Экономические информационные системы

Сущность понятия "информационная система", история и направления развития, признаки классификации; процессы. Принципы функционирования и жизненный цикл ИС. Основные виды обеспечения, структура банка и хранилищ данных, пользователи, области применения.

Рубрика Программирование, компьютеры и кибернетика
Вид курсовая работа
Язык русский
Дата добавления 12.01.2012
Размер файла 93,9 K

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

Последовательная система соответствует иерархической системе классификации. Значение признака, записанного в виде цифры или буквы на определенном разряде кодового обозначения, зависит от признаков, записанных в предыдущих разрядах, т.е. код нижестоящей группировки образуется путем добавления соответствующего кода к коду вышестоящей группировки. Основной недостаток системы -- сложная структура и большая длина кода.

Параллельная система используется только при фасетной классификации. Для обозначения отдельного фасета в случае нестандартного расположения их в соответствии со структурной формулой выделяется определенный разряд или группа разрядов. Значение признака на определенном разряде не зависит от значений признаков на других разрядах. Система дает многоаспектную классификацию, хорошо приспособлена к машинной обработке. Система достаточно гибкая, однако длина кода весьма значительна. Классификационные коды строятся по разрядной (позиционной) или комбинированной системами кодирования.

При разрядной системе кодирования каждому классификационному признаку отводится определенное число разрядов, которое зависит от количества предметов кодируемого множества. В комбинированной системе применяются комбинации рациональных систем, например, разрядной и серийной и др., поэтому она является наиболее гибкой. Разновидностью разрядной системы является шахматная, применяется к номенклатурам, характеризующимся двумя признаками, из которых один располагается по вертикали, а другой - по горизонтали.

Системы кодирования, не требующие предварительной классификации, называют регистрационными. Они бывают двух типов: порядковые и серийные.

Порядковая система применяется для кодирования однопризначных номенклатур и предусматривает присвоение объектам цифр натурального ряда чисел без пропуска номеров.

Серийная система служит для кодирования аналогичных простых номенклатур и предполагает присвоение серий номеров объектам, выделенным в группу, а в пределах серии объектам присваиваются номера по порядку.

При кодировании может применяться также система повторения, в которой используются цифровые и буквенные обозначения, непосредственно характеризующие данный объект (размер, вес и т.д.).

При построении кодов следует также предусмотреть возможность автоматического обнаружения ошибок кодирования с помощью ЭВМ. С этой целью коды объектов дополняются контрольными разрядами, определяемыми по установленному алгоритму. Такие защитные коды называют кодами обнаружения ошибок. Для расчета контрольного разряда наиболее широко используются методы контроля по модулю.

Работа по классификации и кодированию информации реализуется путем создания классификаторов технико-экономической информации. Классификатор устанавливает взаимооднозначное соответствие между кодом объекта и его наименованием. В зависимости от уровня действия все классификаторы, применяемые в АИС, делятся на общегосударственные и локальные.

При проектировании АИС для каждого предприятия составляется перечень необходимых локальных классификаторов, которые должны быть разработаны с учетом имеющихся общегосударственных классификаторов и специфических особенностей конкретного предприятия, и определяются правила пользования ими. На предприятиях используются следующие основные виды классификаторов: материалов, готовой продукции, оборудования, инструмента, структурных подразделений и т.д.

Для обмена информацией между системами разных уровней управления должна быть учтена возможность перехода от кодов одного классификатора к кодам другого классификатора той же номенклатуры, т.е. требуется унификация и увязка всех применяемых классификаторов. С этой целью разработана единая система классификации и кодирования важнейших номенклатур (ЕСКК), центральным звеном которой является комплекс общегосударственных классификаторов, а для организации работы с различными классификаторами необходимо еще и создание перекодировочных таблиц.

Разработка локальных классификаторов на предприятии начинается с определения методики, в которой приводится состав признаков объектов, содержащихся в классификаторе, устанавливается наличие соподчиненных признаков, выбираются системы классификации и кодирования, разрабатывается структура классификатора и кодового обозначения, определяется система контроля кодовых обозначений, указывается форма взаимодействия с классификаторами других уровней. Затем формируется упорядоченное множество объектов, осуществляется его кодирование; после контроля правильности присвоения кодовых обозначений и анализа полноты представления классифицируемого множества классификатор готовится к печати и размножению, рассылается в подразделения, которые с ним работают. Одновременно определяются правила пользования локальными классификаторами, разрабатывается система их ведения, предназначенная для актуализации классификаторов и их корректировки в централизованном порядке.

При проектировании информационного обеспечения необходимо изучать характеристики потоков информации. Под информационным потоком понимается совокупность данных в процессе ее движения в пространстве и во времени. В качестве единицы потока используют документ, показатель или сообщение (подробнее см. раздел 2.4).

Документы являются основными носителями информации на предприятии и представляют совокупность некоторых элементов, называемых показателями.

Показатель - информационная совокупность, дающая характеристику объекта и определяющая все входящие в совокупности признаки количественно или качественно.

Совокупность взаимосвязанных форм документов, используемых в процессе управления предприятием, называется системой документации.

При разработке АИС документальная форма представления информации частично сохраняется, однако, при этом решаются проблемы унификации и стандартизации документов, а также максимального использования технических средств их получения. Унифицированная система документации представляет собой комплекс взаимосвязанных форм документов и процессов документирования данных, отвечающих единым правилам и требованиям документооборота, и является средством реализации информационных процессов обмена данными, имеющим нормативно-правовую силу в управлении. При разработке системы документации составляются инструкции по заполнению, ведению и использованию их. Совокупность всех маршрутов движения документов, входящих в систему документации, составляет общую схему документооборота.

