Проект корпоративной сети звукового обеспечения "Интеллектуального здания" на основе технологии Fast Ethernet

Оборудование и программное обеспечение сети и способы управления системой. Специализированные сетевые технологии передачи и распределения цифровых и аналоговых аудиосигналов. Построение технической модели сети. Опасные и вредные факторы в работе с ПЭВМ.

Рубрика Программирование, компьютеры и кибернетика
Вид дипломная работа
Язык русский
Дата добавления 03.03.2009
Размер файла 888,0 K

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

Преимущества и недостатки витой пары:

· плюсы: Простота установки, отказоустойчивость, высокая производительность.

· минусы: Ограниченная длина, слабая помехоустойчивость от наводок (силовые трансформаторы, передающие устройства, лампы дневного света).

Характеристический импеданс соответствует входному импедансу однородной линии передачи бесконечной длины то есть линии передачи предельной длины, терминированной нагрузкой со значением ее собственного характеристического импеданса. В общем случае, характеристический импеданс - это комплексное число с резистивной и реактивной компонентами. Он является функцией частоты передаваемого сигнала и не зависит от длины линии. При очень высоких частотах характеристический импеданс асимптотически стремится к фиксированному резистивному сопротивлению. Например, коаксиальные кабели обладают импедансом 50 или 75 0м на высоких частотах. Типичное значение импеданса для кабелей "витая пара" - 100 0м при частотах свыше 1 МГц.

Затухание сигнала - это отношение в децибелах (дБ) мощности входного сигнала к мощности сигнала на выходе при соответствии импедансов источника и нагрузки характеристическому импедансу кабеля. Значение входной мощности может быть получено путем измерения мощности при непосредственном подключении нагрузки к источнику без прохождения сигнала по кабелю. В случаях, когда в местах терминирования импедансы не идеально соответствуют друг другу, отношение входной мощности к выходной носит название вносимых потерь или вносимого затухания.

Переходное затухание на ближнем конце (Near End Crosstalk, NEXT) - параметр, характеризующий затухание сигнала помехи, наведенного сигналом, проходящим по одной паре проводников, на другую, расположенную поблизости. Измеряется в дБ. Чем выше значение NEXT, тем лучше изоляция помехам между двумя парами проводников.

Обратные потери (потери при отражении). Когда импеданс кабеля и нагрузки не совпадает, сигнал, распространяющийся по кабелю, частично будет отражаться в точке интерфейса кабель-нагрузка.

Мощность отраженного сигнала носит название потерь при отражении или обратных потерь. Чем лучше совместимость импедансов, тем меньше отражаемая мощность и тем ниже обратные потери.

Временная задержка распространения сигнала. Сигнал, распространяющийся от входной точки к выходной, приходит с временной задержкой, величина которой является отношением длины кабеля к скорости распространения сигнала V в передающей среде. В случае идеальной линии передачи, состоящей из двух проводников в вакууме, скорость распространения сигнала равна скорости распространения света в вакууме с. На практике скорость распространения сигнала в кабеле зависит от свойств диэлектрических материалов, окружающих проводники.

Отношение сигнал-шум (SNR) - это соотношение между уровнем принимаемого сигнала и уровнем принимаемого шума, причем уровень сигнала должен значительно превосходить уровень шума для обеспечения приемлемых условий передачи.

Отношение затухания к переходному затуханию (ACR). Соотношение между сигналом и шумом может быть выражено в форме отношения затухания к переходному затуханию (ACR). ACR - это разница между ослабленным сигналом на выходе и вредным наведенным сигналом ("шумом") NEXT.

1.7.2 Силовой электрический кабель

Передача аудиосигнала с высоким качеством во многом повторяет проблемы, возникающие при трансляции видеосигнала, но поскольку звуковой диапазон имеет более низкие частоты, электрические характеристики кабеля сказываются иначе. При передаче звукового сигнала индуктивность и емкость оказывают меньшее влияние на затухание и влияют больше на тембровую окраску звука. Основные задачи при производстве аудиокабеля - это обеспечение низких значений активного сопротивления. Для минимизации этого параметра проводники кабеля приходится изготавливать из высокопроводящей меди. Высокая проводимость обеспечивается высокой чистотой используемой меди: от 99,95% до 99,99% -это бескислородная медь, обозначаемая на кабеле и в спецификациях как OFC (oxigen-free copper -прим.ред.).

Рассмотрим особенности выбора и применения аудиокабеля в профессиональных системах звукоусиления.

Акустические кабели предназначены для передачи сигналов от усилителей к динамикам акустических систем. Работа акустического кабеля характеризуется возможностью передачи больших значений тока от усилителя мощности к акустической системе. В отличие от инструментальных и микрофонных кабелей, значения токов сигнала в которых измеряется в миллиамперах, в акустических кабелях сила тока может достигать нескольких ампер. Так, в случае работы 100-ваттного усилителя на 8-омную акустическую систему сила тока может достигать 3,5А. Для сравнения, при подаче линейного уровня сигнала на 600-омный вход ток составит 2 мА.

Поэтому большое значение диаметра проводников - главное отличие акустического кабеля.

Выбор усилителей мощности определяется количеством, типом и мощностью громкоговорителей в зоне оповещения, а также протяженностью коммутационных линий до акустических системам. В системах оповещения применяются два типа выходных линий:

· Распределенные линии с уровнем сигнала 70/100 В.

· Низкоомные линии с импедансом нагрузки 4-16 Ом.

Распределенные линии целесообразно применять в тех случаях, когда необходимое количество громкоговорителей велико, а электрическая мощность мала, и также, если длина кабеля от усилителя до громкоговорителя превышает 100 м.

В системах звукоусиления, использующих 100-вольтные линии трансляции, применяются акустические кабели меньшего сечения, так как величина тока сигнала мала. В то же время диапазон передаваемых частот в таких системах существенно меньше, поэтому в таких системах с успехом может использоваться специализированный кабель ПРППМ (2x0,5...2x1,5 мм) или электрические ПВС или ШВВП 2x0,75 и выше. Акустический кабель в силу своей высокой стоимости является не всегда выгодным решением в качестве сильноточных звуковых линий. В этой области звукоусиления использование электрического кабеля в большинстве случаев является более выгодным в экономическом плане.

Конструктивно силовой электрический кабель - это два проводника (обычно медных) определенного сечения в оболочке. Проводники используются многожильные, из бескислородной меди, причем, чем тоньше медные жилки проводника и чем их больше, тем это лучше для передачи высоких частот.

По взаимному расположению проводников кабели можно разделить на:

· параллельные, с параллельным расположением проводников;

· витые с повышенной помехозащищенностью, что актуально при большой протяженности кабеля;

· коаксиальные, имеющие еще большую, чем у витых, степень защиты от помех.

