезисов заключения. Правила имеют следующую структуру:
Рисунок 2.5 Процесс выводов.
Если пункт введенных данных = уровень нечеткости,
тогда пункт выходных данных = уровень нечеткости.
а) б)
Рисунок 2.6 функции принадлежности для уровней (1) на рис. а) и для уровней (4) на рис. б).
Кроме того, для уровней нечеткости, представленных функциями принадлежности, в тезисах можно использовать отрицание и логическую сумму.
Правила записаны в трех файлах: первичной оценки, вторичной оценки и указаний по охране здоровья. Файлы переключаются по соответствующей команде.
Приведем ниже примеры правил первичной оценки функционирования печени.
1. Если GOT = ТРВ, то функционирование печени = DEF.
2. Если GPT = ТРВ, то функционирование печени = DEF.
3. Если GGT = ТРВ, то функционирование печени = DEF.
4. Если (GOT = < GPT) = YES, то функционирование печени = DEF.
5. Если расспрос (легкая усталость) = LT1, то функционирование печени = PRO.
6. Если GOT = ММ & GPT = ММ & (GOT = < GPT) = NO & прошлый раз GOT = ТРВ, то функционирование печени = PRO.
2.2.6 Проектирование систем типа Сугено
Рассмотрим основные этапы проектирования систем типа Сугено на примере создания системы нечеткого логического вывода, моделирующей зависимость , , . Моделирование этой зависимости будем осуществлять с помощью следующей базы знаний:
1. Если x1=Средний, то y=0;
2. Если x1=Высокий и x2=Высокий, то y=2x1+2x2+1;
3. Если x1=Высокий и x2=Низкий, то y=4x1-x2;
4. Если x1=Низкий и x2=Средний, то y=8x1+2x2+8;
5. Если x1=Низкий и x2=Низкий, то y=50;
6. Если x1=Низкий и x2=Высокий, то y=50.
Рисунок 2.7 Эталонная поверхность
Проектирование системы нечеткого логического вывода типа Сугэно состоит в выполнении следующей последовательности шагов.
Шаг 1. Для загрузки основного fis-редактора напечатаем слова fuzzy в командной строке. После этого откроется нового графическое окно, показанное на рис. 2.8.
Рисунок 2.8 Окно редактора FIS-Editor
Шаг 2. Выберем тип системы. Для этого в меню File выбираем в подменю New fis… команду Sugeno.
Шаг 3. Добавим вторую входную переменную. Для этого в меню Edit выбираем команду Add input.
Шаг 4. Переименуем первую входную переменную. Для этого сделаем один щелчок левой кнопкой мыши на блоке input1, введем новое обозначение x1 в поле редактирования имени текущей переменной и нажмем <Enter>.
Шаг 5. Переименуем вторую входную переменную. Для этого сделаем один щелчок левой кнопкой мыши на блоке input2, введем новое обозначение x2 в поле редактирования имени текущей переменной и нажмем <Enter>.
Шаг 6. Переименуем выходную переменную. Для этого сделаем один щелчок левой кнопкой мыши на блоке output1, введем новое обозначение y в поле редактирования имени текущей переменной и нажмем <Enter>.
Шаг 7. Зададим имя системы. Для этого в меню File выбираем в подменю Export команду To disk и введем имя файла, например, FirstSugeno.
Шаг 8. Перейдем в редактор функций принадлежности. Для этого сделаем двойной щелчок левой кнопкой мыши на блоке x1.
Шаг 9. Зададим диапазон изменения переменной x1. Для этого напечатаем -7 3 в поле Range (см. рис. 2.9) и нажмем <Enter>.
Рисунок 2.9 Функции принадлежности переменной x1
Шаг 10. Зададим функции принадлежности переменной x1. Для лингвистической оценки этой переменной будем использовать, 3 терма с треугольными функциями принадлежности, которые установлены по умолчанию. Зададим наименования термов переменной x1. Для этого делаем один щелчок левой кнопкой мыши по графику первой функции принадлежности (см. рис. 2.9). Затем напечатаем наименование терма Низкий в поле Name. Затем делаем один щелчок левой кнопкой мыши по графику второй функции принадлежности и вводим наименование терма Средний в поле Name. Еще раз делаем один щелчок левой кнопкой мыши по графику третьей функции принадлежности и вводим наименование терма Высокий в поле Name и нажмем <Enter>. В результате получим графическое окно, изображенное на рис. 2.9.