Внутримашинное информационное обеспечение СОД и АИС. Внутримашинное ИО включает совокупность информационных массивов и баз данных, процедуры организации, ведения, хранения и обработки баз данных, методы и средства преобразования внешнего представления данных в машинное и обратно, описания хранимой и обрабатываемой информации.

Внутримашинная информационная база является информационным отображением предметной области автоматизируемого объекта и состоит из одной или нескольких баз данных. Под базой данных (БД) при этом понимается набор данных, организованных по определенным правилам, предусматривающим общие принципы описания, хранения и манипулирования данными.

Для описания хранимой и обрабатываемой информации базы используются внешний, концептуальный и внутренний уровни.

На внешнем уровне описываются информационные потребности конечного пользователя.

На концептуальном (Concept - понятие) уровне описывается полное информационное содержание базы: сведения о структуре обрабатываемой информации и о технологии ее обработки.

Логические взаимосвязи в структуре базы данных организуются в соответствии с типом модели данных. Различают три основных модели: реляционная, сетевая и иерархическая (подробнее см. раздел 2.3), обладающие разными множествами информационных конструкций [3,4,7].

Сведения о технологии обработки информации включают применяемые методы контроля информации, описание использования потоков информации и описание ограничений на доступ к информации.

Внутренний уровень определяет организацию данных в памяти ЭВМ и методов доступа к ним [8]. Под организацией данных понимается относительно устойчивый порядок расположения записей в памяти ЭВМ и способ обеспечения взаимосвязи между записями.

Например, при последовательной организации записи располагаются в памяти строго одна за другой, а при цепной физически разнесенные в памяти данные связываются в логическую последовательность с помощью специальных указателей - адресов связи, содержащих номер следующей обрабатываемой записи. В зависимости от организации возможны соответствующие методы доступа к данным. Для ускорения доступа (поиска записей) вводится дополнительная организация индексов. При использовании современных программных средств организация данных осуществляется автоматически и требует минимального описания.

В перспективных информационных системах как развитие баз данных предполагается использование баз знаний, которые позволят получать сведения, явно не хранящиеся в базах данных. Принципиальными различиями обладают три модели представления знаний - продукционная модель, фреймовая и модель семантических сетей [9]. Такие системы будут относиться к интеллектуальным.

Средства организации и ведения внутримашинной информационной базы. Основными средствами организации и ведения внутримашинной информационной базы на настоящий момент являются системы управления базами данных (СУБД). СУБД - это комплекс программ и языковых средств, предназначенных для создания, ведения и использования баз данных.

Создание баз данных производится в два этапа. На первом разрабатывается структура базы данных на основе информационно-логической модели, отражающей логическую структуру информации предметной области. На втором осуществляется создание структуры БД средствами СУБД и заполнение базы. Обслуживание данных производится администратором БД, на которого возлагаются функции координации процессов проектирования и эксплуатации БД, обеспечения защиты и целостности данных.

Техническое обеспечение обработки данных. Современное производство требует высоких скоростей обработки информации, удобных форм ее хранения и передачи. Необходимо также иметь динамичные способы обращения к информации, способы поиска данных в заданные временные интервалы, необходимо реализовывать сложную математическую и логическую обработку данных.

Управление сложными техническими комплексами, крупными предприятиями, управление экономикой на уровне страны требует участия в этом процессе достаточно больших коллективов. Такие коллективы могут располагаться в различных районах города, в различных регионах страны и даже в различных странах. Для решения задач управления, обеспечивающих реализацию экономической стратегии, актуальны скорость и удобство обмена информацией, а также возможность тесного взаимодействия всех членов, участвующих в процессе выработки управленческих решений.

В эпоху централизованного использования ЭВМ с пакетной обработкой информации пользователи вычислительной техники предпочитали приобретать компьютеры, на которых можно было бы решать почти все классы их задач. Как правило, сложность решаемых задач обратно пропорциональна их количеству, что приводило к неэффективному использованию ЭВМ при значительных материальных затратах. Доступ к ресурсам компьютеров был затруднен из-за политики централизации вычислительных средств.

Принцип централизованной обработки данных не отвечал высоким требованиям к надежности процесса обработки, затруднял развитие систем и не мог обеспечить необходимые временные параметры при диалоговой обработке данных в многопользовательском режиме. Кратковременный выход из строя центральной ЭВМ приводил к роковым последствиям для системы в целом, т.к. приходилось дублировать функции центральной ЭВМ, существенно увеличивая затраты на создание и эксплуатацию СОД.

Появление малых ЭВМ, микроЭВМ и, наконец, персональных компьютеров потребовало нового подхода к организации систем обработки данных, к созданию новых информационных технологий. Возникло логически обоснованное требование перехода от использования отдельных ЭВМ в системах централизованной обработки данных к распределенной обработке данных, выполняемой на независимых, но связанных между собой компьютерах. Для реализации распределенной обработки данных были созданы многомашинные ассоциации, структура которых разрабатывается по одному из следующих направлений:

* многомашинных вычислительных комплексов;

* компьютерных (вычислительных) сетей.

Многомашинные вычислительные комплексы могут быть:

локальными при условии установки компьютеров в одном помещении и не требующие для взаимосвязи специального оборудования и каналов связи;

дистанционными, если некоторые компьютеры комплекса установлены на значительном расстоянии от центральной ЭВМ, и для передачи данных используются телефонные каналы связи.

Компьютерные сети. Вычислительные сети являются высшей формой многомашинных ассоциаций. Основные отличия вычислительной сети от многомашинного вычислительного комплекса:

1. Размерность. В состав многомашинного вычислительного комплекса входят обычно две, максимум три ЭВМ, расположенные преимущественно в одном помещении. Вычислительная сеть может состоять из десятков и даже сотен ЭВМ, расположенных на расстояниях друг от друга от нескольких метров до десятков, сотен и даже тыс. километров.