Параллельные кабели - наиболее часто используемый класс электрических кабелей в системах звукоусиления. Витой кабель рекомендуется к прокладке длинных трасс, где есть опасность наводок от кабелей питания, например для подключения потолочных акустических систем. Коаксиальные кабели имеют повышенную помехозащищенность и могут быть рекомендованы для прокладки рядом с кабелями питания. Коаксиальные кабели имеют меньший диаметр, что также экономит место в закладных.

Для коммутации сильноточных звуковых линий (выходных линий усилителей мощности) необходимо использовать кабели с медными жилами большого сечения (низковольтные линии). Сечение жил кабеля выбирается из расчета, что потери мощности в линии не должны превышать 10%. Кабели должны иметь прочную, стойкую к внешним воздействиям изоляцию. Для большинства случаев рекомендуется применять кабель с сечением жил не менее 2,5 мм2.

1.8 Системы интегрированного управления (СИУ)

Современный конференц-зал, театр, спортивная арена, центр управления, транспортный узел или просто дом - вот далеко не полный перечень излюбленных мест совместного обитания человека и сложных электронных систем. В целом человек и техника научились понимать друг друга посредством пультов, кнопок, ручек, индикаторов и других органов управления. Но и здесь быстро образовались белые пятна.

1. Количество и сложность отдельных технологических систем постоянно растет. Соответственно растет и количество органов управления этими системами.

2. Почти всегда для человека использование одной из систем жизнеобеспечения сразу же влечет за собой использование и других.

Поэтому появился отдельный вид оборудования - системы интегрированного управления. В чем их достоинство:

· Управление любыми системами и оборудованием, используя единый интуитивный интерфейс управления.

· Возможность объединять управление разными системами, отдавая последовательность команд нажатием одной кнопки.

· Системы интегрированного управления предназначены для неквалифицированных пользователей.

· Надежность всех систем возрастает до максимума, поскольку конечный пользователь прикасается только к органам управления, а не к оборудованию, за которым ухаживает система управления.

· Это настоящие системы дистанционного управления, поскольку для них не существует ограничений ни в дальности связи, ни в количестве управляемых устройств.

· Естественно, что пульты управления интегрированных систем выгодно отличаются от предлагаемых производителями.

Большинство современных профессиональных и бытовых устройств имеет возможность внешнего управления. Причем сам протокол управления или физическая среда обмена данными может быть самой разнообразной:

· RS-232/422/485

· TCP/IP, Ethernet

· IR/Serial (передача данных с помощью проводных или ИК-пультов дистанционного управления)

· DMX

· MIDI

· SMPTE

· TTL (управление напряжением)

· Relay (управление с помощью замыкания/размыкания определенных контактов или групп контактов) и т.д.

При необходимости дистанционного управления устройствами, конечный пользователь обычно оказывается обладателем нескольких отдельных пультов. Каждый из них имеет ограниченный радиус действия, индивидуальный алгоритм управления и, в большинстве случаев, не русифицирован. Система интегрированного управления позволяет объединить все необходимые управляющие функции любых устройств в одном интерактивном пульте, имеющем русифицированный пользовательский интерфейс. Например, в современном конференц-зале система интегрированного управления может управлять следующими функциями и устройствами:

· Система звукового обеспечения (устройства записи и воспроизведения фонограмм, устройства электронной маршрутизации и коммутации, устройства звуковых эффектов и звуковой обработки, усилители мощности и т. д.);

· Система визуального обеспечения (видеокамеры, мониторы, проекционные экраны, видео проекторы, видеоимиджеры и прочее);

· Система освещения;

· Система вентиляции и кондиционирования;

· Система синхронного перевода речи;

· Система голосования и регламентации времени выступлений;

· Система голосовой и видео связи с удаленными объектами;

· Система теле- и радиовещания;

· Система доступа в локальные и глобальные информационные сети (Интернет).

Система интегрированного управления имеет модульное построение и обычно состоит из четырех подсистем: панели и пульты управления, центральные контроллеры, контроллеры шины управления и устройства интерфейса с объектами управления. Также как отдельную компоненту во всей системе необходимо выделить специализированное программное обеспечение.

Любая система состоит, по крайней мере, из одного центрального контроллера. Контроллеры соединяют панели с объектами управления. Действуя как нервный центр, центральный контроллер выполняет основные три задачи - управление, подача команд и коммуникация. При использовании нескольких центральных контроллеров система строится иерархически. В этом случае среди центральных контроллеров - серверов выделяется мастер-контроллер.

Способы управления:

· Промышленность предлагает несколько способов управления интегрированной системой:

· Сенсорные интерактивные панели управления

· Кнопочные пульты дистанционного управления

· Голосовые системы управления

· Компьютерные системы.

Также существует возможность удаленного управления и мониторинга системы через телефонные, глобальные и локальные вычислительные сети с обеспечением безопасности и конфиденциальности.

Панели управления на основе сенсорных жидкокристаллических экранов, представлены широким спектром моделей, давая возможность выбрать необходимый тип управления. Среди них настольные, настенные, встраиваемые в 19" консоли, проводные и беспроводные, цветные и черно-белые, с поддержкой видеосигнала и компьютерной графики. Панели воплощают в себе полнофункциональный центр управления в масштабе либо одного объекта управления, например, конференц-зала, либо всего комплекса помещений, например, театра. На рис. 1.11 показаны различные устройства СИУ.

Такие пульты не имеют интерактивного сенсорного экрана. Для обеспечения обратной связи в них используются светодиодные индикаторы и строчные ЖКИ дисплеи. Большой выбор вариантов исполнения (от простейших, на четыре функции до универсальных, программируемых) и диапазона частот обмена данными (инфракрасный и радиосигнал), пульты дистанционного управления обеспечивают возможность управления вне зависимости от места положения внутри объекта. Их количество, местоположение и функциональное назначение может свободно изменяться.

Использование компьютеров совместно со специализированным программным обеспечением расширяет набор компонентов управления системой. Вычислительная система становится полным эквивалентом панели управления с возможностью удаленного доступа, управления и мониторинга интегрированной системы через частные и общего пользования локальные и глобальные сети и сеть Интернет, организации видеоконференц-связи с обеспечением высокого уровня безопасности, доступа и конфиденциальности. Любой персональный компьютер может, при необходимости, стать полноценным центром управления системой звукового обеспечения, а также любой другой технологической системой объекта.

