Усовершенствование системы регулировки температуры жесткого диска
Ознакомление с техническими характеристиками, видами, файловыми системами и технологией записи данных на жестом диске. Определение причин и опасностей перегрева винчестера. Рассмотрение конструкции датчика температур с интерфейсом RS-485 PTC-095.
Рубрика | Программирование, компьютеры и кибернетика |
Вид | дипломная работа |
Язык | русский |
Дата добавления | 14.07.2010 |
Размер файла | 2,4 M |
Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже
Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.
Варианты охлаждения
Основным методом охлаждения современных ЖД 3.5? остаётся принудительный обдув с помощью вентилятора. Другие варианты теплоотвода - пассивные радиаторы, тепловые трубки, жидкостные системы и др. - не получили распространения, хотя ряд фирм (в частности, Zalman и Scythe) в разное время предлагал подобные решения. Они были бесшумны, долговечны, но отличались громоздкостью и высокой ценой, что предопределило узкую нишу на рынке (сборка особо тихих компьютеров и т.п.).
Подбор кулера для дисков имеет свою специфику. Прежде всего, общее тепловыделение ЖД и особенно его плотность сравнительно малы, поэтому достаточно легкого ветерка, чтобы снять перегрев. Вспомним также, что оптимальная температура диска под нагрузкой составляет 35-40? (примерно на 10? выше окружающей среды) и что все его поверхности следует охлаждать равномерно.
В подобных условиях лучшим выбором станет тихоходный крупногабаритный вентилятор, дующий в торец корзины с ЖД, но не касающийся её во избежание вибраций. Именно так устроен обдув корзины в современных качественных корпусах. Вентилятор крепится к вырезу передней панели, а декоративная крышка снабжена воздухозаборниками. Вытяжка через заднюю панель, которая часто встречается в корпусах среднего класса, также достаточно эффективна (конечно, при должной герметизации остальных мест).
Практика показала, что 120-мм вентилятор способен охлаждать до пяти ЖД, так что нужды обычных пользователей покрываются полностью. Для одного-двух дисков обдув даже избыточен, так что в целях снижения шума можно уменьшить скорость вращения до 600-1000 об./мин. Не лишним будет защититься от вездесущей пыли, поставив воздушный фильтр из тонкого поролона.
Значительная часть тепла ЖД может рассеиваться на корзине, которая служит пассивным радиатором. Здесь важна толщина металла и плотный равномерный прижим боковин (качественные корпуса имеют преимущество, также хорошо себя зарекомендовало крепление ЖД шестью винтами). При эффективном теплоотводе всё шасси во время работы ощутимо нагревается. Если же диск крепится на салазках или через амортизирующие элементы (силиконовые, хуже резиновые втулки), то этот путь охлаждения практически блокируется, и вся надежда остаётся на обдув.
Ситуация осложняется, когда штатное гнездо под вентилятор отсутствует. Можно заняться моддингом, сменить корпус на более подходящий или переставить ЖД в более прохладное место. Неплохо себя зарекомендовало размещение в пятидюймовом отсеке: его габариты позволяют установить вентилятор среднего размера (40-60 мм), а крепящие диск скобы не препятствуют обдуву и конвекции. Советуем использовать готовый монтажный комплект - в продаже есть как простые, так и улучшенные модели (с виброшумоизоляцией, пассивными радиаторами, индикацией температуры).
Выпускаются также недорогие (5-10$) кулеры, крепящиеся прямо на корпус ЖД. Следует предостеречь от их использования: мало того, что высокооборотный вентилятор, или даже два, обдувает практически одну только плату, покрывая её при этом пылью, растёт риск замыканий, так ещё диску передаются все вибрации крыльчатки. Особенно они возрастают через несколько месяцев эксплуатации, когда разбалтывается некачественный подшипник скольжения (других там и не ставят). В этом состоянии кулер приносит больше вреда, чем пользы и обязателен к замене.
В заключение напомним, что все обсуждение этого раздела касалось дисков для настольных компьютеров. Ноутбучные и серверные накопители имеют свою специфику, отражающуюся и на подходе к охлаждению.
Первые потребляют всего 0.4-0.9 Вт в покое и 2-3.2 Вт при активной работе, греются сравнительно слабо и не нуждаются в особых мерах. Максимум, что встречается в ноутбуках - П-образная пластина, привинченная к боковинам для лучшего теплоотвода. Для еще более миниатюрных дисков (типоразмеры 1.8?, 1.3?, 1? и даже 0.85?) нагрев и вовсе можно не учитывать: энергопотребление у них даже в пике не превышает одного ватта.
Вторые, напротив, очень горячи из-за высокооборотного шпинделя (чаще всего 15000 об./мин) и постоянной нагрузки, и для них обязателен активный обдув. Продуманная система охлаждения в серверах включает массивные салазки и корзины, раздельные воздуховоды, дублированные вентиляторы горячей замены и т.п. Благодаря этому серверные диски работают в стабильном тепловом режиме и служат заметно дольше бытовых сородичей.
2.5 Датчик температур с интерфейсом RS-485 PTC-095
Датчик температуры с интерфейсом RS-485 ( шифр PTC-095 ) предназначен для измерения температуры и передачи измеренного значения по сети RS-485.
Устройство состоит из блока интерфейса RS-485 и подсоединенного к нему выносного измерителя температуры.
2.5.1 Технические данные
- измеритель температуры;
- диапазон измеряемых температур: от -55 до +85 о С;
- кабель для подключения выносного измерителя температуры к блоку интерфейса RS -485 - не более 30 м;
- габаритные размеры: длина - 30 мм; диаметр - 14 мм;
- блок интерфейса RS-485;
- линия управления внутренней локальной сети - последовательный двунаправленный канал стандарта RS-485;
- скорость передачи - 9600 бит/сек;
- формат данных - 11 бит (1 - стартовый, 8 - информационных, 1 - программируемый, 1 - стоповый) в режиме полудуплекса;
- длина линии управления - не более 100 м;
- количество передатчиков на линии - не более 31;
- питание блока - 9В постоянного тока;
- потребляемая мощность - не более 1 Вт;
- диапазон рабочих температур - от 0 до +45 о С;
- габаритные размеры: 27х81х93 мм;
- масса (с сетевым адаптером) - не более 1 кг.
2.5.2 Общее устройство и система управления
Датчик температуры представляет собой блок интерфейса RS-485, используемый в настольном варианте, к которому при помощи кабеля подключен измеритель температуры. Измеритель температуры реализован на основе полупроводникового прибора DS 1820 с 1- WIRE интерфейсом.
На лицевой панели блока интерфейса расположены органы управления и индикации.
Рисунок 2.3 - Лицевая панель датчика
разъем " t о SENSOR " для подключения выносного измерителя температуры;
светодиод - для индикации получения данных от измерителя температуры;
переключатель " OPTION " для определения адреса интерфейса в локальной сети "RS-485".