Шаг 11. Зададим функции принадлежности переменной x2. Для лингвистической оценки этой переменной будем использовать 3 терма с треугольными функциями принадлежности, которые установлены по умолчанию. Для этого активизируем переменную x2 с помощью щелчка левой кнопки мыши на блоке x2. Зададим диапазон изменения переменной x2. Для этого напечатаем -4.4 1.7 в поле Range (см. рис. 2.10.) и нажмем <Enter>. По аналогии с предыдущим шагом зададим следующие наименования термов переменной x2: Низкий, Средний, Высокий. В результате получим графическое окно, изображенное на рис. 2.10.
Рисунок 2.10 Функции принадлежности переменной x2
Шаг 12. Зададим линейные зависимости между входами и выходом, приведенные в базе знаний. Для этого активизируем переменную y с помощью щелчка левой кнопки мыши на блоке y. В правом верхнем угле появилось обозначение трех функций принадлежности, каждая из которых соответствует одной линейной зависимости между входами и выходам. В базе знаний, приведенной в начале подраздела 2.2.6. указаны 5 различных зависимостей: y=50; y=4x1-x2; y=2x1+2x2+1; y=8x1+2x2+8; y=0. Поэтому добавим еще две зависимости путем выбора команды Add Mfs… меню Edit. В появившимся диалоговом окне в поле Number of MFs выбираем 2 и нажимаем кнопку OK.
Шаг 13. Зададим наименования и параметры линейных зависимостей. Для этого делаем один щелчок левой кнопкой мыши по наименованию первой зависимости mf1. Затем печатаем наименование зависимости, например 50, в поле Name, и устанавливаем тип зависимости - константа путем выбора опции Сonstant в меню Type. После этого вводим значение параметра - 50 в поле Params.
Аналогично для второй зависимости mf2 введем наименование зависимости, например 8+8x1+2x2. Затем укажем линейный тип зависимости путем выбора опции Linear в меню Type и введем параметры зависимости 8 2 8 в поле Params. Для линейной зависимости порядок параметров следующий: первый параметр - коэффициент при первой переменной, второй - при второй и т.д., и последний параметр - свободный член зависимости.
Аналогично для третьей зависимости mf3 введем наименование зависимости, например 1+2x1+2x2, укажем линейный тип зависимости и введем параметры зависимости 2 2 1.
Для четвертой зависимости mf4 введем наименование зависимости, например 4x1-x2, укажем линейный тип зависимости и введем параметры зависимости 4 -1 0.
Для пятой зависимости mf5 введем наименование зависимости, например 0, укажем тип зависимости - константа и введем параметр зависимости 0.
В результате получим графическое окно, изображенное на рис. 2.11.
Рисунок 2.11 Окно линейных зависимостей “входы-выход”
Шаг 14. Перейдем в редактор базы знаний RuleEditor. Для этого выберем в меню Edit команду Edit rules.... и введем правила базы знаний. Для ввода правила необходимо выбрать соответствующую комбинацию термов и зависимостей и нажать кнопку Add rule. На рис. 2.12. изображено окно редактора базы знаний после ввода всех шести правил.
На рис. 2.13. приведено окно визуализации нечеткого логического вывода. Это окно активизируется командой View rules... меню View. В поле Input указываются значения входных переменных, для которых выполняется логический вывод. Как видно из этого рисунка значение выходной переменной рассчитывается как среднее взвешенное значение результатов вывода по каждому правилу.
Рисунок 2.12 Нечеткая база знаний для системы типа Сугено
Рисунок 2.13 Визуализация нечеткого логического вывода для системы типа Сугено
На рис. 2.14. приведена поверхность “входы-выход”, соответствующая синтезированной нечеткой системе. Для вывода этого окна необходимо использовать команду View surface... меню View. Сравнивая поверхности на рис. 2.7. и на рис. 2.14. можно сделать вывод, что нечеткие правила достаточно хорошо описывают сложную нелинейную зависимость. При этом, модель типа Сугено более точная. Преимущество моделей типа Мамдани состоит в том, что правила базы знаний являются прозрачными и интуитивно понятными, тогда как для моделей типа Сугено не всегда ясно какие линейные зависимости “входы-выход” необходимо использовать.