1.9. Выводы

Таким образом, подводя итоги, можно утверждать, что за счет использования аппаратно-программного комплекса управления звуком и современных технологий связи общее количество 4-х стационарных и 7-ми мобильных систем возможно сократить до 1 с небольшим дополнением специального оборудования (например, микшерный пульт в аппаратной актового зала). Все функции как собственно оповещения, так и других видов звукообеспечения реализованы в полной мере, при поддержании достаточно высоких электроакустических параметров для каждой из зон (за счет применения более качественного оконечного оборудования и широких возможностей по обработке звуковых сигналов). При этом повышение удельной стоимости единицы оборудования компенсируется его значительным общим сокращением, уменьшением объемов монтажных работ, коммутационных трасс и помещений для аппаратуры, а также снижением численности обслуживающего персонала.

2 ПРОЕКТИРОВАНИЕ СЕТИ ЗВУКОВОГО ОБЕСПЕЧЕНИЯ

При проектировании любой ЛС существуют типовые этапы выполнения сетевых проектов:

· Анализ (формирование) требований;

· Выбор оборудования;

· Построение технической модели;

2.1 Анализ технических условий и требований, предъявляемых к объекту проектирования
2.1 1 Требования к интеграции СЗО с различными инженерными системами здания
Система Звукового Обеспечения является интегральной системой, обеспечивающей комплекс инженерно-технических мероприятий по звуковому обеспечению находящихся на объекте людей, в зависимости от функционального назначения объекта. Во многих случаях система звукового обеспечения СЗО должна функционировать совместно с различными системами коммуникаций здания. Система должна являться органичной частью общей структуры коммуникаций в здании. Отсюда исходит требование необходимости интегрирования с другими инженерными и коммуникационными системами объекта такими как:
· компьютерные сети;
· пожарно-охранная безопасность;
· технологическое телевидение;
· телефонные сети;
· системы интегрированного управления;
· системы наблюдения и спецконтроль;
· инженерные системы светового обеспечения и т.д.
2.1.2 Требования к системе управления СЗО
Все управление системой звукообеспечения в "интеллектуальном здании" будет осуществляться через аппаратно-программный комплекс MediaMatrix. В операционной среде MediaMatrix будут формироваться все звукоусилительные тракты, определяться приоритетность источников звуковой информации и т.д. В тех приложениях, где необходимы функции централизованного управления и коммутации, отдельные пользователи должны быть сконфигурированы дистанционно по сети при помощи центральной станции. Система должна иметь гибкий интерфейс управления, в том числе компьютерный. Должны применяться системы интегрированного управления СИУ.
2.1.3 Требования к специфическим задачам СЗО
Т. к. СЗО обеспечивает комплекс инженерно-технических мероприятий по звуковому обеспечению находящихся на объекте людей, в зависимости от функционального назначения объекта, то система должна выполнять целый ряд специфических функций. В данном проекте такой специфической функцией является задача экстренного оповещения.
2.1.4 Требования к структурному построению СЗО
Система должна строиться по адресному, то есть зонному принципу. Под зонами подразумевается пространство внутри здания, получающее одну и ту же звуковую информацию. Деление на зоны происходит внутри комплекса MediaMatrix и, при наличии обширных коммуникационных возможностей "интеллектуального здания", не представляет большого труда вносить изменения в конфигурацию системы оповещения, если возникает необходимость.
2.1.5 Требования к функционированию системы в автоматическом режиме
Система должна иметь возможность работы в полном автоматическом режиме. Данный вид управления предназначен для системы оповещения и, прежде всего, экстренного.
Поскольку именно автоматическое управление будет обеспечивать интерфейс между MediaMatrix и прочими системами жизнеобеспечения "интеллектуального здания", то построение управляющих алгоритмов может быть разнообразным.
2.1.6 Требования к проектированию аппаратных помещений для СЗО.
· Стены аппаратной звукового обеспечения и потолок должны отделываться звукопоглощающими материалами с коэффициентом звукопоглощения не менее 0,6 в диапазоне частот 500 - 2000 Гц.
· Полы всех технических аппаратных помещений системы звукового обеспечения должны быть не пылеобразующими и позволять проведение мокрой ежедневной уборки (метлахская плитка, линолеум).
· Все соединительные линии между оборудованием, установленным в аппаратном помещении должны иметь маркировку и прокладываться скрыто (в кабельных коробах, лотках, трубах, кабель-каналах). При проектировании линий системы закладных в аппаратном помещении необходимо обеспечить легкость доступа к проложенным кабелям, а также запас по емкости не менее 30%.
· Рабочее место оператора должно обеспечивать централизованное управление и контроль основного оборудования СЗО во всех рабочих режимах. Количество рабочих манипуляций, для выполнения которых оператор вынужден покидать рабочее место во время мероприятия, должно быть минимальным, а сами такие действия не должны влиять на работоспособность СЗО.
· Все органы управления, визуального и слухового контроля, на рабочем месте оператора, должны иметь удобный пользовательский интерфейс управления, эргономичный дизайн и расположение.
· Аппаратные помещения СЗО громкого оповещения (или контрольные пункты оповещения) должны размещаться вблизи пунктов местного контроля объекта.
· Рабочие места операторов театральных, универсальных СЗО, а также СЗО концертных залов должны иметь как общее, так и местное освещение. Рабочие места операторов остальных СЗО могут освещаться системой общего освещения.
· Аппаратные помещения СЗО универсального назначения, а также СЗО для крупных административных, корпоративных, коммерческих и общественных зданий и комплексов должны иметь телефонный аппарат с городским номером и возможность подключения к локальной компьютерной сети (сети Intranet).
2.1.7 Требования к стационарной рабочей станции аппаратной
Центральный процессор MediaMatrix T MainFrame является промышленным специализированным процессором. Системный блок разработан на базе процессора Intel Pentium 4 промышленного типа. Т. к. для данного аппаратно-программного комплекса выпускается своя собственная линейка процессоров, то для стационарной рабочей станции аппаратной должна быть выбрана одна из моделей системных блоков серии MediaMatrix T MainFrame.
Т.к. система MediaMatrix функционирует на семействе платформ ОС Windows (98, Me, NT, 2000, XP), то должна быть выбрана одна из операционных систем данного семейства. MediaMatrix имеет опыт практического применения в России на протяжении более чем 14 лет и за это время наилучшей системой на основе, которой функционирует комплекс, зарекомендовала себя ОС Windows 2000 Advanced Server. Исходя из этого рекомендуется выбрать Windows 2000 Advanced Server в качестве операционной системы для аппаратно-программного комплекса MediaMatrix.
2.1.8 Требования к активному коммутационному оборудованию
В состав активного оборудования локальной сети звукового обеспечения должны входить два 12-портовых и один 5 портовый коммутатор.

