Стандатризация программных средств

Информатизация России. Рынок программных средств. Основные задачи стандартизации, сертификации и лицензирования в сфере информатизации. Совокупность инженерных методов и средств создания программного обеспечения. Жизненный цикл программного обеспечения.

Рубрика Программирование, компьютеры и кибернетика
Вид лекция
Язык русский
Дата добавления 09.03.2009
Размер файла 352,8 K

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

· договорный аспект;

· аспект управления;

· аспект эксплуатации;

· инженерный аспект;

· аспект поддержки.

В договорном аспекте заказчик и поставщик вступают в договорные отношения и реализуют соответственно процессы приобретения и поставки. В аспекте управления заказчик, поставщик, разработчик, оператор, служба сопровождения и другие участвующие в ЖЦ ПО стороны управляют выполнением своих процессов. В аспекте эксплуатации оператор, эксплуатирующий систему, предоставляет необходимые услуги пользователям. В инженерном аспекте разработчик или служба сопровождения решают соответствующие технические задачи, разрабатывая или модифицируя программные продукты. В аспекте поддержки службы, реализующие вспомогательные процессы, предоставляют необходимые услуги всем остальным участникам работ.

Взаимосвязи между процессами, описанные в стандарте, носят статистический характер. Более важные динамические связи между процессами и реализующими их сторонами устанавливаются в реальных проектах.

Лекция 11. Модели и стадии ЖЦ ПО

Понятие модели ЖЦ ПО (каскадная, спиральная). Стадии: формирование требований к ПО; проектирование; реализация; тестирование; ввод в действие; эксплуатация и сопровождение; снятие с эксплуатации. Подход RAD. Модели качества процессов проектирования.

Под моделью ЖЦ ПО понимается структура, определяющая последовательность выполнения и взаимосвязи процессов, действий, задач на протяжении ЖЦ. Модель ЖЦ зависит от специфики, масштаба и сложности проекта и специфики условий, в которых система создается и функционирует.

Международный стандарт ISO/IEC 12207: 1995 не предлагает конкретную модель ЖЦ и методы разработки ПО. Его положения являются общими для любых моделей ЖЦ, методов и технологий разработки ПО. Стандарт описывает структуру процессов ЖЦ ПО, но не конкретизирует в деталях, как реализовать и выполнить действия и задачи, включенные в эти процессы.

Модель ЖЦ любого конкретного ПО ЭИС определяет характер процесса его создания, который представляет собой совокупность упорядоченных во времени, взаимосвязанных и объединенных в стадии работ, выполнение которых необходимо и достаточно для создания ПО, соответствующего заданным требованиям.

Под стадией создания ПО понимается часть процесса создания ПО, ограниченная некоторыми временными рамками, и заканчивающаяся выпуском какого-то конкретного продукта (моделей ПО, программных компонентов, документации), определяемого заданными для этой стадии требованиями. Стадии создания ПО выделяются по соображениям рационального планирования и организации работ, заканчивающихся заданными результатами. В состав ЖЦ ПО обычно включают следующие стации:

1. Формирование требований к ПО.

2. Проектирование.

3. Реализация.

4. Тестирование.

5. Ввод в действие.

6. Эксплуатация и сопровождение.

7. Снятие с эксплуатации.

Формирование требований к ПО является одной из важнейших, поскольку определяет успех всего проекта. Данная стадия включает этапы:

Планирование работ, предваряющее работы над проектом. Основными задачами являются:

· определение целей разработки;

· предварительная экономическая оценка проекта;

· построение плана - графика выполнения работ;

· создание и обучение совместной рабочей группы.

Проведение обследования деятельности автоматизируемого объекта (организации), в рамках которого осуществляются:

· предварительное выявление требований к будущей системе;

· определение структуры организации;

· определение перечня целевых функций организации;

· анализ распределения функций по подразделениям и сотрудникам;

· выявление функциональных взаимодействий между подразделениями, информационных потоков внутри подразделений и между ними, внешних по отношению к организации объектов и внешних информационных взаимодействий;

· анализ существующих средств автоматизации деятельности организации.

Построение моделей деятельности организаций, предусматривающее обработку материалов обследования и построение двух видов моделей:

· модели “AS-IS («как есть»), отражающей существующее на момент обследования положение дел в организации и позволяющее понять, каким образом функционирует данная организация, а также выявить узкие места и сформулировать предложения по улучшению ситуации;

· модели “TO-BE” («как должно быть»), отражающей представление о новых технологиях работы организации.

Каждая из моделей включает в себя полную функциональную и информационную модель деятельности организации, а также, в случае необходимости, модель, описывающую динамику поведения организации.

Переход от модели AS-ISк модели TO-BE может выполняться двумя способами:

· совершенствованием существующих технологий на основе оценки их эффективности;

· радикальным изменением технологий и перепроектированием бизнес-процессов (реинжиниринг бизнес-процессов).

Построенные модели имеют самостоятельное практическое значение. Например, модель AS-IS позволяет выявить узкие места в существующих технологиях и предлагать рекомендации по решению проблем независимо от того, предполагается на данном этапе дальнейшая разработка ЭИС или нет. Кроме того, модель облегчает обучение сотрудников конкретным направлениям деятельности организации за счет использования наглядных диаграмм (известно, что «одна картинка стоит тысячи слов»).

Стадия проектирования включает этапы:

Разработка системного проекта. На этом этапе дается ответ на вопрос: «Что должна делать будущая система?», а именно: определяются архитектура системы, ее функции, внешние условия функционирования, интерфейсы и распределение функций между пользователями и системой, требования к программным и информационным компонентам, состав исполнителей и сроки разработки. Основу системного проекта составляют модели проектируемой ЭИС, которые строятся на основе модели TO-BE . Документальным результатом является техническое задание.