2. Разделение функций между ЭВМ. Если в многомашинном вычислительном комплексе функции обработки данных, передачи данных и управления системой могут быть реализованы в одной ЭВМ, то в вычислительных сетях эти функции распределены между различными ЭВМ.

3. Необходимость решения в сети задачи маршрутизации сообщений. Сообщение от одной ЭВМ к другой в сети может быть передано по различным маршрутам в зависимости от состояния каналов связи, соединяющих ЭВМ друг с другом.

Объединение в один комплекс средств вычислительной техники, аппаратуры связи и каналов передачи данных предъявляет специфические требования со стороны каждого элемента многомашинной ассоциации, а также требует формирования специальной терминологии.

Совокупность абонента и станции принято называть абонентской системой. Для организации взаимодействия абонентов необходима физическая передающая среда. Абонентами сети могут быть отдельные ЭВМ, комплексы ЭВМ, терминалы, промышленны роботы, станки с ЧПУ и т.д.

На базе физической передающей среды строится коммуникационная сеть, которая обеспечивает передачу информации между абонентскими системами. Такой подход позволяет рассматривать любую вычислительную сеть как совокупность абонентских систем и коммуникационной сети.

Классификация вычислительных сетей. В зависимости от территориального расположения абонентских систем вычислительные сети можно разделить на три основных класса: глобальные сети (WAN); региональные сети (MAN); локальные сети (LAN).

Глобальная вычислительная сеть объединяет абонентов, расположенных в различных странах, на различных континентах. Взаимодействие между абонентами такой сети может осуществляться на базе телефонных линий связи, радиосвязи и систем спутниковой связи. Глобальные вычислительные сети позволят решить проблему объединения информационных ресурсов всего человечества и организации доступа к этим ресурсам.

Региональная вычислительная сеть связывает абонентов, расположенных на значительном расстоянии друг от друга. Она может включать абонентов внутри большого города, экономического региона, отдельной страны. Обычно расстояния между абонентами региональной вычислительной сети составляют десятки - сотни километров.

Локальная вычислительная сеть (ЛВС) объединяет абонентов, расположенных в пределах небольшой территории. В настоящее время не существует четких ограничений на территориальный разброс абонентов локальной вычислительной сети. Обычно такая сеть привязана к конкретному месту. К классу локальных вычислительных сетей относятся сети отдельных предприятий, фирм, банков, офисов и т.д. Протяженность такой сети можно ограничить пределами 2 - 2,5 километров.

Наиболее популярной глобальной компьютерной сетью является компьютерная сеть Internet. В ее состав входит множество свободно соединенных сетей. Внутри каждой сети, входящей в Internet, существует конкретная структура связи и определенная дисциплина управления. Внутри Internet структура и методы соединений между различными сетями для конкретного пользователя не имеют никакого значения.

Персональные ЭВМ, ставшие в настоящее время непременным элементом любой системы управления, привели к буму в области создания локальных вычислительных сетей. Это, в свою очередь, вызвало необходимость в разработке новых информационных технологий. Практика применения персональных ЭВМ в различных отраслях науки, техники и производства показала, что наибольшую эффективность от внедрения вычислительной техники обеспечивают не отдельные автономные ПЭВМ, а локальные вычислительные сети. Локальные вычислительные сети за последнее пятилетие получили широкое распространение в самых различных областях науки, техники, производства.

На базе ЛВС можно создавать системы автоматизированного проектирования - САПР. Это позволяет реализовать новые технологии проектирования изделий машиностроения, радиоэлектроники и вычислительной техники. В условиях развития рыночной экономики появляется возможность создавать конкурентно способную продукцию, быстро модернизировать ее, обеспечивая реализацию экономической стратегии предприятия. ЛВС позволяют также реализовывать новые информационные технологии в системах организационно-экономического управления. В учебных лабораториях университетов ЛВС позволяют повысить качество обучения и внедрять современные интеллектуальные технологии обучения.

Программное обеспечение систем обработки данных. Программное обеспечение (ПО) систем обработки данных включает в себя программные средства и документацию, необходимую для эксплуатации этих программных средств. ПО разделяют на общесистемное (базовое) и прикладное.

Общесистемное (базовое) ПО предназначено для организации процесса обработки информации в СОД и включает в себя операционную систему (ОС), сервисные программы, системы программирования (комплексные средства разработки программ на языках высокого уровня) и программы технического обслуживания.

Прикладное ПО предназначено для решения конкретных задач СОД. В него входят программные средства общего назначения и специальные программные средства для данной СОД. К средствам общего назначения относятся системы управления базами данных (СУБД), табличные процессоры, текстовые и графические редакторы и др. Специальные программные средства могут быть как разработаны для конкретной системы обработки данных, так и приобретены готовыми на рынке ПО. При этом необходимое ПО может быть приобретено как «целиком» (если оно удовлетворяет всем необходимым требованиям), так и «собрано» из фрагментов готовых продуктов (возможно, с использованием услуг специалистов, называемых системными интеграторами).

Подробное рассмотрение всех составляющих ПО не является целью настоящего пособия, во-первых, потому что оно предназначено для студентов, изучивших ряд компьютерных курсов, и, во-вторых, потому что этому вопросу посвящена многочисленная литература. В настоящем разделе рассматриваются основные составляющие программного обеспечения современных и перспективных систем обработки данных, а именно:

· операционные системы (ОС);

· системы управления базами данных (СУБД);

· средства разработки приложений (системы программирования);

· инструментальные средства технологии сквозного проектирования (CASE-технологии) (подробнее см. главу 4).

Операционные системы. Поскольку наибольшее распространение в нашей стране получили IBM-совместимые персональные компьютеры, основными операционными системами в настоящий момент являются ОС семейства Windows. Это многозадачные многопоточные 32-разрядные операционные системы с графическими интерфейсами и расширенными сетевыми возможностями. В настоящее время используются Windows 95, ее версия OSR2, Windows 98, а также Windows NT.