Специалистами компании Peavey было проведено независимое тестирование активного оборудования на совместимость и наилучшую производительность с технологией CobraNet. Проведенные тестовые испытания показали, что модели компании Allied Telesyn AT-8012M и AT-FS705LE обладают лучшими техническими характеристиками и полной совместимостью с технологией CobraNet. Данный факт служит основанием требований выбора моделей

12-портовых коммутаторов AT-8012M и 5-портового коммутатора AT-FS705LE данной компании-производителя для применения в проектируемой локальной сети звукового обеспечения.

Активное оборудование должно быть произведено компаниями Allied Telesyn

2.1.9 Требования к кабельной коммутации в СЗО

· Прокладку всех магистральных звуковых линий следует производить либо в трубах (рекомендуется), либо в металлорукавах. Проектное заполнение закладных устройств не должно превышать 50 %.

· Тип и параметры кабельных линий для коммутации цифровых устройств звука определяются исходя из требований к конкретному типу оборудования, а также общим решениям по кабельным трассам на озвучиваемом объекте.

· Для коммутации сильноточных звуковых линий (выходных линий усилителей мощности) необходимо использовать кабели ПВС с медными жилами большого сечения (низковольтные линии). Сечение жил кабеля выбирается из расчета, что потери мощности в линии не должны превышать 10%. Кабели должны иметь прочную, стойкую к внешним воздействиям изоляцию. Для большинства случаев рекомендуется применять кабель с сечением жил не менее 2,5 мм2.

· Для снижения вероятности возникновения взаимных наводок и помех, не следует прокладывать вместе сильноточные и слаботочные кабели. По возможности следует использовать разъемные соединения в тракте в минимальном количестве.

· При разработке маршрута прокладки кабеля необходимо избегать пересечений с линиями электроснабжения и радиотрансляции. В случае необходимости такового пересечения угол между линиями должен составлять 90о.

· Для разъемных соединений следует применять только разъемы, конструкция которых обеспечивает надежный контакт и четкую фиксацию. Контакты разъема должны иметь покрытие стойкое к окислению.

· Монтаж в аппаратной стойке должен быть выполнен так, чтобы у обслуживающего персонала была возможность доступа к любому из приборов, как с фронтальной, так и с тыльной стороны. Так же имелась возможность оперативной замены любого из приборов. Внутренняя часть аппаратной стойки должна иметь подсветку. Конструкция самой стойки должна исключать случайный доступ к регулировочным элементам и коммутационным кабелям (наличие стенок и закрывающихся дверей). При необходимости следует обеспечить принудительную механическую вентиляцию.

· Вводные линии в аппаратную стойку должны быть выполнены либо в трубах, либо через кабельные каналы. Кабельные каналы должны быть закрытого типа и иметь лючки для оперативного доступа. При скрытой проводке необходимо предусмотреть разветвительные коробки.

2.1.10 Требования к системе бесперебойного питания основного оборудования

В качестве источников бесперебойного питания должны быть использованы интеллектуальные системы Powerware 9125. Данные системы спроектированы так, чтобы обеспечить максимальную работоспособность при больших нагрузках. Микропроцессор осуществляет непрерывный мониторинг и контроль за состоянием питания, в то время, как четыре раздельных уровня линейной интерактивной корректировки напряжения позволяют работать в периоды мгновенной потери напряжения и перенапряжения, не используя питание от аккумуляторов. Время автономной работы оборудования может быть доведено до 4 часов за счет использования дополнительных встраиваемых аккумуляторов. Контроль состояния ИБП и программирование алгоритма его работы осуществляется через поставляемый пакет программного обеспечения. Источники гарантированного питания установлены в монтажной стойке в помещении аппаратной.

2.2 Выбор сетевой технологии многоканальной дистрибьюции звуковых сигналов

Для данной системы звукового обеспечения выбрана сетевая технология многоканальной дистрибьюции звуковых сигналов по следующим параметрам:

· Технологию Cobranet поддерживает большое количество производителей: QCS, Crown, Biamp, Peavey, Crest Audio, Rane и мн. др.

· Все Cobranet устройства совместимы друг с другом. Это одно из важных преимуществ технологии

· поскольку сигнал передается в цифровой форме, не возникает проблем с наводками и шумами, а также потерей качества при больших пробегах кабелей, кроме того, использование оптоволоконного кабеля обеспечивает гальваническую развязку удаленного оборудования;

· оборудование для передачи сигналов по сети CobraNet чрезвычайно компактно - все интерфейсы имеют высоту 1 U. Общая экономия места в аппаратной стойке достигает

50-60%;

· все оконечное оборудование CobraNet управляется и диагностируется дистанционно, причем управление может быть как централизованным, так и децентрализованным;

· максимальное количество каналов передачи не ограничено, а расширение системы не требует значительных капиталовложений;

· помимо звуковых сигналов сеть CobraNet обеспечивает передачу сигналов управления и управляющей логики, используемой большинством систем пожарной и охранной безопасности;

· для построения сети CobraNet используется недорогое и широко распространенное оборудование стандартной компьютерной сети Fast Ethernet 100 Base - TX/FX. На большинстве современных объектов такая сеть уже имеется, поэтому стоимость и сложность монтажных работ сокращается в десятки раз. Кроме того, стоимость витой пары и оптоволоконного кабеля в несколько раз меньше, чем стоимость профессионального микрофонного кабеля или многожильного медного кабеля для акустических систем

· По сравнению со многими остальными сетевыми технологиями передачи и распределения звука в реальном масштабе времени эта технология является одной из самых экономически выгодных.

· В мире получили наибольшее распространение две технологии передачи и распределения звука в реальном масштабе времени: EtherSound и CobraNet. При сходных технических характеристиках технологий, первая абсолютно не получила пока распространения в России в отличие от CobraNet.

2.3 Выбор топология сети

Выбор используемой топологии зависит от условий, задач и возможностей, или же определяется стандартом используемой сети. Основными факторами, влияющими на выбор топологии для построения сети, являются:

среда передачи информации (тип кабеля);

метод доступа к среде;

максимальная протяженность сети;

пропускная способность сети;

метод передачи и др.

Рассмотрим вариант построения сети: на основе технологии Fast Ethernet.

Данный стандарт предусматривает скорость передачи данных 100 Мбит/сек и поддерживает два вида передающей среды - неэкранированная витая пара и волоконно-оптический кабель. Для описания типа передающей среды используются следующие аббревиатуры, которые приведены в табл. 2.1

Таблица 2.1 Стандарт Fast Ethernet

Название

Тип передающей среды

100Base-T

Основное название для стандарта Fast Ethernet (включает все типы передающих сред)

100Base-TX

Экранированная или неэкранированная витая пара категории 5 и выше.