Разработка технического проекта. На этом этапе на основе системного проекта осуществляется собственно проектирование системы, включающее проектирование архитектуры системы и детальное проектирование. Таким образом, дается ответ на вопрос: «Как построить систему, чтобы она удовлетворяла предъявленным к ней требованиям?». Модели проектируемой ЭИС при этом уточняются и детализируются до необходимого уровня.

К настоящему времени наибольшее распространение получили следующие две модели ЖЦ ПО: каскадная (1970-1985) и спиральная (1986-1990).

Принципиальной особенностью каскадного подхода (рис.1) является: переход на следующую стадию осуществляется только после того, как будет полностью завершена работа на текущей стадии, и возвратов на пройденные стадии не предусматривается. Каждая стадия заканчивается получением некоторых результатов, которые служат в качестве исходных данных для следующей стадии.

Рис.1. Каскадная модель

Каждая стадия завершается выпуском комплекта документации, достаточной для того, чтобы разработка могла быть продолжена другой командой разработчиков. Критерием качества разработки при таком подходе является точность выполнения спецификаций технического задания.

Преимущества применения каскадного способа:

· на каждой стадии формируется законченный набор проектной документации, отвечающий требованиям полноты и согласованности;

· выполняемые в логической последовательности стадии работ позволяют планировать сроки завершения всех работ и соответствующие затраты.

Каскадный подход хорошо зарекомендовал себя при построении ЭИС, для которых в самом начале разработки можно достаточно точно и полно сформулировать все требования, с тем, чтобы предоставить разработчикам свободу реализовать их технически как можно лучше.

В то же время этот подход обладает рядом недостатков, вызванных, прежде всего тем, что реальный процесс создания программного обеспечения никогда полностью не укладывается в такую жесткую схему. Процесс создания ПО носит, как правило, итерационный характер: результаты очередной стадии часто вызывают изменения в проектных решениях, выработанных на предыдущих стадиях. Таким образом, постоянно возникает потребность в возврате к предыдущим стадиям и уточнении или пересмотре ранее принятых решений. В результате реальный процесс создания ПО принимает иной вид (рис.2).

Рис. 2. Итерационный процесс создания программного обеспечения

Изображенную схему можно отнести к отдельной модели - модели с промежуточным контролем, в которой межстадийные корректировки обеспечивают большую надежность по сравнению с каскадной моделью, хотя увеличивают весь период разработки.

Основным недостатком каскадной модели является существенное запаздывание с получением результатов и, как следствие, высокий риск создания системы, не удовлетворяющей и изменившимся потребностям пользователей. Это объяснятся двумя причинами:

· пользователи не в состоянии сразу изложить все свои требования и не могут предвидеть, как они изменятся в ходе разработки;

· за время разработки могут произойти изменения во внешней среде, которые повлияют на требования к системе.

В рамках каскадного подхода требования к ЭИС фиксируются в виде технического задания на все время ее создания, а согласование получаемых результатов с пользователями производится только в точках, планируемых после завершения каждой стадии (при этом возможна корректировка результатов по замечаниям пользователей, если они не затрагивают требования, изложенные в техническом задании). Таким образом, пользователи могут внести существенные замечания только после того, как работа над системой будет полностью завершена. Пользователи могут получить систему, не удовлетворяющую их потребностям. В результате приходится начинать новый проект, который может постигнуть та же участь.

Для преодоления перечисленных проблем в середине 80-х годов была предложена спиральная модель ЖЦ (рис.3). Ее принципиальной особенностью является следующее: прикладное ПО создается не сразу, как в случае каскадного подхода, а по частям с использованием метода прототипирования. Под прототипом понимается действующий программный компонент, реализующий отдельные функции и внешние интерфейсы разрабатываемого ПО. Создание прототипов осуществляется в несколько итераций, или витков спирали. Каждая итерация соответствует созданию фрагмента или версии ПО, на ней уточняются цели и характеристики проекта, оценивается качество полученных результатов и планируются работы следующей итерации. На каждой итерации производится тщательная оценка риска превышения сроков и стоимости проекта, чтобы определить необходимость выполнения еще одной итерации, степень полноты и точности понимания требований к системе, а также целесообразность прекращения проекта. Спиральная модель избавляет пользователей и разработчиков от необходимости точного и полного формулирования требований к системе на начальной стадии, поскольку они уточняются на каждой итерации. Таким образом, углубляются и последовательно конкретизируются детали проекта, и в результате выбирается обоснованный вариант, который доводится до реализации.

Спиральная модель - классический пример применения эволюционной стратегии конструирования. Спиральная модель (автор Барри Боэм, 1988) базируется на лучших свойствах классического жизненного цикла и макетирования, к которым добавляется новый элемент -- анализ риска, отсутствующий ранее.

Как показано на рис. 3, модель определяет четыре действия, представляемые четырьмя квадрантами спирали:

1. Планирование -- определение целей, вариантов и ограничений.

2. Анализ риска -- анализ вариантов и распознавание/выбор риска.

3. Конструирование -- разработка продукта следующего уровня.

4. Оценивание -- оценка заказчиком текущих результатов конструирования.

Интегрирующий аспект спиральной модели очевиден при учете радиального измерения спирали. С каждой итерацией по спирали (продвижением от центра к периферии) строятся все более полные версии ПО.

Планирование Анализ риска

Рис. 3. Спиральная модель: 1 - начальный сбор требований и планирование проекта; 2 - та же работа, но на основе рекомендаций заказчика; 3 - анализ риска на основе начальных требований; 4 - анализ риска на основе реакции заказчика; 5 - переход к комплексной системе; б - начальный макет системы; 7 - следующий уровень макета; 8 - сконструированная система; 9 - оценивание заказчиком.

В первом витке спирали определяются начальные цели, варианты и ограничения, распознается и анализируется риск. Если анализ риска показывает неопределенность требований, на помощь разработчику и заказчику приходит макетирование (используемое в квадранте конструирования). Для дальнейшего определения проблемных и уточненных требований может быть использовано моделирование. Заказчик оценивает инженерную (конструкторскую) работу и вносит предложения по модификации (квадрант оценки заказчиком). Следующая фаза планирования и анализа риска базируется на предложениях заказчика. В каждом цикле по спирали результаты анализа риска формируются виде «продолжать, не продолжать». Если риск слишком велик, проект может быть остановлен.