Для Windows 95 (98) характерны следующие новые решения. 32-х разрядная архитектура ОС обеспечивает более высокую производительность системы, снимает многие ограничения на память системных ресурсов. Механизм управления памятью обеспечивает работу 32-разрядных приложений в защищенном адресном пространстве с автоматической очисткой памяти после завершения работы каждого приложения. Вытесняющая многозадачность позволяет усовершенствовать механизм управления ресурсами: приложение, нуждающееся в ресурсах, может приостановить свою работу до получения ресурса или перейти к выполнению других операций, не останавливая работу других программ. При этом многопоточное выполнение отдельной задачи позволяет при задержках одного потока работать со следующим. Под потоком подразумевается частная задача, решаемая внутри процесса, а процессом называется загруженная в память выполняемая прикладная программа, ее адресное пространство и ресурсы. Освоение ОС упростилось благодаря однотипности выполнения всех основных операций и наглядности выполняемых действий.

В Windows 98 интерфейс полностью ориентирован на работу в сети Интернет, а во встроенном пакете Microsoft Office 97 текстовый редактор Word позволяет просматривать и создавать HTML-файлы (файлы на языке разметки гипертекста).

Windows NT - это сетевая ОС, выпускаемая в двух модификациях: Windows NT Server и Windows NT workstation. Windows NT Server предназначена для управления сетевыми ресурсами, содержит средства для работы в глобальных сетях. Windows NT workstation предназначена для работы на локальных компьютерах и рабочих станциях. Обладает повышенной степенью защиты данных от несанкционированного доступа и высокой производительностью при анализе больших объемов данных.

Системы управления базами данных. Система управления базами данных (СУБД), по определению, это комплекс программ и языковых средств, предназначенных для создания, ведения и использования баз данных. До 1995 года значительная часть ПО ИС разрабатывалась с использованием таких СУБД реляционного типа, как Clipper и FoxPro. Для операционных систем Windows в наибольшей степени отвечающими требованиям СОД являются СУБД Visual FoxPro (версия 3.0 и выше) и СУБД MS Access из пакета Microsoft Office. Эти СУБД являются мощными и удобными средствами для разработки приложений баз данных с архитектурой клиент-сервер.

Новые решения. Осуществлен переход к базе данных, в которой содержатся все включенные в нее таблицы, их индексы, постоянные связи между таблицами, хранимые процедуры, правила проверки значений полей и действия, выполняемые при добавлении новой записи, удалении и обновлении записи, называемые триггерами. Введены новые средства для обработки данных с помощью SQL (Structured Query Language - Структурированного Языка Запросов). Введена поддержка значений NULL (в дополнение к FALSE и TRUE) для полей базы данных, предоставлены средства переноса баз данных на SQL-сервер и поддержки работы с удаленными источниками данных.

Одновременно с наличием возможности процедурного пошагового программирования введены средства объектно-ориентированного программирования. При объектно-ориентированном подходе реальные предметы и понятия заменяются их моделями, т.е. определенными формальными конструкциями. Формальный характер моделей позволяет определить формальные зависимости между ними, формальные операции над ними и в конечном итоге получить формальную модель разрабатываемой программной системы как композицию моделей ее компонентов. Такой подход обеспечивает возможность модификации отдельных компонентов программного обеспечения без изменений остальных и повторного использования отдельных компонентов при перепроектировании системы. Основными понятиями объектно-ориентированного программирования являются класс, объект, свойство (атрибут), метод, событие. Класс содержит информацию о внешнем виде и поведении объекта, иными словами, описывает свойства (атрибуты) и методы обработки событий. Событие же представляет собой действия пользователя или операционной системы, которые распознает объект. Таким образом, управление объектом осуществляется посредством обрабатываемых им событий. При создании нового объекта он наследует характеристики своего класса. Наследование позволяет определять также новые классы (производные, или дочерние) на основе существующих (родительских) классов и добавлять собственные свойства дочерних классов.

Дальнейшее развитие получили средства визуального программирования. Разработан новый подход к созданию приложения в целом и использованию мастеров и построителей. Мастера (Wizard) позволяют полностью сконструировать любую новую компоненту, включая проектирование баз данных, отчетов, экранных форм, а с помощью построителей в экранную форму может быть встроен любой элемент управления.

На новом уровне организована поддержка OLE-технологии (Object Linking and Embedding - Связывания и Встраивания Объектов), добавлена возможность встраивания OLE-объектов в экранные формы и сохранения их в полях базы данных.

Реализована возможность технологии перемещения и сброса объектов (drag-and-drop), возможность перемещения таблиц и полей данных в экранные формы непосредственно из диспетчера проекта или из окна базы данных, использование контекстного меню.

Современные средства разработки приложений. Не останавливаясь на эволюции средств программирования под Windows, можно лишь сказать, что до 1994 г. все средства, позволявшие создавать приложения под Windows, требовали от программиста глубокого знания архитектуры и принципов работы этой операционной системы. При этом не существовало систем, которые позволяли бы достаточно просто работать с базами данных, обеспечивая должный уровень интерфейса. В 1994 г. появилась созданная фирмой Borland (ныне Inprise) принципиально новая система - среда визуальной разработки приложений Delphi, основанная на использовании несколько расширенной версии языка Borland Pascal, получившей название Object Pascal. В 1997 г. появилась и еще одна система фирмы Borland - C++Builder, использующая язык ANSI C++ с некоторыми расширениями (кроме того, в этой системе есть и встроенный компилятор языка Object Pascal), также работающая под Windows 95/NT. Эти системы имеют интегрированную среду разработки (IDE), то есть включают в себя редакторы кода, редакторы визуальных компонентов, компиляторы (в C++Builder их даже два - C++ и Object Pascal), отладчики, средства помощи и т.п. В обеих системах используются объектно-ориентированные языки программирования высокого уровня и встроенные в них возможности работы с базами данных, не уступающие по своей мощи возможностям СУБД типа Clipper или FoxPro. Существует также возможность использования языка SQL (и, следовательно, возможность создания баз данных с удаленным доступом).