100Base-FX

Многомодовый двухволоконный оптический кабель

100Base-T4

Витая пара. 4 пары категории 3, 4 или 5.

Правила проектирования топологии стандарта 100Base-T.

Следующие топологические правила и рекомендации для 100Base-TX и

100Base-FX сетей основаны на стандарте IEEE 802.3u

100Base-TX.

· Правило 1: Сетевая топология должна быть физической топологией типа «звезда» без ответвлений или зацикливаний.

· Правило 2: Должен использоваться кабель категории 5 или 5е.

· Правило 3: Класс используемых повторителей определяет количество концентраторов, которые можно каскадировать.

· Класс 1. Можно каскадировать (стэковать) до 5 включительно концентраторов, используя специальный каскадирующий кабель.

· Класс 2. Можно каскадировать (стэковать) только 2 концентратора, используя витую пару для соединения средозависимых портов MDI обоих концентраторов.

· Правило 4: Длина сегмента ограничена 100 метрами.

· Правило 5: Диаметр сети не должен превышать 205 метров.

· Правило 6: Метод доступа CSMA/CD.

100Base-FX.

· Правило 1: Максимальное расстояние между двумя устройствами - 2 километра при полнодуплексной связи и 412 метров при полудуплексной для коммутируемых соединений.

· Правило 2: Расстояние между концентратором и конечным устройством не должно превышать 208 метров.

Существует несколько факторов, которые необходимо учитывать при выборе наиболее подходящей к данной ситуации топологии. Эти факторы сведены в табл. 2.2

Таблица 2.2 Преимущества и недостатки топологий.

Топология

Преимущества

Недостатки

Шина

Экономный расход кабеля. Сравнительно недорогая и несложная в использовании среда передачи. Простота, надежность. Легко расширяется

При значительных объемах трафика уменьшается пропускная способность сети. Трудно локализовать проблемы. Выход из строя кабеля останавливает работу многих пользователей

Кольцо

Все компьютеры имеют равный доступ. Количество пользователей не оказывает сколько-нибудь значительного влияния на производительность

Выход из строя одного компьютера может вывести из строя всю сеть. Трудно локализовать проблемы. Изменение конфигурации сети требует остановки работы всей сети

Звезда

Легко модифицировать сеть, добавляя новые компьютеры. Централизованный контроль и управление. Выход из строя одного компьютера не влияет на работоспособность сети

Выход из строя центрального узла выводит из строя всю сеть

Исходя из всего вышеперечисленного, оптимальным видом топологии для проекта является звездная топология стандарта 100Base-TX с методом доступа CSMA/CD, так как она имеет широкое применение в наши дни, её легко модифицировать и у нее имеется высокая отказоустойчивость.

2.4. Выбор физической среды передачи

Стандартом Fast Ethernet IEEE 802.3u установлены три типа физического интерфейса (табл.2.3): 100Base-FX, 100Base-TX и 100Base-T4.

Таблица 2.3 Физические интерфейсы стандарта Fast Ethernet (IEEE 802.3u) и их основные характеристики

Физический интерфейс

100Base-FX

100Base-TX

100Base-T4

Порт устройства

Duplex SC

RJ-45

RJ-45

Среда передачи

Оптическое волокно

Витая пара
UTP Cat. 5

Витая пара UTP Cat. 3,4,5

Сигнальная схема

4B/5B

4B/5B

>8B/6T

Битовое
Кодирование

NRZI

MLT-3

NRZI

Число витых
пар/ волокон

2 волокна

2 витых пары

4 витых пары

Протяженность сегмента

до 412 м(mm)
до 2 км (mm)
до 100 км (sm)

до 100 м

до 100 м

Технология CobraNet функционирует на основе сетевого протокола Fast Ethernet 100 Base - TX / FX , физический интерфейс 100Base-T4 не поддерживается в силу своего существенного недостатка - принципиальной невозможности поддержки дуплексного режима передачи.

Учитывая общий бюджет проекта, очевидным выбором для абонентской системы здания становится витая пара категории 5e. Она позволяет передавать данные со скоростью 100мбит/c, удобна в прокладке, обладает достаточно низкой стоимостью и отвечает всем требованиям по надёжности, предъявляемым к абонентской системе. Её существенным недостатком является низкий уровень защищённости от внешних электромагнитных наводок и статического напряжения, что сказывается на общей надёжности сети. Так же оптоволоконный кабель обладает большей дальностью передачи сигнала. Но стоимость самого оптоволоконного кабеля, активного оборудования и работ по монтажу требует значительно больших финансовых вложений. Для абонентской системы здания будет использоваться физический интерфейс 100Base-TX.

Выбор физической среды передачи для коммутации сильноточных звуковых линий

Для коммутации сильноточных звуковых линий (выходных линий усилителей мощности) необходимо использовать кабели с медными жилами большого сечения (низковольтные линии). Сечение жил кабеля выбирается из расчета, что потери мощности в линии не должны превышать 10%. Кабель должен иметь прочную, стойкую к внешним воздействиям изоляцию. Для большинства случаев рекомендуется применять кабель с сечением жил не менее 2,5 мм2. В этой области звукоусиления использование электрического кабеля в большинстве случаев является более выгодным в экономическом плане. Для коммутации сильноточных звуковых линий (выходных линий усилителей мощности) целесообразным является применение силового электрического кабеля ПВС 2х2,5. Его характеристики:

· Жила -- многопроволочная из мягкой медной проволоки 5 класса гибкости. Жилы уложены параллельно;

· Изоляция -- изоляционный ПВХ пластикат;

· Оболочка -- ПВХ пластикат. Расцветка: черная или белая;

Условия эксплуатации:

· диапазон рабочих температур -- от -40 °С до +40 °С;

· срок службы проводов в нормальных условиях эксплуатации -- не менее 6 лет.

Электрические характеристики: удельное электрическое сопротивление жил постоянному току при температуре 20 °С, Ом·мм2/м, не менее -- 0,01724; номинальные токовые нагрузки, А -- не более:

· при сечении жилы 0,75 мм2 -- 6,0;

· при сечении жилы 1,0 мм2 -- 10,0;

· при сечении жилы 1,5 мм2 -- 16,0;

· при сечении жилы 2,5 мм2 -- 25,0.

2.5 Выбор аппаратно-программного комплекса СЗО

Для данной системы звукового обеспечения выбран аппаратно-программный комплекс MediaMatrix по следующим параметрам:

· технология MediaMatrix позволяет осуществлять передачу аудио сигнала без потери качества на значительные расстояния по оптоволоконным линиям и витой паре, что чрезвычайно актуально для различных закрытых и открытых объектов.