В большинстве случаев движение по спирали продолжается, с каждым шагом продвигая разработчиков к более общей модели системы. В каждом цикле по спирали требуется конструирование (нижний правый квадрант), которое может быть реализовано классическим жизненным циклом или макетированием. Заметим, что количество действий по разработке (происходящих в правом нижнем квадранте) возрастает по мере продвижения от центра спирали.

При итеративном способе недостающую часть работы можно выполнять на следующей итерации. Главная же задача - как можно быстрее показать пользователям системы работоспособный продукт, тем самым активизируя процесс уточнения и дополнения требований.

Спиральная модель не исключает каскадного подхода на завершающих стадиях проекта в тех случаях, когда требования к системе оказываются полностью определенными.

Основная проблема спирального цикла - определение момента перехода на следующую стадию. Для ее решения необходимо ввести временные ограничения на каждую из стадий ЖЦ. Переход осуществляется в соответствии с планом, даже если не вся запланированная работа закончена. План составляется на основе статистических данных, полученных на предыдущих проектах, и личного опыта разработчиков.

Достоинства спиральной модели:

· наиболее реально (в виде эволюции) отображает разработку программного обеспечения;

· позволяет явно учитывать риск на каждом витке эволюции разработки;

· включает шаг системного подхода в итерационную структуру разработки;

· использует моделирование для уменьшения риска и совершенствования программного изделия.

Недостатки спиральной модели:

· новизна (отсутствует достаточная статистика эффективности модели);

· повышенные требования к заказчику;

· трудности контроля и управления временем разработки.

Подход RAD

Одним из возможных подходов к разработке прикладного ПО в рамках спиральной модели ЖЦ является получивший широкое распространение способ так называемой быстрой разработки приложений, или RAD (Rapid Application Development). RAD предусматривает наличие трех составляющих:

· небольших групп разработчиков (3-7 чел.), выполняющих работы по проектированию отдельных подсистем ПО. Это обусловлено требованием максимальной управляемости коллектива;

· короткого, но тщательного проработанного производственного графика (до 3 месяцев);

· повторяющегося цикла, при котором разработчики по мере того, как приложение начинает приобретать форму, запрашивают и реализуют в продукте требования, полученные в результате взаимодействия с заказчиком.

Команда разработчиков должна представлять собой группу профессионалов, имеющих опыт в проектировании, программировании и тестировании ПО, способных хорошо взаимодействовать с конечным пользователем и трансформировать их предложения в рабочие прототипы.

ЖЦ ПО в соответствии с подходом RAD включает 4 стадии:

1. Анализ и планирование требований предусматривает действия:

· определение функций, которые должна выполнять система;

· выделение наиболее приоритетных функций, требующих проработки в первую очередь;

· описание информационных потребностей. Формулирование требований к системе осуществляется в основном силами пользователей под руководством специалистов-разработчиков.

Кроме того, на данной стадии реализуются следующие задачи:

- ограничивается масштаб времени;

- устанавливаются временные рамки для каждой из последующих стадий. Определяется сама возможность реализации проекта в заданных рамках финансирования, на имеющихся аппаратных средствах.

Результатом стадии должны быть список расставленных по приоритету функций будущего ПО ЭИС и предварительные модели ПО.

2. Проектирование. На этой стадии часть пользователей принимает участие в техническом проектировании системы под руководством специалистов-разработчиков. Для быстрого получения работающих прототипов приложений используются соответствующие инструментальные средства (CASE - средства). Пользователи, непосредственно взаимодействуя с разработчиками, уточняют и дополняют требования к системе, которые не были выявлены на предыдущей стадии:

· более детально рассматриваются процессы системы;

· при необходимости для каждого элементарного процесса создается частичный прототип: экранная форма, диалог, отчет, устраняющий неясности и неоднозначности;

· устанавливаются требования разграничения доступа к данным;

· определяется состав необходимой документации.

После детального определения состава процессов оценивается количество так называемых функциональных точек разрабатываемой системы и принимается решение о разделении ЭИС на подсистемы, поддающиеся реализации одной командой разработчиков за приемлемое время (до 3 месяцев). Под функциональной точкой понимается любой из следующих элементов разрабатываемой системы:

· входной элемент приложения (входной документ или экранная форма);

· выходной элемент приложения (отчет, документ, экранная форма)

· запрос (пара «вопрос/ответ»);

· логический файл (совокупность записей данных, используемых внутри приложения);

· интерфейс приложения (совокупность записей данных, передаваемых другому приложению или получаемых от него).

Далее проект распределяется между различными командами разработчиков. (Опыт показывает, что для повышения эффективности работ необходимо разбить проект на отдельные слабо связанные по данным и функциям подсистемы. Реализация подсистем должна выполняться отдельными группами специалистов. При этом необходимо обеспечить координацию ведения общего проекта и исключить дублирование результатов работ каждой проектной группы, которое может возникнуть в силу наличия общих данных и функций).

Результатом данной стадии должно быть:

· общая информационная модель системы;

· функциональные модели системы в целом и подсистем, реализуемых отдельными командами разработчиков;

· точно определенные интерфейсы между автономно разрабатываемыми подсистемами;

· построенные прототипы экранных форм, отчетов, диалогов.

На стадии реализации выполняется непосредственно сама быстрая разработка приложения.

Разработчики производят итеративное построение реальной системы на основе полученных на предыдущей стадии моделей, а также требований нефункционального характера (требования к надежности, производительности и т.д.).

Пользователи оценивают получаемые результаты и вносят коррективы, если в процессе разработки система перестает удовлетворять определенным ранее требованиям. Тестирование системы осуществляется в процессе разработки.