Новые концепции. Основной концепцией в этих системах является концепция объектно-ориентированного программирования. Одним из ключевых понятий при этом является понятие компонентов, т.е. готовых шаблонов для всех стандартных элементов приложения Windows (стандартных диалогов, окон, кнопок, списков и др.) поставляемых с системами; на их основе можно создавать свои собственные компоненты. Компоненты предоставляют программисту уже готовый интерфейс с Windows API, в них введено понятие события, которое программист обрабатывает вместо перехвата сообщений Windows API (например, для обработки нажатия пользователем кнопки программисту надо написать примерно следующее: «при нажатии сделать то-то и то-то», а не перехватывать посланные откуда-то куда-то неудобоваримые сообщения Windows). При этом прямая работа с Windows API отнюдь не запрещена. Напротив, для этого программисту предоставляются более удобные методы, чем, скажем, в системе Visual C++ с MFC.

С обеими системами поставляется библиотека визуальных компонентов (VCL), в которой содержатся шаблоны всех стандартных визуальных элементов Windows (а также многих специальных), так что программисту остается лишь незначительно изменять их по своему вкусу. Сам программист может создавать подобные шаблоны, и система не будет делать никаких различий между «родными» компонентами и добавленными. Кроме того, естественно, при помощи систем можно создавать (и регистрировать) свои собственные DLL и статические библиотеки.

Важной особенностью систем является возможность использования объектов OLE (или DDE), то есть можно, например, редактировать в своем приложении документ Word средствами самого Word. Хотя Delphi и C++Builder и не создавались как системы для работы с Internet и Web-дизайна, в них есть некоторые возможности и для этого.

Совместимость. Системы Delphi и C++Builder практически полностью совместимы в одну сторону благодаря наличию в С++Builder встроенного компилятора Object Pascal приложения, созданные в Delphi, можно компилировать в C++Builder; более того, можно использовать даже отдельные модули Delphi, причем вперемешку с модулями, написанными на C++ (некоторые проблемы с совместимостью все-таки существуют, но они несущественны). В Delphi нет компилятора C++, однако можно очень много создавать в C++Builder для последующего использования в Delphi, например, компоненты, DLL, (и, естественно, наоборот). Переносу различных блоков между системами способствует то, что в обоих применяются абсолютно одни и те же концепции и подходы. Можно смело сказать, что Delphi и C++Builder - системы уникальные по уровню совместимости.

Новые приемы программирования. Системы Delphi и C++Builder представляют собой визуальные средства разработки приложений. Это значит, что при создании приложения программист сразу же видит свое приложение именно в том виде, в котором его увидит и будущий пользователь. При этом программист может применять принципиально новые методы создания программ. Так добавление компонентов в приложение осуществляется методом drag-and-drop, то есть при помощи мыши выбираются нужные компоненты, а потом перетаскиваются в окно будущего приложения (окно также является компонентом, называемым в системах «формой», и его можно тоже выбирать по своему вкусу). Далее опять же при помощи мыши компоненты растягиваются до нужных размеров, перекладываются на форме и при этом все изменения автоматически фиксируются в коде программы, так что программу можно запускать в любой момент. Кроме того, большая часть свойств компонентов отображается при проектировании на экране в удобном страничном диалоге (называется он Object Inspector), и все изменения на форме можно видеть в нем сразу же, а изменения, вносимые непосредственно в него, сразу же отображаются на форме проектируемого приложения (в этом и состоит принцип двойственного ввода данных). Благодаря подобному подходу можно создать полноценный интерфейс даже для большого приложения, не написав ни единой строчки кода. При этом грамотно выбрав компоненты и надлежащим образом связав их (щелкая мышью в клетках Object Inspector), можно создать даже приложение, работающее с несколькими связанными таблицами баз данных, которое будет нужным образом фильтровать и отсортировывать данные из них.

Программное обеспечение для разработки ИС. Для решения задач разработки, сопровождения и модернизации информационных систем создаются технологии сквозного проектирования (ТСП). Эти технологии представляют собой набор компонент - программных продуктов и методов разработки, основные из которых и являются предметом нашего рассмотрения.

Интегрированный CASE-инструментарий. Он предназначен для коллективной разработки, охватывающей все этапы жизненного цикла системы (от подготовки технического задания до генерации программного кода, внедрения и эксплуатации приложений).

Процесс проектирования начинается с формализации общих требований, предъявляемых к информационной системе, и предусматривает постепенную конкретизацию замысла с использованием механизмов декомпозиции и перехода к детальным техническим решениям вплоть до получения готового программного кода, состава и топологии аппаратных средств проектируемой системы. В каждом продукте среда проектирования поддерживается удобным и легким в работе универсальным графическим редактором. Результатом выполнения проекта является:

* база данных проектируемой системы, включающая все необходимые физические объекты (таблицы, триггеры, хранимые процедуры), построенная с учетом проектируемой политики поддержания целостности данных;

* исходный код приложений информационной системы - программы, реализующие пользовательский интерфейс и логику приложений.

Разработка проекта поддерживается репозитарием, который обеспечивает централизованное хранение данных, проверку данных на взаимную непротиворечивость и полноту, сопровождение версий разработок. Репозитарий поддерживает реальный многопользовательский режим для групп разработчиков. В качестве репозитария используется специальная проектная база данных.