· в настоящее время только MediaMatrix допускает решение всех задач звукового обеспечения, кроме оконечного усиления сигнала, в рамках одного процессорного устройства;

· программное обеспечение MediaMatrix работает в операционной среде Windows 2000/ XP, надежность которой значительно выше, чем у Microsoft Windows 95/98/ ME;

· MediaMatrix развивается и имеет опыт практического применения на протяжении более чем 14 лет, в то время как другие аналогичные технологии не более 2-3 лет;

· MediaMatrix является наиболее распространенной во всем мире технологией, применяемой при озвучивании крупных спортивных объектов;

· за последние 7 лет в России осуществлено свыше 50-ти инсталляций аппаратно-программного комплекса MediaMatrix, и за все время эксплуатации не зафиксировано ни одной существенной неисправности или выхода её из строя;

· интеграция аппаратно-программного комплекса MediaMatrix с системами безопасности, видеонаблюдения и информации, судейскими системами и т.д.

· Система MediaMatrix является одной из наиболее экономически выгодных. При решении всех задач звукового обеспечения MediaMatrix является экономически более выгодной, чем система Audia компании Biamp.

Аппаратно-программный комплекс MediaMatrix в числе прочих задач выполняет функцию электронной коммутации и распределения сигналов в цифровом формате. Данная функция необходима для оперативного распределения сигнала в ходе работы системы, выбора сигналов для подачи в различные зоны оповещения (при раздаче разных сигналов в любые зоны), а также на устройства звукозаписи. Аппаратно-программный комплекс MediaMatrix обеспечивает всю необходимую обработку звуковых сигналов в предлагаемом варианте построения системы. Из существующих на сегодняшний день звуковых технологий, только система MediaMatrix (аппаратно-программный комплекс) компании Peavey Electronics Corporation в полной мере отвечает перечисленным требованиям. Только она совмещает в себе универсальную систему звукоусиления и звуковой тракт, открытый для любых сетей передачи информации. Во всех близких к MediaMatrix системах эти функции не совмещаются. К тому же MediaMatrix экономически эффективней, по сравнению с любой из этих систем.

2.5.1 IBM совместимый компьютер

Количество входных/выходных звуковых каналов составляет 222 выходных и 60 входных каналов. Посредством суммирования количество выходных каналов составит 62. Согласно требованиям к стационарной рабочей станции аппаратной (см. выше) и также исходя из того, что количество входных/выходных звуковых каналов в сумме составляет 60 входных и 62 выходных каналов, для системы СЗО выбран системный блок Miniframe-208nt-cn (Макс. кол-во вх/вых каналов: по 64). Его характеристики:

· DPU (Digital Processing Unit) - до 2 плат цифровой обработки сигнала, оснащенных четырьмя процессорами цифровой обработки сигнала Motorola 56002 каждая. Макс. кол-во вх/вых каналов: по 64. Поддержка 10/100BaseT Fast Ethernet;

· процессор Рentium-IV 1500 MHz, (c объёмом L2-cache 512 KB);

· оперативная память не менее 512 MB;

· Съемный жесткий диск 120 ГБ Ultra-ATA/100;

· видеоадаптер AGP 8x c видео-памятью 32 МБ;

· High Speed DAB - Высокоскоростной канал цифрового звука;

· 1.44 MB, 3.5" FDD - 1.44-Мегабайтный 3,5-дюймовый флоппи-дисковод;

· 32X CD-ROM дисковод;

· High-performance Passive Backplane - Высокомощный пассивный разъем: можно добавить до семи дополнительных плат цифровой обработки сигнала;

· Dual Load Sharing - Дублированные блоки питания с автоматическим переключением, 400 ватт.

Рабочая станция комплектуется монитором 17” Samsung 795MB, клавиатурой и оптической мышью.

2.5.2 Платы цифровой обработки

В данном проекте применяется сетевая технология CobraNet. Из двух моделей плат цифровой обработки звука аппаратно-программного комплекса MediaMatrixT только плата MM-DSP-CN разработана для сигналов транслируемых через локальную сеть Ethernet по протоколу CobraNet. Соответственно для проектируемой системы выбирается модель платы MM-DSP-CN.

Т. к. количество входных/выходных звуковых каналов в сумме составляет 60 входных и 62 выходных каналов, и, исходя из того, что одна плата способна обрабатывать до 32 входных/выходных звуковых каналов, в модель системного блока Miniframe-208nt-cn необходимо установить 2 платы MM-DSP-CN.

2.5.3 Устройства (интерфейсы) преобразования аналоговых, цифровых сигналов в специальный формат для передачи по волоконно-оптическим линиям и витой паре и обратного преобразования

Ввод/вывод сигнала на плату цифровой обработки MM-DSP-CN осуществляется с помощью цифровых модулей серии CAB. Поэтому в качестве интерфейсов преобразования выполняющих прямую и обратную конвертацию в/из формата CobraNet в аналоговый или цифровой (AES / EBU) формат звуковых сигналов выбраны модули серии CAB:

· аналого-цифровой - CAB 16i, CAB 8i;

· цифро-аналоговый - CAB 16o, CAB 8o;

· цифро-цифровой - CAB 16d.

Количество модулей выбирается исходя из требований задач решаемых системой звукового обеспечения.

Для обеспечения разрабатываемой сети требуются 6 цифро-аналоговых интерфейсов CAB 16o, 1 цифро-аналоговый интерфейс CAB 8o, 3 аналого-цифровых

интерфейса CAB 8i, 2 цифро-цифровых интерфейса CAB 16d.

2.5.4 Выбор программного обеспечения

Программное обеспечение MWare 3.0 - 3.03

32-х битное многозадачное программное обеспечение включает в себе четыре прикладные функции: язык программирования DSP высшего уровня, программа проектирования аудиосистем, программа управления и работы в сети, программа диагностики DSP. Всё это делает MWare одним из наиболее мощных программных продуктов в области цифрового звука на сегодняшний день. Библиотека MWare содержит сотни приборов готовых к использованию. Если же в ней нет того, что нужно, то всегда есть возможность создать собственный прибор, на базе элементарных алгоритмов MediaMatrix.

· Сотни новых приборов обработки звука;

· Поддержка локальных сетей CobraNet;

· Поддержка сетей TelNet;

· Логические приборы;

· Удалённый доступ к системе, протоколы TCP/IP;

· Командная строка;

· Новые приборы тестирования;

· Амплитудно-частотная, фазовая диаграмма и другое.

· Работает под Windows 98, Me, NT, 2000, XP.

Практически все современные ОС поддерживают работу в сети. Однако в качестве ОС для сервера чаще всего используются Nowell NetWare, Unix, Linux и Windows 2000 Server.