На задней панели блока интерфейса расположены:
Рисунок 2.4 - Задняя панель датчика
разъем питания "9V DC";
два разъема "RS-485" локальной сети управления;
светодиод - для индикации работы интерфейса в сети RS -485;
кнопка " RESET " для аварийного сброса процессора.
Передача измеренного значения температуры осуществляется по последовательному двунаправленному каналу стандарта RS-485. Если суммарная длина линии управления достаточно велика, на оконечных устройствах сети можно включить терминатор 120 Ом.
Все устройства объединяются в сеть RS-485 на основе описанной выше линии управления. Каждое устройство в сети имеет свой уникальный системный адрес. Общение между устройствами в этой системе осуществляется по разработанному фирмой "ПРОФИТТ" протоколу.
Кроме того, если в этой сети необходимо также осуществлять управление от ЭВМ или какого-либо другого устройства по последовательному каналу стандарта RS-232, то в составе сети необходимо иметь блок преобразования интерфейсов (PIC-094), который передает команды управления от ЭВМ или другого источника команд в сеть RS-485.
Рисунок 2.5 - Схема объединения устройств в сеть (расположение устройств в сети произвольное)
2.5.3 Конструкция
Конструктивно датчик температуры выполнен в виде переносного прибора с размерами 27х81х93 мм. Для доступа к плате необходимо снять верхнюю крышку блока.
Выносной измеритель температуры смонтирован в корпусе разъема PC 4 TB . Конструкция измерителя обеспечивает его эксплуатацию вне помещений на открытом воздухе при температурах от -50 о С до +50 о С. Кабель подключения снабжен фланцем, упрощающим крепление измерителя.
2.6 Модернизация датчика
Я модернизировал датчик добавив к нему блок управления вентиляторами.
Алгоритм работы устройств, управляющих охлаждением элементов системного блока компьютера, описания которых были опубликованы за последние несколько лет, приблизительно одинаков. Пока температура не выше допустимой, на вентиляторы поступает уменьшенное до 6,5...7 В напряжение питания. При этом система охлаждения, хотя и работает менее эффективно, но значительно меньше шумит. Напряжение обычно снижают, включая последовательно в цепь питания вентилятора резистор или работающий в активном режиме биполярный транзистор. К сожалению, кроме своего основного назначения, этот элемент ограничивает пусковой ток двигателя вентилятора. В результате уменьшается его механический пусковой момент и, не преодолев трения покоя, крыльчатка вентилятора при включении компьютера может остаться неподвижной. Если температура превысила заданную (обычно 50 °С), срабатывает пороговое устройство и напряжение питания вентиляторов увеличивается до номинального (12 В). Пока температура не снизится, система охлаждения работает интенсивнее. Однако ее максимально возможная эффективность все-таки не достигается, так как заметная часть напряжения питания падает на коммутирующем элементе - биполярном транзисторе.
В предлагаемом блоке регулирование напряжения, питающего двигатели, ведется импульсным методом. В качестве коммутирующих элементов использованы полевые транзисторы с очень низким (доли ома) сопротивлением каналов в открытом состоянии. Они не ограничивают пусковой токи практически не уменьшают питающее напряжение на работающих на полную мощность вентиляторах.
Схема блока управления вентиляторами компьютера изображена на рис.2.5. В нем два независимых канала управления. Выход первого канала, собранного на микросхемах DA1 и DA2 и транзисторах VT1, VT2, вилка ХР1, к которой подключают вентилятор, обдувающий теплоотвод процессора. Второй канал на микросхеме DA3 и транзисторе VT3 обслуживает другие вентиляторы системного блока, которые подключают к вилке ХР2.
Рисунок 2.6 Схема блока управления вентиляторами компьютера
На интегральных таймерах DA2 и DA3 собраны одинаковые генераторы импульсов частотой 10...15 Гц. Цепи зарядки и разрядки времязадающих конденсаторов С1 и С2 (соответственно первого и второго генераторов) разделены диодами VD1-VD4, что позволяет регулировать скважность генерируемых импульсов переменными резисторами R4 и R5. Импульсы поступают на затворы полевых транзисторов VT2 и VT3, каналы которых (сопротивлением в открытом состоянии не более 0,35 Ом) включены последовательно в цепи питания вентиляторов. Изменяя скважность импульсов, можно регулировать частоту вращения роторов вентиляторов в очень широких пределах при сохранении достаточно большого пускового момента. Благодаря импульсному режиму работы полевых транзисторов рассеиваемая ими мощность очень мала, что позволяет не устанавливать эти транзисторы на теплоотводы. Конденсаторы С5 и С6 сглаживают перепады импульсов, что устраняет следующие с частотой повторения импульсов хорошо слышимые щелчки в двигателях вентиляторов. В канале управления вентилятором процессора имеется дополнительный узел, включающий этот вентилятор на полную мощность, если температура теплоотвода процессора выше допустимой. Узел построен по известной схеме на ОУ DA1. Датчиком температуры служит транзистор VT1, закрепленный на теплоотводе процессора. Температуру срабатывания устанавливают подстроечным резистором R7. Сигнал с выхода ОУ DA1 логически складывается с импульсами генератора на таймере DA2 с помощью диодов VD5 и VD6, в результате чего при превышении допустимой температуры транзистор VT2 открыт постоянно и вентилятор работает на полную мощность.
Печатная плата блока управления изображена на рис. 2.6. Она рассчитана на установку постоянных резисторов МЛТ-0,125, подстроечных СПЗ-44 А (R 4, R 5) и СП 4-3 (R 7).
Конденсатор СЗ-КМ-6, остальные - оксидные К50-35. Разъемы XS1, ХР1, ХР2 - от неисправных вентиляторов и материнских плат. Вместо КР140УД708 можно применить практически любой ОУ в аналогичном корпусе, как отечественный, так и импортный. Транзистор КТ315В в качестве температурного датчика заменит любой маломощный кремниевый транзистор структуры n-р-n в пластмассовом корпусе с коэффициентом передачи тока не менее 100. Полевые транзисторы КП704А можно заменить импортными n-канальными с низким сопротивлением открытого канала, например, IRF640 или IRF644. Вместо диодов КД522 подойдут другие маломощные импульсные.
Рисунок 2.7 Печатная плата блока управления
Предварительную регулировку блока управления удобнее всего провести в лабораторных условиях. Движки подстроечных резисторов R4, R5, R7 устанавливают в крайнее по часовой стрелке положение. К вилкам ХР1, ХР2 подключают вентиляторы, а источник напряжения 12±0,1 В - к гнездам 2 (+) и 1 (-) розетки XS1. При включении питания вентиляторы должны начать вращаться с максимальной частотой. Медленно поворачивая движки подстроечных резисторов R 4 и R 5 против часовой стрелки, плавно уменьшайте частоту вращения вентиляторов и создаваемый ими шум. Продолжайте уменьшать частоту до пропадания шума подшипников. Останется лишь незначительный шум создаваемого вентиляторами воздушного потока. Затем проверьте узел на ОУ DA1. Для этого нагрейте транзистор VT1 (датчик температуры) приблизительно до 40 °С любым доступным способом, в крайнем случае, зажав транзистор пальцами. Медленно поверните движок резистора R7 против часовой стрелки до переключения вентилятора на максимальную частоту вращения и прекратите нагревать датчик . Через несколько десятков секунд частота вращения должна скачком уменьшиться. На этом предварительную регулировку блока управления можно закончить.