Рисунок 2.14 Поверхность “входы-выход” для системы типа Сугено
2.2.7 Результаты проектирования нечеткого алгоритма предрейсовых медицинских осмотров на основе адаптивной сети нейро-нечеткого вывода
Для реализации в экспертной системе был выбран нечеткий логический вывод по Сугено: выходное нечеткое множество в этой схеме логического вывода является нечетким множеством первого порядка, то есть дискретным множеством, заданным на множестве четких чисел. Это позволяет избежать накопления нечеткости при его использовании в иерархических системах.
В отличие от результата вывода Мамдани, нечеткое множество является обычным нечетким множеством первого порядка. Оно задано на множестве четких чисел. Результирующее значение выхода определяется как суперпозиция линейных зависимостей, выполняемых в данной точке n-мерного факторного пространства. Для этого дефаззифицируют нечеткое множество, находя взвешенное среднее или взвешенную сумму.
Рисунок 2.15 Функции слоев при аппроксимации нормы.
В гибридной схеме (рис. 2.15) иерархия нейронной сети адаптивно настраивает функции принадлежности в условиях и заключениях правил. Совмещение экспертных знаний и оценок регрессионной среды, как коэффициентов вывода по Сугено, позволяет получать оптимальные аппроксиматоры функций. Для целевого отделения признаков в работе был модифицирован выход сети. Добавление активационной логистической функции позволяет отследить изменение центра распределения в сторону риска.
Рисунок 2.16 Схема классификатора.
Отклонения от центра распределения - это есть значение минимизируемого функционала, обеспечивающего оптимальность решения относительно параметров правил. Регрессионный характер медицинских измерений учитывается при грубой настройке коэффициентов Сугено методом МНК. Точная подстройка функций правил осуществляется градиентным методом, где значением градиента является изменение функционала нормы, а аргументами частных производных - параметры гемодинамики (см. рис. 2.16).
Рисунок 2.17 - Схема статистического разделения нейротехнологии
Сигмоидальный выход характеризует с дробной вероятностью разделение входных признаков (рисунок 2.17). Грубая предварительная настройка по МНК приводит к общей области гистограмм разделения признаков. Точная настройка правил по обучающей выборке оптимально по вероятности обеспечивает минимальное пересечение классов.
Рисунок 2.18 Гистограммы указателя цели.
Алгоритм был применен к двум входным признакам гемодинамического артериального давления с одним выходом логического заключения, «есть риск, т.е. цель или нет». Грубой настройкой была получена вероятностная граница цели и не цели (рис. 2.18 (А, Б)). Точная настойка обучением обеспечила почти наверное разделение, смещая вероятностную границу вправо, в сторону риска(рис. 2.18 (В, Д)). Этим обеспечивается минимальная возможность ошибки.
Заключение
Произведенная теоретическая и практическая часть (в виде компьютерного программирования) работы достигает цели, поставленной при дипломном проектировании.
Разработанная система расспроса и предварительной диагностики позволяет получить достоверные результаты диагностирования и приемлемую скорость обработки при вводе симптомов, соответствующих базе знаний. Она дает превосходные методы обработки нечеткостей, которые свойственны всем медицинским данным, с помощью функций выводов. Наблюдения числовых характеристик полученной модели позволяют составить достоверный прогноз индивидуальных показателей нормы здоровья водителей транспортного средства. А это, в свою очередь, приводит к достижению цели обеспечения безаварийности перевозочного процесса и продления стажа опытных работников за счет планирования профилактических мероприятий по данным прогноза.
Все это подтверждает достижение цели, определенной поставленными перед выпускной работой актуальными проблемами современных систем управления в условиях лингвистической неопределенности.
ЛИТЕРАТУРА
1. Тэрано Т., Асаи К., Сугено М Прикладные нечеткие системы перевод с японского канд. техн. наук Ю. Н. Чернышова - Москва «Мир» 1993 - 363 с.
2. Норвиг А.М., Турсон И.Б. Построение функций принадлежности // Нечеткие множества и теория возможностей. Последние достижения: пер. с англ./ под ред. Р.Р. Ягера. - М.: Радио и связь, 1986. - 408 с.
3. Рыжов А.П. Элементы теории нечетких множеств и измерения нечеткости.- М.: Диалог -МГУ, 1998.