Windows 2000 Server

Включает основанные на открытых стандартах службы каталогов, Web, приложений, коммуникаций, файлов и печати, отличается высокой надежностью и простотой управления, поддерживает новейшее сетевое оборудование для интеграции с Интернетом. В Windows 2000 Server реализованы:

· службы Internet Information Services 5.0 (IIS)

· среда программирования Active Server Pages (ASP)

· XML-интерпретатор

· архитектура DNA

· модель СОМ +

· мультимедийные возможности

· поддержка приложений, взаимодействующих со службой каталогов

· Web-папки

· печать через Интернет

Минимальные аппаратные требования Windows 2000 Server:

Pentium-совместимый процессор с тактовой частотой не ниже 133 МГц -- Windows 2000 Server поддерживает до 4 процессоров:

128 Мб ОЗУ (рекомендуется 256 Мб). Большее количество памяти значительно увеличивает быстродействие системы. Windows 2000 Server поддерживает ОЗУ объемом до 4 Гб;

2 Гб свободного дискового пространства -- для установки Windows 2000 Server требуется около 1 Гб. Дополнительное место на диске необходимо для установки сетевых компонентов.

Windows 2000 Advanced Server

Эта ОС, по сути, представляет собой новую версию Windows NT Server 4.0 Enterprise Edition. Windows 2000 Advanced Server -- идеальная система для работы с требовательными к ресурсам научными приложениями и приложениями электронной коммерции, где очень важны масштабируемость и высокая производительность[1]. Аппаратные требования для Windows 2000 Advanced Server не отличаются от требований для Windows 2000 Server, однако эта более мощная ОС включает дополнительные возможности:

· балансировку сетевой нагрузки;

· поддерживает ОЗУ объемом до 8 Гб на системах с Intel Page Address Extension (РАЕ);

· поддерживает до 8 процессоров.

Windows 2000 Datacenter Server

Это серверная ОС, еще больше расширяющая возможности Windows 2000 Advanced Server. Поддерживает до 32 процессоров и больший объем ОЗУ, чем любая другая ОС Windows 2000:

· до 32 Гб для компьютеров с процессорами Alpha;

· до 64 Гб для компьютеров с процессорами Intel.

Вопрос об установке Windows 2000 Datacenter Server следует рассматривать только в том случае, если вам требуется поддерживать системы оперативной обработки транзакций (online transaction processing, OLTP), крупные хранилища данных или предоставлять услуги Интернета.

В качестве операционной системы мной было решено использовать Windows 2000 Advanced Server. Эта версия Windows 2000 поддерживает работу с большим объемом оперативной памяти и большим количеством процессоров. Она включает в себя средства организации кластеров и механизмы распределения нагрузки.

Т. к. платформой MediaMatrix поддерживаются только семейство ОС Windows (98, Me, NT, 2000, XP), и к тому же исходя из рекомендуемых требований к выбору операционной системы для управляющего компьютера аппаратной, наиболее выгодным будет выбор операционной системы Windows 2000 Advanced Server.

2.6 Выбор телекоммуникационного оборудования

Исходя из рекомендуемых требований к выбору активного оборудования имеющего полную совместимость с технологией CobraNet для применения в проектируемой локальной сети звукового обеспечения были выбраны следующие модели коммутаторов компании Allied Telesyn:

В качестве 12-портовой модели - коммутатор AT-8012M. В качестве преимуществ можно отметить:

· Поддержка стандарта 802.1w Rapid Spanning Tree

· Зеркалирование портов

· Поддержка технологии Enhanced Stacking

· Монтаж в 19" стойку или шасси

· Порты 10Base-T с экранированными разъемами RJ-45

· Сетевое управление через SNMP, TELNET или HTTP

· Две приоритетных очереди

· Бесплатное обновление ПО

· Гарантия на весь срок службы (один год - на блок питания)

Серия AT-8000 обладает высокой гибкостью и масштабируемостью. Хотя коммутаторы AT-8000 серии могут использоваться как plug-and-play устройства, у них имеется множество дополнительных функций управления. Функции управления включают в себя: web-интерфейс управления, интерфейс командной строки, SNMP и Telnet. Прошивки и файлы конфигурации могут быть закачаны в коммутатор и скачаны посредством TFTP, XMODEM или Enhanced Stacking™ протоколов.

Для обеспечения разрабатываемой сети требуется два 12-портовых коммутатора AT-8012M.

В качестве 5 портовой модели - коммутатор AT-FS705LE

Функциональные возможности:

· 10/100Мб/с функция автосогласования

· Компактный размер

· Поддержка Flow control

· Передача данных в полу- и полно-дуплексном режимах

· MDI/MDI-X порт

· Plug & Play для облегчения инсталляции

· Поддерживает до 1,024 MAC адресов

· Прозрачность для пакетов VLAN(Виртуальная сеть)

Для обеспечения разрабатываемой сети требуется один 5-портовый коммутатор AT-FS705LE.

Из пассивного сетевого оборудования предлагается использовать телекоммуникационные шкафы (стойки) 19”и открытые аппаратные стойки 19”. Оборудование располагается на вертикальном перфорированном профиле или на 19" полках. Доступны различные варианты исполнения по глубине, классу защищенности и конструкции дверей. Несколько отдельных шкафов, объединенных механически в жесткую конструкцию, могут составить единый комплекс.

Мною выбраны напольные варианты 41U, 24U, 18U, 12U и 8U для оборудования центральной аппаратной, локальной аппаратной актового зала и шоу-клуба, находящегося на цокольном этаже. Конструкция шкафов каркасная. Передняя и задняя двери взаимозаменяемы. Доступ к оборудованию, установленному в шкафу, может осуществляться с четырех сторон. Двери имеют как левую, так и правую навеску. Шкаф устанавливается на регулируемых по высоте ножках или колесах. Ввод кабеля производится через основание шкафа. Предусмотрена возможность ввода кабеля через верхнюю крышку. Имеется встроенная система вентиляции.

Основное оборудование выполнено в 19' базе и устанавливается в стойке-шкафу Knurr серии Miracel NS 19.6 емкостью до 41 U (где 1U=44,45 мм), стойках-шкафах российского производства серии 723 с дверями на замках и принудительной системой вентиляции и в аппаратных стойках серии 710 и 728.

Для обеспечения разрабатываемой сети требуются 1 телекоммуникационный шкаф 19” 41U, 1 телекоммуникационный шкаф 19” 18U, 1 открытая аппаратная стойка 19” 24U, 1 открытая аппаратная стойка 19” 12U и 1 открытая аппаратная стойка 19” 10U.