После окончания работ каждой отдельной команды разработчиков производится постепенная интеграция данной части системы с остальными, формируется полный программный код, выполняется тестирование совместной работы данной части приложения, а затем тестирование системы в целом. Реализация системы завершается выполнением работ:

· Осуществляется анализ использования данных и определяется необходимость их распределения.

· Производится физическое проектирование базы данных

· Формируются требования к аппаратным ресурсам.

· Устанавливаются способы увеличения производительности.

· Завершается разработка документации проекта.

Результатом стадии является готовая система, удовлетворяющая всем согласованным требованиям.

На стадии внедрения производится обучение пользователей, организационные изменения и параллельно с внедрением новой системы продолжается эксплуатация существующей системы (до полного внедрения новой). Так как стадия реализации достаточно продолжительна, планирование и подготовка к внедрению должны начинаться заранее, как правило, на стадии проектирования системы. Приведенная схема разработки ЭИС не является абсолютной. Возможны различные варианты, зависящие, например, от начальных условий, в которых ведется разработка:

· разрабатывается совершенно новая система;

· уже было проведено обследование организации и существует модель ее деятельности.

В организации уже существует некоторая ЭИС, которая может быть использована в качестве начального прототипа или должна быть интегрирована с разрабатываемой системой.

Следует отметить, что подход RAD, как и любой другой подход, не может претендовать на универсальность. Он хорош в первую очередь для относительно небольших проектов, разрабатываемых для конкретного заказчика. Если же разрабатывается крупномасштабная система (например, масштаба отрасли), которая не является законченным продуктом, а представляет собой комплекс программных компонентов, адаптируемых к программно-аппаратным платформам, системам управления базами данных (СУБД), средствам телекоммуникаций, то на первый план выступают такие показатели проекта как управляемость и качество, которые могут войти в противоречие с простотой и скоростью разработки. Для таких проектов необходимы высокий уровень планирования и жесткая дисциплина проектирования, строгое следование заранее разработанным протоколам и интерфейсам, что снижает скорость разработки.

Подход RAD не применим для построения сложных расчетных программ, операционных систем.

Не годится этот подход и для приложений, в которых отсутствует ярко выраженная интерфейсная часть, наглядно определяющая логику работы системы и приложений, от которых зависит безопасность людей (например программа управления самолетом или атомной станцией), так как итеративный подход предполагает, что первые несколько версий наверняка не будут полностью работоспособны, что в данном случае исключается.

Итак, перечислим основные принципы подхода RAD.

· Разработка приложений итерациями.

· Необязательность полного завершения работ на каждой стадии ЖЦ ПО.

· Обязательность вовлечения пользователей в процесс разработки ЭИС.

· Целесообразность применения CASE - средств, обеспечивающих целостность проекта и генерацию кода приложений.

· Целесообразность применения средств управления конфигурацией, облегчающих внесение изменений в проект и сопровождение готовой системы.

· Использование прототипирования, позволяющее полнее выяснить и удовлетворить потребности пользователей.

· Тестирование и развитие проекта, осуществляемые одновременно с разработкой.

· Ведение разработки немногочисленной хорошо управляемой командой профессионалов.

· Грамотное руководство разработкой системы, четкое планирование и контроль выполнения работ.

Модели качества процессов конструирования

В современных условиях, условиях жесткой конкуренции, очень важно гарантировать высокое качество вашего процесса конструирования ПО. Такую гарантию дает сертификат качества процесса, подтверждающий его соответствие принятым международным стандартам. Каждый такой стандарт фиксирует свою модель обеспечения качества. Наиболее авторитетны модели стандартов ISO 9001:2000, ISO / IЕС 15504 и модель зрелости процесса конструирования ПО (Capability Maturity Model - СММ) Института программной инженерии при американском университете Карнеги-Меллон.

Модель стандарта ISO 9001:2000 ориентирована на процессы разработки из любых областей человеческой деятельности. Стандарт ISO/IЕС 15504 специализируется на процессах программной разработки и отличается более высоким уровнем детализации. Достаточно сказать, что объем этого стандарта превышает 500 страниц. Значительная часть идей ISO/IЕС 15504 взята из модели СММ.

Базовым понятием модели СММ считается зрелость компании. Незрелой называют компанию, где процесс конструирования ПО и принимаемые решения зависят только от таланта конкретных разработчиков. Как следствие, здесь высока вероятность превышения бюджета или срыва сроков окончания проекта.

Напротив, в зрелой компании работают ясные процедуры управления проектами и построения программных продуктов. По мере необходимости эти процедуры уточняются и развиваются. Оценки длительности и затрат разработки точны, основываются на накопленном опыте. Кроме того, в компании имеются и действуют корпоративные стандарты на процессы взаимодействия с заказчиком, процессы анализа, проектирования, программирования, тестирования и внедрения программных продуктов. Все это создает среду, обеспечивающую качественную разработку программного обеспечения.

Таким образом, модель СММ фиксирует критерии для оценки зрелости компании и предлагает рецепты для улучшения существующих в ней процессов. Иными словами, в ней не только сформулированы условия, необходимые для достижения минимальной организованности процесса, но и даются рекомендации по дальнейшему совершенствованию процессов.

Очень важно отметить, что модель СММ ориентирована на построение системы постоянного улучшения процессов. В ней зафиксированы пять уровней зрелости (рис.5) и предусмотрен плавный, поэтапный подход к совершенствованию процессов - можно поэтапно получать подтверждения об улучшении процессов после каждого уровня зрелости.

Рис. 4. Пять уровней зрелости модели СММ

Начальный уровень (уровень 1) означает, что процесс в компании не формализован. Он не может строго планироваться и отслеживаться, его успех носит случайный характер. Результат работы целиком и полностью зависит от личных качеств отдельных сотрудников. При увольнении таких сотрудников проект останавливается.