4. Штовба С.Д. Введение в теорию нечетких множеств и нечеткую логику.-http://www.matlab.ru/fuzzylogic/book1/index.asp
5. Ярушкина Н.Г. Основы теории нечетких и гибридных систем. - М.: Финансы и статистика, 2004.
6. Круглов В. В., Борисов В.В. Искусственные нейронные сети. Теория и практика. - М.: Радио и связь, 2000.
7. Катковник В. Я. Непараметрическая идентификация и сглаживание данных: метод локальной аппроксимации. - М.: Наука, 1985.
8. Заде Л. А., Понятие лингвистической переменной и его применение к принятию приближенных решений, Мир, М., 1976
9. Алексеев А.Н., Волков Н.И., Кочевский А.Н. Элементы нечёткой логики при программном контроле знаний // Открытое образование. 2004.Гроп Д. Методы идентификации. - М.: Наука, 1979.
10. Сейдж Э., Мелса Д. Индентификация систем управления. - М: Наука, 1974. - 247с.
11. Борисов В.В., Круглов В.В., Федулов А.С. Нечеткие модели и сети. - М.: Горячая линия - Телеком, 2007.
Размещено на http://www.allbest.ru/
Подобные документы
Начальное представление систем нечеткого вывода: логический вывод, база знаний. Алгоритм Мамдани в системах нечеткого вывода: принцип работы, формирование базы правил и входных переменных, агрегирование подусловий, активизация подзаключений и заключений.
курсовая работа [757,3 K], добавлен 24.06.2011Основные этапы систем нечеткого вывода. Правила нечетких продукций, используемые в них. Нечеткие лингвистические высказывания. Определение алгоритмов Цукамото, Ларсена, Сугено. Реализации нечеткого вывода Мамдани на примере работы уличного светофора.
курсовая работа [479,6 K], добавлен 14.07.2012Интеллектуальная система как техническая или программная система, решающая задачи, которые считаются творческими и принадлежат конкретной предметной области. Анализ системы нечеткого логического вывода. Знакомство со средой программирования FuzzyTECH.
дипломная работа [2,6 M], добавлен 30.09.2016Понятие нечеткого множества и функции принадлежности. Методы дефаззификации (преобразования нечеткого множества в четкое число) для многоэкстремальных функций принадлежности. Нечеткий логический вывод. Примеры выпуклого и невыпуклого нечеткого множества.
презентация [111,7 K], добавлен 16.10.2013Характеристика методов нечеткого моделирования и изучение системы кластеризации в пакетах прикладных программ. Разработка и реализация алгоритма для оптимизации базы правил нечеткого классификатора с помощью генетического алгоритма аппроксимации функции.
дипломная работа [1,9 M], добавлен 21.06.2014Понятие и свойства лингвистической переменной, ее разновидности. Основы теории приближенных рассуждений. Нечеткие системы логического вывода с одной и несколькими входными переменными. Принципы нечеткого моделирования, вычисление уровней истинности.
презентация [152,7 K], добавлен 29.10.2013Решение задач прогнозирования цен на акции "Мазут" на 5 дней, построение прогноза для переменной "LOW". Работа в модуле "Neural networks", назначение вкладок и их характеристика. Построение системы "Набор программистов" нечеткого логического вывода.
курсовая работа [3,2 M], добавлен 26.12.2016Искусственные нейросетевые системы как перспективное направление в области разработки искусственного интеллекта. Назначение нейро-нечётких сетей. Гибридная сеть ANFIS. Устройство и принцип работы нейро-нечётких сетей, применение в экономике и бизнесе.
контрольная работа [102,5 K], добавлен 21.06.2012Исследование методов автоматического проектирования нечетких систем управления (НСУ). Методы автоматической настройки семантики лингвистических переменных. Искусственные нейронные сети, генетические алгоритмы. Коэволюционный алгоритм для формирования НСУ.
дипломная работа [2,3 M], добавлен 02.06.2011Решение задачи аппроксимации поверхности при помощи системы нечёткого вывода. Определение входных и выходных переменных, их термы; алгоритм Сугено. Подбор функций принадлежности, построение базы правил, необходимых для связи входных и выходных переменных.
курсовая работа [1,8 M], добавлен 31.05.2014