2.7 Выбор звукового оборудования

Основными задачами звукообеспечения “интеллектуального здания” являются:

§ Зонное оповещение;

§ Трансляция музыкальных и информационных программ;

§ Организация конференц-связи в конференц-зале на первом этаже здания;

§ Экстренное оповещение;

§ Проведение концертов, выступлений и т.д. в актовом зале ЦДЮТ;

§ Проведение дискотек, выступлений, праздничных мероприятий и т.д. в помещении шоу-клуба.

Исходя из количества и направленности задач звукообеспечения здания составляем список необходимого звукового оборудования для обеспечения здания и оснащения центральной аппаратной и аппаратной актового зала. Все звуковое оборудование выбирается исходя из соображений совместимости в экономическом и техническом плане, т.е. все комплектующие должны обладать качественными техническими характеристиками при соответственно недорогой стоимости.

Для оснащения всего здания, центральной аппаратной и аппаратной актового зала выбраны:

· 37 усилителей;

· 120 настенных акустических систем Impulse 652S, 82 потолочные акустические системы WS 502 Wall Speaker и 4 акустических низкочастотных системы Impulse Stereo Subwoofer;

· 20 микрофонов Shure MX-418C для оснащения конференц-зала, 12 микрофонов PVM 22 компании Peavey для оснащения актового зала, 6 микрофонов PVM 22 предназначенных для использования в шоу-клубе и 2 настольных микрофона ASM-2 Peavey устанавливаемых в помещении центральной аппаратной;

· 24-парный микрофонный мультикоровый кабель 24 PR AUDIO LINK 50' Peavey;

· Аппаратура записи и воспроизведения: 3 кассетных магнитофона - Tascam 102 MKII, 2 проигрывателя CD - Tascam CD-160, 2 MD проигрывателя - Tascam MD-350, тюнер AM/FM Tascam ST-920B;

· Цифровой микшерный пульт Yamaha 01V96.

20 усилителей устанавливаются в центральной аппаратной, 8 усилителей - в аппаратной актового зала, 9 усилителей - в открытой аппаратной стойке в помещении шоу-клуба. В качестве усилителей находящихся в аппаратных используются модель ICA 400V компании Peavey. Все модели имеют общие характеристики, такие как последовательное включение/выключение, предотвращение перегрузки, коррекция сбоев нагрузки (Load Fault Correction, LFC), защита при запуске (Initialization Protection, IP), защита от коротких замыканий, защита от постоянного тока и перегрева. Мощность моделей V - 200, 400, 800 Вт на канал при 70.7 или 100В. Последовательное включение/выключение, индикаторы на передней панели, коррекция сбойки нагрузки (LFC), охлаждение, защита запуска, защита от перегрева, короткого замыкания и постоянного тока.

В качестве усилителей находящихся в помещении шоу-клуба предлагается использовать модель CKi 400v компании Crest Audio. Преимуществом модели данной серии является тот факт, что в ней имеется выход CobraNet. Нет необходимости использовать интерфейс MediaMatrix для преобразования сигнала формата Ethernet в цифровой, а затем аналоговый звуковой сигнал.

В аппаратной актового зала предусмотрено установить цифровой микшерный пульт Yamaha 01V96. С цифровых выходов микшерного пульта передаются цифровые звуковые сигналы на устройства CAB 16d. С ним также соединяется аппаратура воспроизведения звука кассетный магнитофон - Tascam 122 MKIII, проигрыватель CD - Tascam CD-160, MD проигрыватель - Tascam MD-350.


Подобные документы

  • Технология построения сетей передачи данных. Правила алгоритма CSMA/CD для передающей станции. Анализ существующей сети передачи данных предприятия "Минские тепловые сети". Построение сети на основе технологии Fast Ethernet для административного здания.

    дипломная работа [2,5 M], добавлен 15.02.2013

  • Выбор и обоснование технологии построения ЛВС. Анализ среды передачи данных. Выбор и обоснование аппаратного обеспечения сети, коммуникационные устройства. Расчет пропускной способности сети Fast Ethernet. Программное обеспечение управления сетью.

    курсовая работа [1,2 M], добавлен 04.03.2014

  • Особенности проектирования локальной сети для учебного учреждения на основе технологии Ethernet, с помощью одного сервера. Описание технологии работы сети и режимов работы оборудования. Этапы монтажа сети, установки и настройки программного обеспечения.

    курсовая работа [1,9 M], добавлен 16.02.2010

  • Проектирование компьютерной локальной сети по технологии Ethernet 10Base-T, 1000Base-LX , выбор топологии и необходимого аппаратное и программное обеспечение. Расчет затрат на сетевое оборудование, проектирование и монтаж локальной сети организации.

    курсовая работа [73,5 K], добавлен 09.07.2014

  • Разработка высокоскоростной корпоративной информационной сети на основе линий Ethernet c сегментом мобильной торговли для предприятия ООО "Монарх". Мероприятия по монтажу и эксплуатации оборудования. Расчет технико-экономических показателей проекта.

    курсовая работа [417,5 K], добавлен 11.10.2011

  • Основная цель и модели сети. Принцип построения ее соединений. Технология клиент-сервер. Характеристика сетевых архитектур Ethernet, Token Ring, ArcNet: метод доступа, среда передачи, топология. Способы защиты информации. Права доступа к ресурсам сети.

    презентация [269,0 K], добавлен 26.01.2015

  • Сравнительный анализ различных топологий сетей. Исследование элементов структурированной кабельной системы. Методы доступа и форматы кадров технологии Ethernet. Локальные сети на основе разделяемой среды: технология TokenRing, FDDI, Fast Ethernet.

    курсовая работа [1,2 M], добавлен 19.12.2014

  • Современные технологии локальных сетей. Методы доступа в локальную вычислительную сеть (ЛВС). Особенности эталонной модели ЛВС. Расчет сети доступа на базе Fast Ethernet. Расчет максимального времени задержки сигналов в каждой компьютерной группе.

    курсовая работа [1,1 M], добавлен 27.03.2012

  • Обоснование выбора оптимальных сетевых решений на базе многозадачных операционных систем для построения компьютерной сети стандартов Fast Ethernet с учетом необходимых требований к сети. Методы расчета спроектированной конфигурации сети на корректность.

    курсовая работа [3,1 M], добавлен 06.12.2012

  • Разработка проекта компьютерной сети на основе технологии Fast Ethernet. Выбор топологии сети, кабельной системы, коммутатора, платы сетевого адаптера, типа сервера и его аппаратного обеспечения. Характеристика существующих мобильных операционных систем.

    курсовая работа [381,4 K], добавлен 06.08.2013

Работы в архивах красиво оформлены согласно требованиям ВУЗов и содержат рисунки, диаграммы, формулы и т.д.
PPT, PPTX и PDF-файлы представлены только в архивах.
Рекомендуем скачать работу.