Для перехода на повторяемый уровень (уровень 2) необходимо внедрить формальные процедуры для выполнения основных элементов процесса конструирования. Результаты выполнения процесса соответствуют заданным требованиям и стандартам. Основное отличие от уровня 1 состоит в том, что выполнение процесса планируется и контролируется. Применяемые средства планирования и управления дают возможность повторения ранее достигнутых успехов.

Следующий, определенный уровень (уровень 3) требует, чтобы все элементы процесса были определены, стандартизованы и документированы. Основное отличие от уровня 2 заключается в том, что элементы процесса уровня 3 планируются и управляются на основе единого стандарта компании. Качество разрабатываемого ПО уже не зависит от способностей отдельных личностей.

С переходом на управляемый уровень (уровень 4) в компании принимаются количественные показатели качества как программных продуктов, так и процесса. Это обеспечивает более точное планирование проекта и контроль качества его результатов. Основное отличие от уровня 3 состоит в более объективной, количественной оценке продукта и процесса.

Высший, оптимизирующий уровень (уровень 5) подразумевает, что главной задачей компании становится постоянное улучшение и повышение эффективности существующих процессов, ввод новых технологий. Основное отличие от уровня 4 заключается в том, что технология создания и сопровождения программных продуктов планомерно и последовательно совершенствуется.

Каждый уровень СММ характеризуется областью ключевых процессов (ОКП), причем считается, что каждый последующий уровень включает в себя все характеристики предыдущих уровней. Иначе говоря, для 3-го уровня зрелости рассматриваются ОКП 3-го уровня, ОКП 2-го уровня и ОКП 1-го уровня. Область ключевых процессов образуют процессы, которые при совместном выполнении приводят к достижению определенного набора целей. Например, ОКП 5-го уровня образуют процессы:

· предотвращения дефектов;

· управления изменениями технологии;

· управления изменениями процесса.

Если все цели ОКП достигнуты, компании присваивается сертификат данного уровня зрелости. Если хотя бы одна цель не достигнута, то компания не может соответствовать данному уровню СММ.

Лекция 12. Понятие метода и технологии проектирования ПО

Определение метода и технологии. Требования к технологии. Стандарт проектирования. Стандарт оформления проектной документации. Стандарт интерфейса конечного пользователя с системой.

Определение метода и технологии

Метод проектирования ПО представляет собой организованную совокупность процессов создания ряда моделей, которые описывают различные аспекты разрабатываемой системы с использованием четко определенной нотации. На более формальном уровне метод определяется как совокупность составляющих:

· Концепций и теоретических основ. В качестве таких основ могут выступать структурный или объектно-ориентированный подход.

· Нотаций, используемых для построения моделей статической структуры и динамики поведения проектируемой системы. В качестве таких нотаций обычно используются графические диаграммы, поскольку они наиболее наглядны и просты в восприятии (диаграммы потоков данных, и диаграммы «сущность - связь» для структурного подхода, диаграммы вариантов использования, диаграммы классов и др. - для объектно-ориентированного подхода.

· Процедур, определяющих практическое применение метода (последовательность и правила построения моделей, критерии, используемые для оценки результатов).

Методы реализуются через конкретные технологии и поддерживающие их методики, стандарты и инструментальные средства, которые обеспечивают выполнение процессов ЖЦ ПО.

Технология проектирования определяется как совокупность технологических операций проектирования в их последовательности и взаимосвязи, приводящая к разработке проекта ПО.

Требования к технологии

Современная технология проектирования должна обеспечивать:

1. Соответствие стандарту ISO/IEC 12207: 1995 (поддержка всех процессов ЖЦ ПО).

2. Гарантированное достижение целей разработки ЭИС в рамках установленного бюджета, с заданным качеством и в установленное время.

3. Возможность декомпозиции проекта на составные части, разрабатываемые группами исполнителей ограниченной численности (3-7 чел.), с последующей интеграцией составных частей.

4. Минимальное время получения работоспособного ПО ЭИС. Речь идет не о сроках готовности всей ЭИС, а о сроках реализации отдельных подсистем. Практика показывает, что даже при наличии полностью завершенного проекта внедрение ЭИС идет последовательно по отдельным подсистемам.

5. Независимость получаемых проектных решений от средств реализации ЭИС (СУБД, ОС, языков и систем программирования).

6. Поддержка комплексом согласованных CASE - средств, обеспечивающих автоматизацию процессов, выполняемых на всех стадиях ЖЦ ПО.

Реальное применение любой технологии проектирования ПО ЭИС в конкретной организации и конкретном проекте невозможно без выработки ряда стандартов (правил, соглашений), которые должны соблюдаться всеми участниками проекта. К таким стандартам относятся:

1. Стандарт проектирования.

2. Стандарт оформления проектной документации.

3. Стандарт интерфейса конечного пользователя с системой.

Стандарт проектирования должен устанавливать:

· Набор необходимых моделей (диаграмм) на каждой стадии проектирования и степень их детализации.

· Правила фиксации проектных решений на диаграммах, в том числе правила именования объектов (включая соглашения по терминологии), набор атрибутов для всех объектов и правила их заполнения на каждой стадии, правила оформления диаграмм (включая требования к форме и размерам объектов) и т.д.

· Требования к конфигурации рабочих мест разработчиков, включая настройки ОС, настройки CASE - средств и т.д.

· Механизм обеспечения совместной работы над проектом, в том числе правила интеграции подсистем проекта, правила поддержания проекта в одинаковом для всех разработчиков состоянии (регламент обмена проектной информацией, механизм фиксации общих объектов и т.д.), правила анализа проектных решений на непротиворечивость и т.д.

Стандарт оформления проектной документации. Он должен устанавливать:

· комплектность, состав и структуру документации на каждой стадии проектирования (в соответствии со стандартом ГОСТ Р ИСО 9127 - 94 «Системы обработки информации. Документация пользователя и информация на упаковке потребительских программных пакетов»);

· требования к оформлению документации (включая требования к содержанию разделов, подразделов, пунктов, таблиц и т.д.);

· правила подготовки, рассмотрения, согласования и утверждения документации с указанием предельных сроков на каждой стадии;

· требования к настройке издательской системы, используемой в качестве встроенного средства подготовки документации;

· требования к настройке CASE - средств для обеспечения подготовки документации в соответствии с установленными правилами.