Настраиваемые кодогенераторы. Позволяют с учетом возможностей CASE-инструментов получать исходный программный код приложений, доступных для последующего редактирования.

Средства реинжиниринга и репроектирования. Дают возможность не только «прочитать» структуру имеющейся базы данных, но и установить значения по умолчанию для управляющих параметров кодогенерации. С помощью удобного графического интерфейса в среде MS Windows можно управлять процессом кодогенерации и получать новые версии приложений.

Среда разработки приложений. Представлена в первую очередь продуктами для информационных систем, построенных в архитектуре «клиент-сервер» с использованием языков программирования 4-го поколения,

СУБД и операционные системы. В основном используются серверы реляционных баз данных (SQL-серверы) и ОС UNIX, в качестве СУБД могут использоваться серверы Informix. ОС UNIX является основой реализации любого сложного проекта, поскольку органично сочетает все необходимые сервисы и предоставляет платформу для функционирования и интеграции современных программных продуктов. Для решения локальных задач обработки информации наряду с UNIX возможно применение и MS Windows NT.

Обеспечивающая часть АИС (АСУ). При проектировании структуры обеспечивающей части АИС (АСУ) необходимо выбрать виды обеспечения и организовать взаимодействие между ними таким образом, чтобы они обеспечивали реализацию задач, входящих в подсистемы функциональной части АИС. При выборе технического и программного обеспечения учитываются особенности предприятия, его финансовые возможности, объемы информационных массивов, квалификации сотрудников и т.п. В истории развития АИС первоначально был период, когда после разделения обеспечивающей части на составляющие отдельно разрабатывалось организационное (ОргО), информационное (ИО), техническое (ТО) и программное обеспечение (ПО). В результате такой независимой организации разработки структур этих видов обеспечения возникла проблема их совместимости. Поэтому в последующем был принят принцип единства ОргО, ТО, ИО и ПО.

1.6 Пользователи ИС

Пользователей ИС можно разделить на следующие группы:

· случайный пользователь, взаимодействие которого с ИС не обусловлено служебными обязанностями;

· конечные пользователи (потребители информации) - лицо или коллектив, в интересах которых работает ИС. Они работают с ИС повседневно, связаны с жестко ограниченной областью деятельности и, как правило, они не являются программистами, например, это бухгалтеры, экономисты, руководители подразделений;

· коллектив специалистов (персонал ИС), включающий администратора банка данных, системного аналитика, системных и прикладных программистов.

Рассмотрим более подробно состав и функции персонала ИС.

Администратор - это специалист (или группа специалистов), который понимает потребности конечных пользователей, работает с ними в тесном контакте и отвечает за определение, загрузку, защиту и эффективность работы банка данных. Он должен координировать процесс сбора информации, проектирования и эксплуатации БД, учитывать текущие и перспективные потребности пользователей.

Системные программисты занимаются разработкой и сопровождением базового программного обеспечения ЭВМ (ОС, СУБД, трансляторов, сервисных программ общего назначения).

Прикладные программисты разрабатывают программы для реализации запросов к БД.

Аналитик строит математическую модель предметной области, исходя из информационных потребностей конечных пользователей; ставит задачи для прикладных программистов. На практике персонал небольших ИС часто состоит из одного - двух специалистов, которые выполняют все перечисленные функции.

1.7 Области применения информационных систем

В последние несколько лет компьютер стал неотъемлемой частью управленческой системы предприятий. Однако современный подход к управлению предполагает еще и вложение денег в информационные технологии. Причем чем крупнее предприятие, тем больше должны быть подобные вложения.

Благодаря стремительному развитию информационных технологий наблюдается расширение области их применения. Если раньше чуть ли не единственной областью, в которой применялись информационные системы, была автоматизация бухгалтерского учета, то сейчас наблюдается внедрение информационных технологий во множество других областей. Эффективное использование корпоративных информационных систем позволяет делать более точные прогнозы и избегать возможных ошибок в управлении.

Из любых данных и отчетов о работе предприятия можно извлечь массу полезных сведений. Информационные системы как раз и позволяют извлекать максимум пользы из всей имеющейся в компании информации.

Именно этим фактом и объясняются жизнеспособность и бурное развитие информационных технологий -- современный бизнес крайне чувствителен к ошибкам в управлении, и для принятия грамотного управленческого решения в условиях неопределенности и риска необходимо постоянно держать под контролем различные аспекты финансово-хозяйственной деятельности предприятия (независимо от профиля его деятельности). Поэтому можно вполне обоснованно утверждать, что в жесткой конкурентной борьбе большие шансы на победу имеет предприятие, использующее в управлении современные информационные технологии.

Рассмотрим наиболее важные задачи, решаемые с помощью специальных программных средств [6].

Бухгалтерский учет. Это классическая область применения информационных технологий и наиболее часто реализуемая на сегодняшний день задача. Такое положение вполне объяснимо. Во-первых, ошибка бухгалтера может стоить очень дорого, поэтому очевидна выгода использования возможностей автоматизации бухгалтерии. Во-вторых, задача бухгалтерского учета довольно легко формализуется, так что разработка систем автоматизации бухгалтерского учета не представляет технически сложной проблемы.

Управление финансовыми потоками. Внедрение информационных технологий в управление финансовыми потоками также обусловлено критичностью этой области управления предприятия к ошибкам. Неправильно построив систему расчетов с поставщиками и потребителями, можно спровоцировать кризис наличности даже при налаженной сети закупки, сбыта и хорошем маркетинге. И наоборот, точно просчитанные и жестко контролируемые условия финансовых расчетов могут существенно увеличить оборотные средства фирмы.