Установив блок и датчик температуры на предназначенные для них места в системном блоке компьютера и подключив все вентиляторы, включите компьютер в сеть. Запустите любую имеющуюся программу контроля температуры элементов компьютера, наблюдайте за температурой процессора. С помощью подстроечного резистора R7 добейтесь, чтобы переключение вентилятора процессора на максимальные обороты происходило при температуре 50°С. После снижения температуры установите подстроечным резистором R4 частоту вращения вентилятора такой, чтобы при средней загрузке процессора температура его корпуса не превышала 40°С. Если при температуре в помещении не более 25...28 °С вентилятор процессора будет часто включаться на полную мощность, необходимо немного увеличить частоту вращения сначала корпусных вентиляторов, а затем и процессорного. Во многих системных блоках компьютеров фактически установлены далеко не все предусмотренные конструкцией вентиляторы. Рекомендуется, по возможности, установить их самостоятельно. Это повысит общую эффективность охлаждения при сниженных оборотах и даст возможность избавиться от шума.
3. ЭКОНОМИЧЕСКИЙ РАСЧЕТ СТОИМОСТИ АНАЛИЗА ОБЬЕКТА
Целью экономического расчета дипломного проекта является модернизация датчика системы температур жесткого диска "Северодонецкого производственного объединения компьютерных технологий", качественная и количественная оценка экономической целесообразности создания, использования и развития этого датчика, а также определение организационно-экономических условий его функционирования. Использование ресурсов датчика позволит оперативно использовать его в различных отраслях. К достоинствам данного датчика можно отнести то, что он разработан с учетом самых современных технологий в области модернизации жесткого диска. Обладает легкостью и простотой использования. В таблице представлены исходные данные, "Северодонецкого производственного объединения компьютерных технологий" г. Северодонецк на 05.05.2010г.
Таблица 3.1 - Исходные данные
Статьи затрат |
Условные обозначения |
Единицы измерения |
Нормативные обозначения |
|
1 |
2 |
3 |
4 |
|
1. Разработка (модернизация) датчика |
||||
Тарифная ставка программиста - системотехника |
З сист |
грн/мес. |
1200 |
|
Тарифная ставка обслуживающего персонала |
Зперс |
грн/мес. |
900 |
|
Тариф на электроэнергию |
Т эл/эн |
грн |
0,3846 |
|
Мощность ЭВМ, жесткого диска. |
WЭВМ |
Вт /час |
300 |
|
Стоимость ЭВМ |
Стз |
грн. |
4500 |
|
Амортизационные отчисления на ЭВМ |
Ааморт |
% |
25,0 |
|
Изготовление датчика |
||||
Мощность компьютера, принтера и т.д |
WЭВМ |
Вт /час |
300 |
|
Тарифная ставка программиста на месяц |
Зсист |
грн/мес. |
1200 |
|
Норма дополнительной зарплаты |
Нд |
% |
25 |
|
Отчисления на социальные мероприятия |
Нсоц |
% |
38,52 |
|
Накладные затраты |
Ннакл |
% |
15,0 |
|
НДС |
Нпдв |
% |
20,0 |
|
Рентабельность |
Р |
% |
25,0 |
|
Транспортно-заготовительные затраты |
Нтрв |
% |
4,0 |
|
Суммарная мощность оборудования жесткого диска |
WЛВС |
кВт/час |
0,9 |
|
Тарифная ставка обслуживающего жесткого диска персонала |
Зперс |
грн. |
540 |
|
Норма амортизационных отчислений на жесткий диск |
НаПЗ |
% |
4 |
|
Отчисление на содерждание и ремонт жесткого диска |
Нр |
% |
10 |
3.1 Расчет затрат на создание проекта выбора жесткого диска
Выходные данные для расчёта экономического выбора жесткого диска приведены в таблице 3.1.
Расчет затрат на разработку проекта проводится методом калькуляции затрат, в основу которого положенная трудоемкость и заработная плата разработчиков. Трудоемкость разработки проекта Т рассчитывается по формуле:
Т = То + Ти + Тп + Тотл + Тпр + Тд, (3.1)
где То - затраты труда на описание задачи;
Ти - затраты труда на исследование структуры предприятия;
Тп - затраты труда на модернизацию датчика и использование пользователей; Тотл - затраты труда на отладку жесткого диска на ЭВМ;
Тпр - написание программы минимизации затрат;
Тд - затраты труда на подготовку документации по задаче.
Данные о затратах на проектирование выбора жесткого диска и реализацию спроектированного комплекса в "Северодонецком производственном объединении компьютерных технологий" представлены в таблице 3.2.
Данные по фактической трудоемкости (чел/час) предоставлены ведущим на Украине разработчиком датчиков жесткого диска ООО "Информатика". Таким образом, полученную трудоемкость по этапам разработки проекта необходимо подставить в формулу (3.1), чел./ч.:
Т = 30+30 +80 +110 +60+50+20 = 380 чел/час.
Основной фонд заработной платы разработчиков определяется по формуле:
Зпл = Т * Ч (3.2)
где Т - общая (поэтапная) трудоемкость выбора жесткого диска, чел./ч.
Ч - почасовая тарифная ставка специалиста (программиста), грн.
Исходя из имеющихся данных, основной фонд заработной платы будет составлять:
Зпл = 30*3,00 + 30*2,50 + 80*6,00 + 110*4,00 + 60*5,00 + 50*7,00 + 20*2,50 = 1785,00 грн
Таблица 3.2 - Трудоемкость и зарплата разработчиков жестких дисков
Наименование этапов выбора жесткого диска |
Условные обозначе-ния |
Фактическая трудоем-кость (чел/час) |
Почасовая тарифная ставка (грн.) |
Сумма зарплаты (гр.5 * гр.4) |
|
Описание датчика жесткого диска |
То |
30 |
3,00 |
90,00 |
|
Изучение структуры предприятия |
Ти |
30 |
2,50 |
75,00 |
|
Модернизация датчика жесткого диска |
Та |
80 |
6,00 |
480,00 |
|
Отладка системы датчика |
Тотл |
60 |
5,00 |
300,00 |
|
Написание программы затрат датчика |
Тпр |
50 |
7,00 |
350,00 |
|
Оформление документации |
Тд |
20 |
2,50 |
50,00 |
|
Всего: |
Т |
380 |
1785,00 |
3.2 Расчет материальных затрат
Материальные затраты на создание проекта по выбору жесткого диска рассчитываются исходя из необходимых затрат. Нормы затрат материалов при разработке проекта и их цена приведены в таблице 3.3.