Стандарт интерфейса конечного пользователя с системой. Он должен регламентировать:

· Правила оформления экранов (шрифты и цветовая палитра), состав и расположение окон и элементов управления.

· Правила использования клавиатуры и мыши.

· Правила оформления текстов помощи.

· Перечень стандартных сообщений.

· Правила обработки реакций пользователя.

Стандарт пользовательского интерфейса для диалоговых информационных технологий фирмы IBM с некоторыми пояснениями приведен в приложении 1 данной работы.

Лекция 13. Сущность структурного подхода. Методы документирования ПО

Сущность структурного подхода. Принципы, на которых базируется структурный подход. Метод SADT. Метод DFD

Проблема сложности является главной проблемой, которую приходится решать при создании больших систем любой природы, в том числе и ЭИС. Ни один разработчик не в состоянии выйти за пределы человеческих возможностей и понять все систему в целом. Единственно эффективный подход к решению этой проблемы заключается в построении сложной системы из небольшого количества крупных частей, каждая из которых, в свою очередь, строится из частей меньшего размера и т.д., до тех пор, пока самые небольшие части можно будет строить из имеющегося материала. Этот подход известен под самыми разными названиями, среди них такие, как «разделяй и властвуй», иерархическая декомпозиция и др. по отношению к проектированию сложной программной системы это означает, что ее необходимо разделять (декомпозировать) на небольшие подсистемы, каждую из которых можно разрабатывать независимо от других. Это позволяет при разработке подсистемы любого уровня держать в уме информацию только о ней, а не обо всех остальных частях системы. Правильная декомпозиция является главным способом преодоления сложности разработки больших систем. Понятие «правильная» по отношению к декомпозиции означает следующее:

1. Количество связей между отдельными подсистемами должно быть минимальным.

2. Связность отдельных частей внутри каждой подсистемы должна быть максимальной.

Структура системы должна быть таковой, чтобы все взаимодействия между ее подсистемами укладывались в ограниченные, стандартные рамки:

1. Каждая подсистема должна инкапсулировать свою содержимое (скрывать его от других подсистем).

2. Каждая подсистема должна иметь четко определенный интерфейс с другими подсистемами.

На сегодняшний день в программной инженерии существуют два основных подхода к разработке ПО ЭИС, принципиальное различие которых обусловлено разными способами декомпозиции систем. Первый подход называется функционально-модульным или структурным. В его основу положен принцип функциональной декомпозиции, при которой структура системы описывается в терминах иерархии ее функций и передачи информации между отдельными функциональными элементами. Второй, объектно-ориентированный подход использует объектную декомпозицию. При этом структура системы описывается в терминах объектов и связей между ними, а поведение системы описывается в терминах обмена сообщениями между объектами.

Итак, сущность структурного подхода к разработке ПО ЭИС заключается в ее декомпозиции (разбиении) на автоматизируемые функции: система разбивается на функциональные подсистемы, которые, в свою очередь, делятся на подфункции, те - на задачи и так далее до конкретных процедур. При этом система сохраняет целостное представление, в котором все составляющие компоненты взаимоувязаны. При разработке системы «снизу-вверх», от отдельных задач ко всей системе, целостность теряется, возникают проблемы при описании информационного взаимодействия отдельных компонентов.

Все наиболее распространенные методы структурного подхода базируются на ряде общих принципов:

1. Принцип «разделяй и властвуй»;

2. Принцип иерархического упорядочения - принцип организации составных частей системы в иерархические древовидные структуры с добавлением новых деталей на каждом уровне.

Выделение двух базовых принципов не означает, что остальные принципы являются второстепенными, т.к. игнорирование любого из них может привести к непредсказуемым последствиям (в том числе и к провалу всего проекта»). Основными из этих принципов являются:

1. Принцип абстрагирования - выделение существенных аспектов системы и отвлечение от несущественных.

2. Принцип непротиворечивости обоснованность и согласованность элементов системы.

3. Принцип структурирования данных - данные должны быть структурированы и иерархически организованы.

В структурном подходе в основном две группы средств, описывающих функциональную структуру системы и отношения между данными. Каждой группе средств соответствуют определенные виды моделей (диаграмм), наиболее распространенными среди них являются:

DFD (Data Flow Diagrams) - диаграммы потоков данных;

SADT (Structured Analysis and Design Technique - метод структурного анализа и проектирования) - модели и соответствующие функциональные диаграммы;

ERD (Entity - Relationship Diagrams) - диаграммы «сущность-связь».

Практически во всех методах структурного подхода (структурного анализа) на стадии формирования требований к ПО используются две группы средств моделирования:

1. Диаграммы, иллюстрирующие функции, которые система должна выполнять, и связи между этими функциями - DFD или SADT (IDEF0).

2. Диаграммы, моделирующие данные и их отношения (ERD).

Конкретный вид перечисленных диаграмм и интерпретация их конструкций зависят от стадии ЖЦ ПО.

На стадии формирования требований к ПО SADT - модели и DFD используются для построения модели “AS-IS” и модели “TO-BE”, отражая таким образом существующую и предлагаемую структуру бизнес - процессов организации и взаимодействие между ними (использование SADT - моделей , как правило, ограничивается только данной стадией, поскольку они изначально не предназначались для проектирования ПО). С помощью ERD выполняется описание используемых в организации данных на концептуальном уровне, не зависимо от средств реализации базы данных (СУБД).

На стадии проектирования DFD используются для описания структуры проектируемой системы.

Перечисленные модели в совокупности дают полное описание ПО ЭИС независимо от того, является ли система существующей или вновь разрабатываемой.