Управление складом, ассортиментом, закупками. Далее, можно автоматизировать процесс анализа движения товара, тем самым, отследив и зафиксировав те двадцать процентов ассортимента, которые приносят восемьдесят процентов прибыли. Это же позволит ответить на главный вопрос -- как получать максимальную прибыль при постоянной нехватке средств? «Заморозить» оборотные средства в чрезмерном складском запасе -- самый простой способ сделать любое предприятие, производственное или торговое, потенциальным инвалидом. Можно просмотреть перспективный товар, вовремя не вложив в него деньги.

Управление производственным процессом. Управление производственным процессом представляет собой очень трудоемкую задачу. Основными механизмами здесь являются планирование и оптимальное управление производственным процессом.

Автоматизированное решение подобной задачи дает возможность грамотно планировать, учитывать затраты, проводить техническую подготовку производства, оперативно управлять процессом выпуска продукции в соответствии с производственной программой и технологией.

Очевидно, что чем крупнее производство, тем большее число бизнес-процессов участвует в создании прибыли, а значит, использование информационных систем жизненно необходимо.

Управление маркетингом. Управление маркетингом подразумевает сбор и анализ данных о фирмах-конкурентах, их продукции и ценовой политике, а также моделирование параметров внешнего окружения для определения оптимального уровня цен, прогнозирования прибыли и планирования рекламных кампаний. Решение большинства этих задач могут быть формализованы и представлены в виде информационной системы, позволяющей существенно повысить эффективность управления маркетингом.

Документооборот. Документооборот является очень важным процессом деятельности любого предприятия. Хорошо отлаженная система учетного документооборота отражает реально происходящую на предприятии текущую производственную деятельность и дает управленцам возможность воздействовать на нее. Поэтому автоматизация документооборота позволяет повысить эффективность управления.

Оперативное управление предприятием. Информационная система, решающая задачи оперативного управления предприятием, строится на основе базы данных, в которой фиксируется вся возможная информация о предприятии. Такая информационная система является инструментом для управления бизнесом и обычно называется корпоративной информационной системой.

Информационная система оперативного управления включает в себя массу программных решений автоматизации бизнес-процессов, имеющих место на конкретном предприятии. Одно из наиболее важных требований, предъявляемых к таким информационным системам, -- гибкость, способность к адаптации и дальнейшему развитию.

Предоставление информации о фирме. Активное развитие сети Интернет привело к необходимости создания корпоративных серверов для предоставления различного рода информации о предприятии. Практически каждое уважающее себя предприятие сейчас имеет свой web-сервер. Web-сервер предприятия решает ряд задач, из которых можно выделить две основные:

· создание имиджа предприятия;

· максимальная разгрузка справочной службы компании путем предоставления потенциальным и уже существующим абонентам возможности получения необходимой информации о фирме, предлагаемых товарах, услугах и ценах.

Кроме того, использование web-технологий открывает широкие перспективы для электронной коммерции и обслуживания покупателей через Интернет.

В настоящее время архитектура клиент-сервер получила признание и широкое распространение как способ организации приложений для рабочих групп и информационных систем корпоративного уровня. Подобная организация работы повышает эффективность выполнения приложений за счет использования возможностей сервера БД, разгрузки сети и обеспечения контроля целостности данных.

Двухуровневые схемы архитектуры клиент-сервер могут привести к некоторым проблемам в сложных информационных приложениях с множеством пользователей и запутанной логикой. Решением этих проблем может стать использование многоуровневой архитектуры.

Контрольные вопросы

1. Дайте определение понятия "информационная система"

2. Перечислите основные информационные процессы

3. Дайте характеристику ИС первого поколения

4. Дайте характеристику ИС второго поколения

5. Дайте характеристику ИС третьего поколения

6. Перечислите признаки классификации ИС

7. Используя схему на рис. 1.1, опишите принципы функционирования ИПС

8. Опишите структуру банка данных

9. Опишите структуру банка знаний и хранилищ данных

10. Дайте характеристику основных функциональных компонентов ИС

11. Какова типовая структура ИС?

12. Что понимают под информационным обеспечением ИС и каково его содержание?

13. Что понимают под техническим обеспечением ИС и каково его содержание?

14. Что понимают под программным обеспечением ИС и каково его содержание?

15. Дайте классификацию пользователей ИС

16. Приведите примеры областей применения ИС

Список литературы

1. Информатика: Учебник. 3-е переработанное издание / Под ред. проф. Н.В. Макаровой. М.: Финансы и статистика, 1999. 768 с.

2. Информационные технологии [Электронный ресурс]: разработка Сибирского государственного университета путей сообщения. Режим доступа: www.isuct.ru/~ivt/books/IS/IS1/inform/index.html

3. Шигина Н.А. Теория экономических информационных систем. Пенза: Изд. ПГУ, 2000. 84 с.

4. Базы и банки данных: Учеб. для вузов по спец. "АСУ"/В.Н. Четвериков, Г.И. Ревунков, Э.Н. Самохвалов. Под ред. В.Н. Четверикова. М.: Высш. шк., 1987. 248 с.: ил.

5. Корнеев В.В., Гареев А.Ф., Васютин С.В., Райх В.В. Базы данных. Интеллектуальная обработка информации. М.: Нолидж, 2001. 496 с.: ил.

6. Петров В.Н. Информационные системы: Учебник. СПб.: Питер, 2002. 688 с.: ил.

7. Информационные системы: пособие для студентов вузов по специальности 071900 - "Информационные системы в экономике" / Под ред. В.Н. Волковой, Б.И. Кузина. СПб.: Изд-во СПбГТУ, 1998. 213 с.

8. Карпова Т.С. Базы данных: модели, разработка, реализация: Учебник для вузов. СПб.: Питер, 2001. 304 с.: ил.

9. Гаврилова Т. А., Хорошевский В. Ф. Базы знаний интеллектуальных систем. СПб.: Питер, 2001. 384 с.: ил.