Таблица 3.3 - Расчет материальных и комплектующих затрат на разработку жесткого диска:
Материал |
Норма затрат, шт. |
Фактическое количество, шт. |
Цена за единицу, грн. |
Сумма, грн. |
|
1.Диск CD-RW |
2 - 5 |
4 |
4,50 |
18,00 |
|
2.Бумага формата А-4 |
500 - 1000 |
500 |
0,08 |
40,00 |
|
Всего: |
58,00 |
||||
ТЗР (4%) |
0,01 - 0,04 |
1,48 |
|||
Всего: |
Мв |
59,48 |
3.3 Использование ЭВМ
Затраты на использование ЭВМ при выборе жесткого диска рассчитываются исходя из затрат одного часа по формуле:
З = Сч * (Тотл + Тд + Тпр), (3.3)
где Сч - стоимость работы одного часа ЭВМ, грн (данные предприятия).
Тотл - затраты работы на отладку программы на ЭВМ, чел./ч.
Тд - затраты работы на подготовку документации по задаче на ЭВМ, чел./ч.
Тпр - написание программы минимизации затрат, чел./ч;
Если на предприятии стоимость 1 часа работы ЭВМ не рассчитана, то тогда стоимость работы одного часа ЭВМ определяется по формуле:
Сч = Тэл/эн + Саморт + Зперс + Трем, (3.4)
где Тэл/эн - затраты на электроэнергию, грн/ч.;
Саморт - величина 1-го часа амортизации ЭВМ, грн.;
Зперс - почасовая зарплата обслуживающего персонала, грн.
Трем - затраты на ремонт, стоимость запасных деталей, грн.
Стоимость одного часа амортизации определяется по формуле:
Саморт = Ст/ср * На/100 * 1/ (Ч раб. сут/нд *Ксмена* Ч раб.нед/год * *Ч раб.час/смены (3.5)
где Ст/ср - стоимость технических средств, грн - 4500,00 грн.
На - норма годовой амортизации (%) - 3%.
Ч раб. сут/нд - количество рабочих суток в неделе - 5 суток.
Ксмен - количество рабочих смен в сутки - 2 смены.
Ч раб.нед/год - количество недель на год, (52 недели/год).
Ч раб.час/смена - количество рабочих часов в смену) - 8 час/смен
Подставляя значения в формулы получаем:
Саморт = 4500*25/100 * 1/ (52*5*2*8)=0,27 грн.
(52*5*2*8) = 4160 рабочих часов в год
Тэл/эн=0,3846*0,27=0,10.
З час=Зп/месс / Кчас/месс = 900/173=5,20
3.4 Расчет технологической себестоимости датчика для жесткого диска
Расчет технологической себестоимости датчика для жесткого диска проводится методом калькулирования затрат (таблица 3.4). В таблице 3.4 величина материальных затрат рассчитана в таблице 3.3, основная зарплата берется из таблицы 3.2, дополнительная зарплата берется 10 % (см.табл. 3.1) от основной зарплаты, отчисление на социальные мероприятия - 38,52% от основной и дополнительной зарплаты (вместе). Накладные затраты (13 %) от основной зарплаты.
Таблица 3.4 - Калькуляция технологических затрат на создание датчика для жесткого диска
№ |
Наименование статей |
Условные обозначения |
Затраты (грн.) |
|
1 |
Материальные затраты |
Мз |
59,48 |
|
2 |
Основная зарплата |
З |
1785,00 |
|
3 |
Дополнительная зарплата (10% от основной зарплаты) |
Зд |
178,50 |
|
4 |
Отчисление на социальные мероприятия (38,52%) |
Ос |
687,52 |
|
5 |
Накладные затраты предприятия (15 % от основной зарплаты) |
Ннакл |
267,75 |
|
6 |
Затраты на использование ЭВМ при выборе жесткого диска |
З |
863,20 |
|
7 |
Итого (- Себестоимость модернизации датчика) |
Свидеокарт |
3841,45 |
3.5 Расчет капитальных затрат на создание датчика для жесткого диска
В данном случае необходимо использовать дополнительные денежные средства для приобретения оборудования для жесткого диска. Перечень необходимого оборудования представлен в таблице 3.5. Цены на перечисленное ниже оборудование взяты из прайс-листа ООО "Информатика" Компания является крупнейшим поставщиком офисной техники в восточной Украине, что гарантирует приемлемый уровень цен.
Таблица 3.5 - Перечень расчет капитальных затрат на приобретение оборудования
Наименование |
Единицы измерения |
Количество |
Цена за единицу (грн.) |
Общая стоимость (грн.) |
|
Измеритель температуры |
шт. |
4 |
330,00 |
1320,00 |
|
FTP, Cat.5 Enh, system бухта 305 м. AMP (USA) |
м. |
6 |
29,50 |
177,00 |
|
Монтаж жесткого диска |
шт. |
420 |
0,44 |
184,80 |
|
Блок интерфейса |
шт. |
30 |
0,17 |
5,10 |
|
Итого (Кзатр.оборудов.) |
1686,90 |
Стоимость работ по изготовлению (Ст.вид.) и настройки датчика предоставлена ООО "Информатика" и составляет 100 грн. Полученные результаты, приведены в таблице 3.6.
Таблица 3.6 - Капитальные затраты на модернизацию датчика для жесткого диска
Наименование показателей |
Условные обозначения |
Сумма (грн.) |
|
1. Прямые затраты на модернизацию датчика (Кз.оборуд+Ст.монтаж = 1686,90+100,00) |
Пр/затрат |
1768,90 |
|
2. Сопутствующие затраты на модернизацию датчика (10% от Пр/затрат) |
Ст.соп.затраты |
176,89 |
|
Всего (Кз/вид.) |
Кн |
1945,79 |
Затраты на модернизацию датчика:
Кз/датчика = Пр/затрат+ Ст.соп.затраты = 1798,90+176,89=1945,79 грн.
3.6 Затраты при эксплуатации датчика жесткого диска
Зарплата обслуживающего персонала рассчитывается по формуле:
Зо = Чпер * То * Тст./час * (1 + ) * ( 1 + ), (3.7)
где Чпер. - численность обслуживающего персонала, лиц - 3 человека;
То - время обслуживания системы жесткого диска, часов - 4160 часов/год; Тст/час - почасовая тарифная ставка обслуживающего персонала, грн. - 6,00грн.; Нд - норматив дополнительной зарплаты, 10% Нсоц - норматив отчислений на социальные мероприятия, 38,52%.
Время обслуживания жесткого диска рассчитаем по формуле:
То= Ч раб. сут/нд *Ксмена* Ч раб.нед/год * *Ч раб.час/смена (3.8)
То= (52*5*2*8)=4160 час/год.
Численность обслуживающего персонала составляет 3 лица, поэтому зарплата обслуживающего персонала составит:
Зо=3*4160*6,0*0,1*1,25*1,3852=12965,47 грн.