Метод функционального моделирования sadt

Разработан Дугласом Россом в 1973г. Данный метод успешно использовался в военных, промышленных и коммерческих организациях США для решения широкого круга задач.

Метод SADT представляет собой совокупность правил и процедур, предназначенных для построения функциональной модели объекта какой-либо предметной области. Функциональная модель SADT отображает функциональную структуру объекта, т.е. производимые им действия и связи между этими действиями. Основные элементы этого метода основываются на следующих концепциях:

Графическое представление блочного моделирования. Графика блоков и дуг SADT - диаграммы отображает функцию в виде блока, а интерфейсы входа-выхода представляются дугами, соответственно входящими в блок и выходящими из него. Взаимодействие блоков друг с другом описывается посредством интерфейсных дуг, выражающих «ограничения», которые, в свою очередь, определяют, когда и каким образом функции выполняются и управляются. Это:

· Строгость и точность. Правила SADT включают: ограничение количества блоков на каждом уровне декомпозиции (3-6), связность диаграмм (номера блоков), уникальность меток и наименований (отсутствие повторяющихся имен), разделение входов и управлений (правило определения роли данных).

· Отделение организации от функции, т.е. исключение влияния административной структуры организации на функциональную модель).

Состав функциональной модели

Результатом применения метода SADT является модель, состоящая из диаграмм, фрагментов текстов и глоссария, имеющих ссылки друг на друга. Диаграммы - главные компоненты модели, все функции организации и интерфейсы на них представлены как блоки и дуги соответственно (рис.5). Управляющая информация входит в блок сверху в то время, как входная информация, которая подвергается обработке, показаны с левой стороны блока, а результаты (выход) - справа. Механизм (человек или автоматизированная система), который осуществляет операцию, представляется дугой, входящей снизу.

Рис. 5. Функциональный блок и интерфейсные дуги

Построение иерархии диаграмм

Построение SADT - модели начинается с представления всей системы в виде простейшего компонента - одного блока и дуг, изображающих интерфейсы с функциями вне системы (рис.6). Поскольку единственный блок отражает систему как единое целое, имя, указанное в блоке, является общим. Это верно и для интерфейсных дуг - они также соответствуют полному набору внешних интерфейсов системы в целом.

Затем блок, который представляет систему в качестве единого модуля, детализируется на другой диаграмме с помощью нескольких блоков, соединенных интерфейсными дугами. Эти блоки определяют основные подфункции исходной функции. Данная декомпозиция выявляет полный набор подфункций, каждая из которых показана как блок, границы которого определены интерфейсными дугами. Каждая их этих подфункций может быть декомпозирована подобным образом в целях большей детализации.

Во всех случаях каждая подфункция может содержать только те элементы, которые входят в исходную функцию. Кроме того, модель не может опустить какие-либо элементы, т.е. как уже отмечалось, родительский блок и его интерфейсы обеспечивают контекст. К нему нельзя ничего добавить и из него нельзя ничего удалить.

Модель SADT представляет собой серию диаграмм с сопроводительной документацией, разбивающих сложный объект на составные части, которые изображены в виде блоков (рис.7). Детали каждого из основных блоков показаны в виде блоков на других диаграммах. Каждая детальная диаграмма является декомпозицией блока из диаграммы предыдущего уровня. На каждом шаге декомпозиции диаграмма предыдущего уровня называется родительской для более детальной диаграммы.

Дуги, входящие в блок и выходящие из него на диаграмме верхнего уровня, являются точно теми же самыми, что и дуги, входящие в диаграмму нижнего уровня и выходящие из нее, потому что блок и диаграмма изображают одну и ту же часть системы.

Рис. 6. Общее представление

Ниже (рис.8,9) приведены различные варианты выполнения функций и соединения дуг с блоками.

Некоторые дуги присоединены к блокам диаграмм обоими концами, у других же один конец остается не присоединенным. Не присоединенные дуги соответствуют входам, управлениям и выходам родительского блока. Источник или получатель этих пограничных дуг может быть обнаружен только на родительской диаграмме. Все граничные дуги должны продолжаться на родительской диаграмме, чтобы она была полной и непротиворечивой.

Верхняя диаграмма является родительской для нижней диаграммы

Рис.7. Иерархия диаграмм

Рис.8. Функции блоков А2 и А3 могут выполняться параллельно

Рис. 9. Соответствие интерфейсных дуг родительской (а) и детальной (б) диаграмм

На SADT диаграммах не указаны явно ни последовательность, ни время. Обратные связи, итерации, продолжающиеся процессы и перекрывающиеся (по времени) функции могут быть изображены с помощью дуг. Обратные связи (рис. 10) могут выступать в виде комментариев, замечаний, исправлений и т.д.

Системные требования

Комментарии

Предварительная

Спецификация

Улучшенный проект

Рис. 10. Пример обратной связи

Механизмы (дуги снизу) показывают средства, с помощью которых осуществляется выполнение функций. Механизм может быть человеком, компьютером или любым другим устройством, которое помогает выполнять данную функцию. Для примера рассмотрим предметную область «Налоговая система РФ» (рис11).

Каждый блок на диаграмме имеет свой номер. Для того, чтобы указать положение любой диаграммы или блока в иерархии, используются номера диаграмм. Например, А21 является диаграммой, которая детализирует блок А21 на диаграмме А2. Аналогично диаграмма А2 детализирует блок А2 на диаграмме А0, которая является самой верхней диаграммой модели. На рис. 12 показан пример дерева диаграмм.

Законодательство Внутренние органы

Отчетность Отчетность

Налогоплательщиков вышестоящим

организациям

Отдел по работе с юридическими лицами

Рис. 11. Выполнение функций осуществляется с помощью механизмов

А0

Работа Государственной налоговой инспекции

А1 А2 А3

Работа Работа Работа

с физическими с юридическими вспомогательных

лицами лицами подразделениями

А11 А12 А13

Работа Работа Работа

по подоходному по налогу по налогу

налогу на имущество на землю

Рис. 12. Иерархия диаграмм

Типы связей между функциями

Одним из важнейших моментов при моделировании бизнес-процессов организации с помощью метода SADT является точная согласованность типов связей между функциями. Различают по крайней мере связи семи типов (в порядке возрастания их относительной значимости):

· случайная;

· логическая;

· временная;

· процедурная;

· коммуникационная;

· последовательная;

· функциональная.