10. Перегудов Ф.И., Тарасенко Ф.П. Введение в системный анализ: Учеб. Пособие для вузов. М.: Высш. шк., 1989. 367 с.: ил.

11. Кодд Е.Ф. Реляционная модель данных для больших совместно используемых банков данных. 1995, СУБД, №1. [Электронный ресурс] - Режим доступа: http://www.isuct.ru/~ivt/books/DBMS/DBMS7/dbms/1995/01/01.htm

12. Чен П.П-Ш. Модель "сущность-связь" - шаг к единому представлению данных. 1995, СУБД, №3. [Электронный ресурс] - Режим доступа: http:// www.isuct.ru/~ivt/books/DBMS/DBMS7/dbms/1995/03/271.htm

13. Вендров А.М. Проектирование программного обеспечения экономических информационных систем: Учебник. М.: Финансы и статистика, 2000. 352 с.: ил. [Электронный ресурс] - Режим доступа: http://www.isuct.ru/~ivt/books/CASE/case1/index.htm

14. Марка Д.А., МакГоуэн К. Методология структурного анализа и проектирования. М.: МетаТехнология, 1993. [Электронный ресурс] - Режим доступа: http://www.isuct.ru/~ivt/books/CASE/case8/sadt_index.htm

15. Маклаков С.В. Создание информационных систем с AllFusion Modeling Suite. М.: ДИАЛОГ-МИФИ, 2003. 432 с.: ил. [Электронный ресурс] - Режим доступа: http://www.isuct.ru/~ivt/books/CASE/case7/caseall6.htm

16. Структурный анализ систем: IDEF-технологии / С.В. Черемных, И.О. Семенов, В.С Ручкин. М.: Финансы и статистика, 2003. 208 с.: ил. (прикладные информационные технологии).

17. Моделирование и анализ систем. IDEF-технологии: практикум / С.В. Черемных, И.О. Семенов, В.С Ручкин. М.: Финансы и статистика, 2002. 192 с.: ил. (прикладные информационные технологии).

18. Калянов Г.Н. Консалтинг при автоматизации предприятий: Научно-практическое издание. Серия "Информатизация России на пороге XXI века". М.: СИНТЕГ, 1997. [Электронный ресурс] - Режим доступа: http://www.isuct.ru/~ivt/books/IS/IS8/defs0.HTM

19. Базы данных: теория и практика. [Электронный ресурс] - Режим доступа: http://www.isuct.ru/~ivt/books/DBMS/index.htm

20. CASE-технологии: теория и практика. [Электронный ресурс] - Режим доступа: http://www.isuct.ru/~ivt/books/CASE/index.htm

21. ГОСТ 19.701-90. Схемы алгоритмов, программ, данных и систем. Условные обозначения и правила выполнения

Размещено на Allbest.ru


Подобные документы

  • Анализ предметной области. Сущности и их атрибуты. Жизненный цикл базы данных. Разработка кнопочной формы-меню, макросов (автозагрузка). Структура таблиц и схема данных. Получение выходной информации. Организация защиты от несанкционированного доступа.

    курсовая работа [5,0 M], добавлен 04.03.2014

  • Основные понятия, классификация, жизненный цикл информационных систем. Методология их разработки. Общая структура профиля ИС. Общие сведения об управлении проектами. Стандарты и методики по организации жизненного цикла ИС и программного обеспечения.

    курс лекций [203,3 K], добавлен 24.05.2015

  • Процессы Oracle CDM. Стадии и этапы выполнения работ по созданию автоматизированной системы (АС). Основные модели жизненного цикла ПО. Требования к содержанию документов. Основная проблема спирального цикла. Работы, выполняемые при разработке проекта.

    презентация [194,1 K], добавлен 14.10.2013

  • Основные международные стандарты в области информационных технологий. Международный стандарт ISO/IEC 9126. Качество и жизненный цикл. Характеристика внутренних и внешних атрибутов качества. Анализ функциональных возможностей программного обеспечения.

    доклад [94,4 K], добавлен 13.06.2017

  • Методология проектирования и особенности организации технического обслуживания информационных систем. Понятие, сущность, стадии, стандарты, структура и процессы жизненного цикла информационной системы, а также анализ достоинств и недостатков его моделей.

    реферат [66,1 K], добавлен 07.05.2010

  • Организация, состав, структура внутримашинного информационного обеспечения. Сети хранилищ данных и базы знаний – перспектива развития ИО в управлении организации. Системы автоматизации коллективной работы над документами. Назначение экспертных систем.

    контрольная работа [28,8 K], добавлен 24.05.2012

  • Информационные системы и технологии в экономике: основные понятия и определения. Составляющие информационных технологий, их классификация. Особенности систем ведения картотек, обработки текстовой информации, машинной графики, электронной почты и связи.

    реферат [14,7 K], добавлен 06.10.2011

  • Жизненный цикл программного обеспечения - непрерывный процесс, который начинается с принятия решения о необходимости создания ПО и заканчивается при полном изъятия его из эксплуатации. Подход к определению жизненного цикла ПО Райли, по Леману и по Боэму.

    реферат [39,1 K], добавлен 11.01.2009

  • Особенности построения и функционирования информационных систем. Понятие, цель и задачи информационной логистики, информационные потоки и системы. Виды и принципы построения логистических информационных систем. Повышение качества логистического процесса.

    контрольная работа [25,4 K], добавлен 11.11.2010

  • История развития географической информационной системы, ее сущность и задачи, основные ключевые составляющие. Характеристика векторной и растровой моделей информационных данных. Стоимость работ по созданию географической информационной системы.

    презентация [585,7 K], добавлен 22.05.2009

Работы в архивах красиво оформлены согласно требованиям ВУЗов и содержат рисунки, диаграммы, формулы и т.д.
PPT, PPTX и PDF-файлы представлены только в архивах.
Рекомендуем скачать работу.