Амортизационные отчисления А на использование жесткого диска рассчитываются по формуле:
А = Кз/лвс * +Слвс*Нанм (3.9)
где Кз/лвс - стоимость технических средств жесткого диска, грн. - 1945,79 грн (см. таблицу 3.6); На - норма амортизационных отчислений - 3% (см. таблицу 3.1); Нанм - норма годовой амортизации на нематериальные активы (15%). Для проектируемого варианта амортизационные отчисления составляют:
А=1945,79*3/100+3841,45*15/100 = 634,59 грн.
Модернизация датчика для жесткого диска помогает улучшить технические характеристики, позволяющие значительно увеличить производительность труда работников "Северодонецкого производственного объединения компьютерных технологий" в г. Северодонецке и дает новые возможности для расширения деятельности.
4. ОХРАНА ТРУДА
Совокупность факторов производственной среды, оказывающей влияние на здоровье и работоспособность человека в процессе труда называется условиями труда. Организация и улучшение условий труда на рабочем месте является одним из важных резервов производительности и эффективности труда.
Основными, при определении условий труда являются следующие вопросы:
- производственный микроклимат помещения;
- производственное освещение;
- воздействие шума и вибрации;
- электромагнитные излучения
- электропожаробезопасность;
- эргонометрические характеристики рабочего места.
В настоящее время компьютерная техника широко применяется во всех областях деятельности человека. При работе с компьютером человек подвергается воздействию ряда опасных и вредных производственных факторов.
Работа с компьютером характеризуется значительным умственным напряжением и нервно-эмоциональной нагрузкой операторов, высокой напряженностью зрительной работы и достаточно большой нагрузкой на мышцы рук при работе с клавиатурой ЭВМ. Большое значение имеет рациональная конструкция и расположение элементов рабочего места, что важно для поддержания оптимальной рабочей позы человека-оператора.
В процессе работы с компьютером необходимо соблюдать правильный режим труда и отдыха. В противном случае у персонала отмечаются значительное напряжение зрительного аппарата с появлением жалоб на неудовлетворенность работой, головные боли, раздражительность, нарушение сна, усталость и болезненные ощущения в глазах, в пояснице, в области шеи и руках.
4.1 Требования к производственным помещениям
4.1.1 Окраска и коэффициенты отражения
Источники света, такие как светильники и окна, которые дают отражение от поверхности экрана, значительно ухудшают точность знаков и влекут за собой помехи физиологического характера, которые могут выразиться в значительном напряжении, особенно при продолжительной работе. Отражение, включая отражения от вторичных источников света, должно быть сведено к минимуму.
Для защиты от избыточной яркости окон могут быть применены шторы и экраны.
Окраска помещений и мебели должна способствовать созданию благоприятных условий для зрительного восприятия, хорошего настроения.
В зависимости от ориентации окон рекомендуется следующая окраска стен и пола:
-окна ориентированы на юг: - стены зеленовато-голубого или светло-голубого цвета; пол - зеленый;
-окна ориентированы на север: - стены светло-оранжевого или оранжево-желтого цвета; пол - красновато-оранжевый;
-окна ориентированы на восток: - стены желто-зеленого цвета; пол зеленый или красновато-оранжевый;
-окна ориентированы на запад: - стены желто-зеленого или голубовато-зеленого цвета; пол зеленый или красновато-оранжевый.
В помещениях, где находится компьютер, необходимо обеспечить следующие величины коэффициента отражения: для потолка: 60-70%, для стен: 40-50%, для пола: около 30%. Для других поверхностей и рабочей мебели: 30-40%.
4.1.2 Освещение
Правильно спроектированное и выполненное производственное освещение улучшает условия зрительной работы, снижает утомляемость, способствует повышению производительности труда, благотворно влияет на производственную среду, оказывая положительное психологическое воздействие на работающего, повышает безопасность труда и снижает травматизм.
Недостаточность освещения приводит к напряжению зрения, ослабляет внимание, приводит к наступлению преждевременной утомленности. Чрезмерно яркое освещение вызывает ослепление, раздражение и резь в глазах.
Неправильное направление света на рабочем месте может создавать резкие тени, блики, дезориентировать работающего. Все эти причины могут привести к несчастному случаю или профзаболеваниям, поэтому столь важен правильный расчет освещенности.
Существует три вида освещения - естественное, искусственное и совмещенное (естественное и искусственное вместе).
Естественное освещение - освещение помещений дневным светом, проникающим через световые проемы в наружных ограждающих конструкциях помещений.
Естественное освещение характеризуется тем, что меняется в широких пределах в зависимости от времени дня, времени года, характера области и ряда других факторов.
Искусственное освещение применяется при работе в темное время суток и днем, когда не удается обеспечить нормированные значения коэффициента естественного освещения (пасмурная погода, короткий световой день).
Освещение, при котором недостаточное по нормам естественное освещение дополняется искусственным, называется совмещенным освещением.
Искусственное освещение подразделяется на рабочее, аварийное, эвакуационное, охранное. Рабочее освещение, в свою очередь, может быть общим или комбинированным. Общее - освещение, при котором светильники размещаются в верхней зоне помещения равномерно или применительно к расположению оборудования. Комбинированное - освещение, при котором к общему добавляется местное освещение.
Согласно СНиП II-4-79 в помещений вычислительных центров необходимо применить систему комбинированного освещения.
При выполнении работ категории высокой зрительной точности (наименьший размер объекта различения 0,3…0,5мм) величина коэффициента естественного освещения (КЕО) должна быть не ниже 1,5%, а при зрительной работе средней точности (наименьший размер объекта различения 0,5…1,0 мм) КЕО должен быть не ниже 1,0%. В качестве источников искусственного освещения обычно используются люминесцентные лампы типа ЛБ или ДРЛ, которые попарно объединяются в светильники, которые должны располагаться над рабочими поверхностями равномерно.
Требования к освещенности в помещениях, где установлены компьютеры, следующие: при выполнении зрительных работ высокой точности общая освещенность должна составлять 300лк, а комбинированная - 750лк; аналогичные требования при выполнении работ средней точности - 200 и 300лк соответственно.
Кроме того все поле зрения должно быть освещено достаточно равномерно - это основное гигиеническое требование. Иными словами, степень освещения помещения и яркость экрана компьютера должны быть примерно одинаковыми, т.к. яркий свет в районе периферийного зрения значительно увеличивает напряженность глаз и, как следствие, приводит к их быстрой утомляемости.
4.1.3 Параметры микроклимата
Параметры микроклимата могут меняться в широких пределах, в то время как необходимым условием жизнедеятельности человека является поддержание постоянства температуры тела благодаря терморегуляции, т.е. способности организма регулировать отдачу тепла в окружающую среду. Принцип нормирования микроклимата - создание оптимальных условий для теплообмена тела человека с окружающей средой.