Случайная связь - показывает, что конкретная связь между функциями незначительна или полностью отсутствует (рис.13).

Это относится к ситуации, когда имена данных на SADT - дугах в одной диаграмме имеют слабую связь друг с другом. Крайний вариант этого случая:

Логическая связь - данные и функции собираются вместе благодаря тому, что они попадают в общий класс или набор элементов, но необходимых функциональных отношений между ними не обнаруживается.

Временная связь - представляет функции, связанные во времени, когда данные используются одновременно или функции включаются параллельно, а не последовательно.

Процедурная связь - Функции сгруппированы вместе благодаря тому, что они выполняются в течение одной и той же части цикла или процесса.

Коммуникационная связь - функции группируются благодаря тому, что они используют одни и те же исходные данные и/или производят одни и те же выходные данные.

Последовательная связь - выход одной функции служит входными данными для следующей функции. Связь между элементами на диаграмме является более тесной, чем в рассмотренных выше случаях, поскольку моделируются причинно-следственные зависимости.

Функциональная связь - все элементы функции влияют на выполнение одной и той же функции. Диаграмма, являющаяся чисто функциональной, не содержит чужеродных элементов, относящихся к последовательному или более слабому типу связи. Одним из способов определения функционально связанных диаграмм является рассмотрение двух блоков, связанных через управляющие дуги, как показано на рис.17.

В математических терминах необходимое условие для простейшего типа функциональной связи имеет вид:

С=g(B)=g(f(F)).

В таблице 1 ниже представлены все типы связей. Важно отметить, что уровни 4-6 устанавливают типы связей, которые разработчики считают важнейшими для получения диаграмм хорошего качества.

Типы связей
Таблица 1

Уровень значимости

Тип связи

Характеристика типа связи

Для функций

Для данных

0

случайная

случайная

Случайная

1

логическая

Функции одного и того же множества или типа (например, «редактировать все входы»)

Данные одного и того же множества или типа

2

временная

Функции одного и того же периода времени (например, «операции инициализации»)

Данные, используемые в каком либо временном интервале

3

процедурная

Функции, работающие в одной и той же фазе или итерации, например, «первый проход компилятора»

Данные используемые во время одной и той же фазы или итерации

4

коммуникационная

Функции, использующие одни и те же данные

Данные, на которые воздействует одна и та же деятельность

5

Последовательная

Функции, выполняющие последовательное преобразование одних и тех же данных

Данные, преобразуемые последовательными функциями

6

функциональная

Функции, объединяемые для выполнения одной функции

Данные, связанные с одной функцией


Подобные документы

  • Изучение основных видов угроз программного обеспечения. Выявление наиболее эффективных средств и методов защиты программного обеспечения. Анализ их достоинств и недостатков. Описания особенностей лицензирования и патентования программного обеспечения.

    курсовая работа [67,9 K], добавлен 29.05.2013

  • Жизненный цикл информационных систем. Процессы документирования и управления конфигурацией. Использование каскадного и спирального подходов к построению ИС. Их преимущества и недостатки. Процесс разработки программного обеспечения по каскадной схеме.

    презентация [350,6 K], добавлен 09.11.2015

  • Возможности среды программирования delphi при разработке приложения с визуальным интерфейсом. Отладка программных модулей с использованием специализированных программных средств. Тестирование программного обеспечения. Оптимизация программного кода.

    курсовая работа [974,0 K], добавлен 21.12.2016

  • Программное обеспечение как продукт. Основные характеристик качества программного средства. Основные понятия и показатели надежности программных средств. Дестабилизирующие факторы и методы обеспечения надежности функционирования программных средств.

    лекция [370,1 K], добавлен 22.03.2014

  • Критерии оценки эффективности и качества создания программных средств. Роль трудоемкости и длительности создания программных средств в определении эффективности их создания. Требования к качеству, суммарные затраты на разработку программного средства.

    реферат [26,7 K], добавлен 10.10.2014

  • Этапы тестирования при испытаниях надежности программных средств. Комплексирование модулей и отладка автономных групп программ в статике без взаимодействия с другими компонентами. Испытания главного конструктора. Жизненный цикл программного средства.

    презентация [339,6 K], добавлен 22.03.2014

  • Жизненный цикл программного обеспечения - непрерывный процесс, который начинается с принятия решения о необходимости создания ПО и заканчивается при полном изъятия его из эксплуатации. Подход к определению жизненного цикла ПО Райли, по Леману и по Боэму.

    реферат [39,1 K], добавлен 11.01.2009

  • Характеристика программных средств, использованных при разработке сайта. Параметры аппаратных средств для демонстрации ПП. Особенности архитектуры программного обеспечения. Анализ модели жизненного цикла программного продукта. Построение Gant-диаграммы.

    курсовая работа [886,9 K], добавлен 30.05.2015

  • Основные задачи национального органа по стандартизации в России. Структура Федерального агентства по техническому регулированию и метрологии. Характеристика международных организаций по стандартизации программных средств и информационных технологий.

    презентация [258,0 K], добавлен 27.12.2013

  • Разработка программных и аппаратных компонентов для проведения информатизации объекта. Выбор конфигурации рабочих станций. Комплектация персонального компьютера и сервера для обеспечения обработки информации. Схема лицензирования программного обеспечения.

    курсовая работа [2,5 M], добавлен 20.12.2012

Работы в архивах красиво оформлены согласно требованиям ВУЗов и содержат рисунки, диаграммы, формулы и т.д.
PPT, PPTX и PDF-файлы представлены только в архивах.
Рекомендуем скачать работу.