Вычислительная техника является источником существенных тепловыделений, что может привести к повышению температуры и снижению относительной влажности в помещении. В помещениях, где установлены компьютеры, должны соблюдаться определенные параметры микроклимата. В санитарных нормах СН-245-71 установлены величины параметров микроклимата, создающие комфортные условия. Эти нормы устанавливаются в зависимости от времени года, характера трудового процесса и характера производственного помещения (см. табл. 4.1).
Таблица 4.1- Параметры микроклимата для помещений, где установлены компьютеры
Период года |
Параметр микроклимата |
Величина |
|
Холодный |
Температура воздуха в помещении |
22…24°С |
|
Относительная влажность |
40…60% |
||
Скорость движения воздуха |
до 0,1м/с |
||
Теплый |
Температура воздуха в помещении |
23…25°С |
|
Относительная влажность |
40…60% |
||
Скорость движения воздуха |
0,1…0,2м/с |
Объем помещений, в которых размещены работники вычислительных центров, не должен быть меньше 19,5м3/человека с учетом максимального числа одновременно работающих в смену. Нормы подачи свежего воздуха в помещения, где расположены компьютеры, приведены в табл. 4.2.
Таблица 4.2 - Нормы подачи свежего воздуха в помещения, где расположены компьютеры
Характеристика помещения |
Объемный расход подаваемого в помещение свежего воздуха, м3 /на одного человека в час |
|
Объем до 20м3 на человека |
Не менее 30 |
|
20…40м3 на человека |
Не менее 20 |
|
Более 40м3 на человека |
Естественная вентиляция |
Для обеспечения комфортных условий используются как организационные методы (рациональная организация проведения работ в зависимости от времени года и суток, чередование труда и отдыха), так и технические средства (вентиляция, кондиционирование воздуха, отопительная система).
4.1.4 Шум и вибрация
Шум ухудшает условия труда оказывая вредное действие на организм человека. Работающие в условиях длительного шумового воздействия испытывают раздражительность, головные боли, головокружение, снижение памяти, повышенную утомляемость, понижение аппетита, боли в ушах и т. д. Такие нарушения в работе ряда органов и систем организма человека могут вызвать негативные изменения в эмоциональном состоянии человека вплоть до стрессовых. Под воздействием шума снижается концентрация внимания, нарушаются физиологические функции, появляется усталость в связи с повышенными энергетическими затратами и нервно-психическим напряжением, ухудшается речевая коммутация. Все это снижает работоспособность человека и его производительность, качество и безопасность труда. Длительное воздействие интенсивного шума [выше 80 дБ(А)] на слух человека приводит к его частичной или полной потере.
В табл. 4.3 указаны предельные уровни звука в зависимости от категории тяжести и напряженности труда, являющиеся безопасными в отношении сохранения здоровья и работоспособности.
Таблица 4.3 - Предельные уровни звука, дБ, на рабочих местах
Категория напряженности труда |
Категория тяжести труда |
||||
Легкая |
Средняя |
Тяжелая |
Очень тяжелая |
||
I. Мало напряженный |
80 |
80 |
75 |
75 |
|
II. Умеренно напряженный |
70 |
70 |
65 |
65 |
|
III. Напряженный |
60 |
60 |
- |
- |
|
IV. Очень напряженный |
50 |
50 |
- |
- |
Уровень шума на рабочем месте математиков-программистов и операторов видеоматериалов не должен превышать 50дБА, а в залах обработки информации на вычислительных машинах - 65дБА. Для снижения уровня шума стены и потолок помещений, где установлены компьютеры, могут быть облицованы звукопоглощающими материалами. Уровень вибрации в помещениях вычислительных центров может быть снижен путем установки оборудования на специальные виброизоляторы.
4.1.5 Электромагнитное и ионизирующее излучения
Большинство ученых считают, что как кратковременное, так и длительное воздействие всех видов излучения от экрана монитора не опасно для здоровья персонала, обслуживающего компьютеры. Однако исчерпывающих данных относительно опасности воздействия излучения от мониторов на работающих с компьютерами не существует и исследования в этом направлении продолжаются.
Допустимые значения параметров неионизирующих электромагнитных излучений от монитора компьютера представлены в табл. 4.4.
Максимальный уровень рентгеновского излучения на рабочем месте оператора компьютера обычно не превышает 10мкбэр/ч, а интенсивность ультрафиолетового и инфракрасного излучений от экрана монитора лежит в пределах 10-100мВт/м2.
Таблица 4.4 - Допустимые значения параметров неионизирующих электромагнитных излучений (в соответствии с СанПиН 2.2.2.542-96)
Наименование параметра |
Допустимые значения |
|
Напряженность электрической составляющей электромагнитного поля на расстоянии 50см от поверхности видеомонитора |
10В/м |
|
Напряженность магнитной составляющей электромагнитного поля на расстоянии 50см от поверхности видеомонитора |
0,3А/м |
|
Напряженность электростатического поля не должна превышать: для взрослых пользователей для детей дошкольных учреждений и учащихся средних специальных и высших учебных заведений |
20кВ/м 15кВ/м |
Для снижения воздействия этих видов излучения рекомендуется применять мониторы с пониженным уровнем излучения (MPR-II, TCO-92, TCO-99), устанавливать защитные экраны, а также соблюдать регламентированные режимы труда и отдыха.
4.2 Эргономические требования к рабочему месту
Проектирование рабочих мест, снабженных видеотерминалами, относится к числу важных проблем эргономического проектирования в области вычислительной техники.
Рабочее место и взаимное расположение всех его элементов должно соответствовать антропометрическим, физическим и психологическим требованиям. Большое значение имеет также характер работы. В частности, при организации рабочего места программиста должны быть соблюдены следующие основные условия: оптимальное размещение оборудования, входящего в состав рабочего места и достаточное рабочее пространство, позволяющее осуществлять все необходимые движения и перемещения.
Эргономическими аспектами проектирования видеотерминальных рабочих мест, в частности, являются: высота рабочей поверхности, размеры пространства для ног, требования к расположению документов на рабочем месте (наличие и размеры подставки для документов, возможность различного размещения документов, расстояние от глаз пользователя до экрана, документа, клавиатуры и т.д.), характеристики рабочего кресла, требования к поверхности рабочего стола, регулируемость элементов рабочего места.
Главными элементами рабочего места программиста являются стол и кресло.
Основным рабочим положением является положение сидя.
Рабочая поза сидя вызывает минимальное утомление программиста.
Рациональная планировка рабочего места предусматривает четкий порядок и постоянство размещения предметов, средств труда и документации. То, что требуется для выполнения работ чаще, расположено в зоне легкой досягаемости рабочего пространства.
Моторное поле - пространство рабочего места, в котором могут осуществляться двигательные действия человека.
Максимальная зона досягаемости рук - это часть моторного поля рабочего места, ограниченного дугами, описываемыми максимально вытянутыми руками при движении их в плечевом суставе.
Оптимальная зона - часть моторного поля рабочего места, ограниченного дугами, описываемыми предплечьями при движении в локтевых суставах с опорой в точке локтя и с относительно неподвижным плечом.
На рис. 4.1 показан пример размещения основных и периферийных составляющих ПК на рабочем столе программиста.
Для комфортной работы стол должен удовлетворять следующим условиям:
- высота стола должна быть выбрана с учетом возможности сидеть свободно, в удобной позе, при необходимости опираясь на подлокотники;
- нижняя часть стола должна быть сконструирована так, чтобы программист мог удобно сидеть, не был вынужден поджимать ноги;
- поверхность стола должна обладать свойствами, исключающими появление бликов в поле зрения программиста;
- конструкция стола должна предусматривать наличие выдвижных ящиков (не менее 3 для хранения документации, листингов, канцелярских принадлежностей);
- высота рабочей поверхности рекомендуется в пределах 680-760мм;
- высота поверхности, на которую устанавливается клавиатура, должна быть около 650мм.
Большое значение придается характеристикам рабочего кресла. Так, рекомендуемая высота сиденья над уровнем пола находится в пределах 420-
550мм. Поверхность сиденья мягкая, передний край закругленный, а угол наклона спинки - регулируемый.
Необходимо предусматривать при проектировании возможность различного размещения документов: сбоку от видеотерминала, между монитором и клавиатурой и т.п. Кроме того, в случаях, когда видеотерминал имеет низкое качество изображения, например заметны мелькания, расстояние от глаз до экрана делают больше (около 700мм), чем расстояние от глаза до документа (300-450мм). Вообще при высоком качестве изображения на видеотерминале расстояние от глаз пользователя до экрана, документа и клавиатуры может быть равным.
Положение экрана определяется:
- расстоянием считывания (0,6 - 0,7м);
- углом считывания, направлением взгляда на 20? ниже горизонтали к центру экрана, причем экран перпендикулярен этому направлению.
Рисунок 4.1- Размещения основных и периферийных составляющих ПК на рабочем столе программиста:
1 - сканер, 2 - монитор, 3 - принтер, 4 - поверхность рабочего стола,
5 - клавиатура, 6 - манипулятор типа "мышь".
Должна также предусматриваться возможность регулирования экрана:
- по высоте +3 см;
- по наклону от -10? до +20? относительно вертикали;
- в левом и правом направлениях.
Большое значение также придается правильной рабочей позе пользователя.
При неудобной рабочей позе могут появиться боли в мышцах, суставах и сухожилиях. Требования к рабочей позе пользователя видеотерминала следующие:
- голова не должна быть наклонена более чем на 20?,
- плечи должны быть расслаблены,
- локти - под углом 80?-100?,
- предплечья и кисти рук - в горизонтальном положении.
Причина неправильной позы пользователей обусловлена следующими факторами: нет хорошей подставки для документов, клавиатура находится слишком высоко, а документы - низко, некуда положить руки и кисти, недостаточно пространство для ног.
В целях преодоления указанных недостатков даются общие рекомендации: лучше передвижная клавиатура; должны быть предусмотрены специальные приспособления для регулирования высоты стола, клавиатуры и экрана, а также подставка для рук.
Существенное значение для производительной и качественной работы на компьютере имеют размеры знаков, плотность их размещения, контраст и соотношение яркостей символов и фона экрана. Если расстояние от глаз оператора до экрана дисплея составляет 60-80 см, то высота знака должна быть не менее 3мм, оптимальное соотношение ширины и высоты знака составляет
3:4, а расстояние между знаками - 15-20% их высоты. Соотношение яркости фона экрана и символов - от 1:2 до 1:15.
Во время пользования компьютером медики советуют устанавливать монитор на расстоянии 50-60 см от глаз. Специалисты также считают, что верхняя часть видеодисплея должна быть на уровне глаз или чуть ниже. Когда человек смотрит прямо перед собой, его глаза открываются шире, чем когда он смотрит вниз. За счет этого площадь обзора значительно увеличивается, вызывая обезвоживание глаз. К тому же если экран установлен высоко, а глаза широко открыты, нарушается функция моргания. Это значит, что глаза не закрываются полностью, не омываются слезной жидкостью, не получают достаточного увлажнения, что приводит к их быстрой утомляемости. Создание благоприятных условий труда и правильное эстетическое оформление рабочих мест на производстве имеет большое значение, как для облегчения труда, так и для повышения его привлекательности, положительно влияющей на производительность труда.
4.3 Режим труда
Как уже было неоднократно отмечено, при работе с персональным компьютером очень важную роль играет соблюдение правильного режима труда и отдыха. В противном случае у персонала отмечаются значительное напряжение зрительного аппарата с появлением жалоб на неудовлетворенность работой, головные боли, раздражительность, нарушение сна, усталость и болезненные ощущения в глазах, в пояснице, в области шеи и руках.
В табл. 4.5 представлены сведения о регламентированных перерывах, которые необходимо делать при работе на компьютере, в зависимости от продолжительности рабочей смены, видов и категорий трудовой деятельности с ВДТ (видеодисплейный терминал) и ПЭВМ (в соответствии с САнНиП 2.2.2 542-96 "Гигиенические требования к видеодисплейным терминалам, персональным электронно-вычислительным машинам и организации работ").
Таблица 4.5 - Время регламентированных перерывов при работе на компьютере
Категория работы с ВДТ или ПЭВМ |
Уровень нагрузки за рабочую смену при видах работы с ВДТ, количество знаков |
Суммарное время регламентированных перерывов, мин |
||
При 8-часовой смене |
При 12-часовой смене |
|||
Группа А |
до 20000 |
30 |
70 |
|
Группа Б |
до 40000 |
50 |
90 |
|
Группа В |
до 60000 |
70 |
120 |
Примечание. Время перерывов дано при соблюдении указанных Санитарных правил и норм. При несоответствии фактических условий труда требованиям Санитарных правил и норм время регламентированных перерывов следует увеличить на 30%.
В соответствии со САнНиП 2.2.2 546-96 все виды трудовой деятельности, связанные с использованием компьютера, разделяются на три группы: группа А: работа по считыванию информации с экрана ВДТ или ПЭВМ с предварительным запросом; группа Б: работа по вводу информации; группа В: творческая работа в режиме диалога с ЭВМ.
Эффективность перерывов повышается при сочетании с производственной гимнастикой или организации специального помещения для отдыха персонала с удобной мягкой мебелью, аквариумом, зеленой зоной и т.п.
4.4 Расчет освещенности рабочего места
Расчет освещенности рабочего места сводится к выбору системы освещения, определению необходимого числа светильников, их типа и размещения. Исходя из этого, рассчитаем параметры искусственного освещения.
Обычно искусственное освещение выполняется посредством электрических источников света двух видов: ламп накаливания и люминесцентных ламп. Будем использовать люминесцентные лампы, которые по сравнению с лампами накаливания имеют ряд существенных преимуществ:
- по спектральному составу света они близки к дневному, естественному свету;
- обладают более высоким КПД (в 1,5-2 раза выше, чем КПД ламп накаливания);
- обладают повышенной светоотдачей (в 3-4 раза выше, чем у ламп накаливания);
- более длительный срок службы.
Расчет освещения производится для комнаты площадью 15м2 , ширина которой - 5м, высота - 3 м. Воспользуемся методом светового потока.
Для определения количества светильников определим световой поток, падающий на поверхность по формуле:
F = E•S•Z•К / n , (4.1)
Где F - рассчитываемый световой поток, Лм;
Е - нормированная минимальная освещенность, Лк (определяется по таблице). Работу программиста, в соответствии с этой таблицей, можно отнести к разряду точных работ, следовательно, минимальная освещенность будет Е = 300Лк;
S - площадь освещаемого помещения (в нашем случае S = 15м2);
Z - отношение средней освещенности к минимальной (обычно принимается равным 1,1-1,15 , пусть Z = 1,1);
К - коэффициент запаса, учитывающий уменьшение светового потока лампы в результате загрязнения светильников в процессе эксплуатации (его значение зависит от типа помещения и характера проводимых в нем работ и в нашем случае К = 1,5);
n - коэффициент использования, (выражается отношением светового потока, падающего на расчетную поверхность, к суммарному потоку всех ламп и исчисляется в долях единицы; зависит от характеристик светильника, размеров помещения, окраски стен и потолка, характеризуемых коэффициентами отражения от стен (РС) и потолка (РП)), значение коэффициентов РС и РП были указаны выше: РС=40%, РП=60%. Значение n определим по таблице коэффициентов использования различных светильников.
Для этого вычислим индекс помещения по формуле:
I = A•B / h (A+B), (4.2)
где h - расчетная высота подвеса, h = 2,92 м;
A - ширина помещения, А = 3 м;
В - длина помещения, В = 5 м.
Подставив значения получим:
I= 0,642.
Зная индекс помещения I, по таблице 7 [23] находим n = 0,22.
Подставим все значения в формулу (4.1) для определения светового потока F, получаем F = 33750 Лм.
Для освещения выбираем люминесцентные лампы типа ЛБ40-1, световой поток которых Fл = 4320 Лк.
Рассчитаем необходимое количество ламп по формуле:
N = F / Fл, (4.3)
где N - определяемое число ламп;
F - световой поток, F = 33750 Лм;
Fл- световой поток лампы, Fл = 4320 Лм.
N = 8 ламп.
При выборе осветительных приборов используем светильники типа ОД. Каждый светильник комплектуется двумя лампами.
Значит требуется для помещения площадью S = 15 м2 четыре светильника типа ОД.
Расчет естественного освещения помещений
Организация правильного освещения рабочих мест, зон обработки и производственных помещений имеет большое санитарно-гигиеническое значение, способствует повышению продуктивности работы, снижения травматизма, улучшения качества продукции. И наоборот, недостаточное освещение усложняет исполнения технологического процесса и может быть причиной несчастного случая и заболевания органов зрения.
Освещение должно удовлетворять такие основные требования:
- быть равномерным и довольно сильным;
- не создавать различных теней на местах работы, контрастов между освещенным рабочем местом и окружающей обстановкой;
- не создавать ненужной яркости и блеска в поле взора работников;
- давать правильное направление светового потока;
Все производственные помещения необходимо иметь светлопрорезы, которые дают достаточное природное освещение. Без природного освещения могут быть конференц-залы заседаний, выставочные залы, раздевалки, санитарно-бытовые помещения, помещения ожидания медицинских учреждений, помещений личной гигиены, коридоры и проходы.
Коэфициент естественного освещения в соответствии с ДНБ В 25.28.2006, для нашого III пояса светового климата составляет 1,5.
Исходя из этого произведем расчет необходимой площади оконных проемов.
Расчет площади окон при боковом освещении определяется, по формуле:
Sо = (Ln*Кз.*N0*Sn*Кзд.)/(100 *T0*r1) (4.4)
Подобные документы
Жесткий диск (винчестер): общее понятие, предназначение, структура. Основные операции по обслуживанию дисков. Процесс форматирования диска. Логические и физические дефекты, возникающие на диске и методы их устранения. Дефрагментация и очистка винчестера.
презентация [264,1 K], добавлен 23.10.2013Характеристика беспроводного датчика температуры с интерфейсом ZigBee, который может применяться в комплексе систем сбора данных с промышленного оборудования. Принципы работы многоканального измерительного прибора. Классификация беспроводных интерфейсов.
дипломная работа [2,5 M], добавлен 24.03.2015Интересные факты из истории развития устройства винчестера, жесткого диска и персональных компьютеров. Революция в технологии записи и хранения информации. Главные преимущества и недостатки твердотельных накопителей по сравнению с жёсткими дисками.
контрольная работа [34,4 K], добавлен 22.12.2011Исследование показателей емкости винчестера, скорости вращения магнитных дисков, объема кэш-памяти, типов интерфейса подключения (IDE, SCSI, SATA) и разновидностей накопителей с целью выбора качественного жесткого диска для домашнего использования.
контрольная работа [93,1 K], добавлен 18.06.2011Наличие активного (регистрирующего) слоя в диске CD-R (заготовка для записи). Точные значения ширины, глубины и угла наклона боковых стенок. Требуемая мощность лазера при записи. Типы красителей, отражающий, защитный и декоративный слои компакт-диска.
реферат [251,6 K], добавлен 03.04.2010Сущность и виды компакт-привода (оптического привода), история его появления. Формат хранения данных на диске. Считывание информации с диска. Скорость чтения/записи CD. Суть технологии записи высокой плотности. Технические особенности CD и DVD дисков.
контрольная работа [26,1 K], добавлен 04.10.2011Форматирование диска на низком уровне, создание физических структур: треков, секторов, управляющей информации. Разбиение объема винчестера на логические диски. Высокоуровневое форматирование, запись логических структур, ответственных за хранение файлов.
статья [15,0 K], добавлен 05.04.2010Утилиты для дефрагментации жесткого диска. Измерение информации в байтах и битах. Запуск дефрагментации диска в операционной системе Windows XP. Создание контрольной точки восстановления перед дефрагментацией диска, вероятность ошибок при дефрагментации.
реферат [402,4 K], добавлен 05.04.2010Понятие, классификация и состав памяти персонального компьютера. Доступ к информации в оперативном запоминающем устройстве, функции кэш-памяти. Основные свойства жесткого диска (винчестера). Виды дисководов, сохранение данных на гибких магнитных дисках.
курсовая работа [551,1 K], добавлен 31.01.2012Особенности интерфейса IDE. Основная функция контроллера накопителя и его разновидности. Двухдисковая конфигурация, подключение HDD. Описание разъема шлейфа данных и питания в устройствах SATA. Устройство жесткого диска. Специфика записи данных на него.
презентация [830,0 K], добавлен 27.08.2013