Усовершенствование видеокарты

Вопросы усовершенствования видеокарт, их недостатки, виды охлаждения ПК. Выбор вентилятора и его установка на видеокарту. Сравнительные характеристики видеокарт до усовершенствования и после. Расчеты вентиляции, природного и искусственного освещения.

Рубрика Программирование, компьютеры и кибернетика
Вид дипломная работа
Язык русский
Дата добавления 18.07.2010
Размер файла 4,4 M

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

Рассмотрим принцип действия элементов Холла.

При протекании электрического тока Iс по полупроводниковой пластинке, расположенной перпендикулярно магнитному полю, в пластинке наводится ЭДС Еh, направление которой перпендикулярно как току Iс, так и магнитной индукции В (рис. 2.6). Поскольку ЭДС действует на заряженные частицы (электроны или дырки) в соответствии с правилом левой руки, то заряженные частицы смещаются к левой стороне полупроводниковой пластинки. Полярность ЭДС зависит от типа проводимости полупроводника (р- или n-тип) и направления вектора магнитной индукции В.

Рисунок 2.6 - Эффект Холла:

а) - в полупроводнике p-типа,

б) - в полупроводнике n-типа.

1 - электроны, 2 - дырки.

Значение ЭДС, называемой напряжением Холла, определяется как:

Eh=-(l/d)*B*Ic*Rh, (2.2)

где Rh - постоянная Холла;

Ic - ток через пластинку;

В - магнитная индукция;

d - толщина пластинки.

Полупроводниковые приборы, предназначенные для определения магнитных полей, называются датчиками Холла. В современных вентильных двигателях постоянного тока широко применяются датчики Холла n-типа на основе InSb и GaAs.

Рассмотрим принцип определения положения ротора с помощью датчика Холла.

На рис. 2.7 показана эквивалентная схема датчика Холла, представленная в виде цепи с четырьмя выводами. Как было показано выше, при протекании управляющего тока или тока смещения Ic, от вывода 3 к выводу 4 элемента Холла, помещенного в магнитное поле, вектор индукции которого перпендикулярен плоскости элемента, на выводах 1 и 2 элемента наводится холловское напряжение Eh. Если предположить, что R1=R2 и R3=R4 и принять вывод 4 за общую точку схемы, то потенциалы выводов 1 и 2 равны соответственно Eh/2 и -Eh/2. Далее при изменении направления магнитного поля меняется полярность наводимого на элементе напряжения, что показано на рис. 2.3. Поэтому если разместить элемент Холла вблизи ротора с постоянным магнитом, то этот элемент точно выявляет положение полюсов и значение магнитной индукции, генерируя выводные напряжения Еh1 и Eh2.

Вентильный двигатель постоянного тока с элементом Холла.

На рис. 2.8,а показан простейший вентильный двигатель постоянного тока с элементом Холла, расположение которого изображено на рис.2.8,б. Для управления токами в обмотках W1 и W2 выходные сигналы датчика Холла поступают на вход транзисторов VT1, VT2. На рис. 2.9 показаны следующие состояния вращающегося ротора:

а) элемент Холла определяет северный полюс постоянного магнита ротора и подключает обмотку W2 таким образом, что на полюсном башмаке обмотки образуется южный полюс, вызывающий вращение ротора против часовой стрелки (так как разноименные полюса притягиваются) (рис. 2.9,а);

б) элемент Холла выходит из-под действия магнитного поля, что приводит к запиранию обоих транзисторов и обесточиванию обмоток W1 и W2. Ротор продолжает по инерции вращаться против часовой стрелки (рис.2.9,б);

в) элемент Холла определяет южный полюс ротора и подключает обмотку W1 таким образом, что на полюсном башмаке обмотки образуется южный полюс, притягивающий северный полюс ротора, и продолжая таким образом вращение ротора против часовой стрелки (рис.2.9,в).

Рисунок 2.8 - Принцип действия вентильного двигателя постоянного тока, использующего элемент Холла

Рисунок 2.9 - Создание электромагнитного момента, вращение и коммутация обмоток двигателя

"Мертвые точки".

Из рис. 2.9 следует, что при вращении ротора существуют две "мертвые точки", при которых элемент Холла не может определить направление магнитного поля (линии поля направлены параллельно датчику), а значит в обмотках не протекают токи, создающие электромагнитный момент. Следовательно, существует вероятность остановки такого двигателя в "мертвой точке". Пройти такую точку ротор может только по инерции и лишь при малом значении момента трения на валу. Проблема "мертвых точек" является главным недостатком вентильных двигателей. Основным методом устранения "мертвых точек" в двухфазных вентильных двигателях является использование пространственного гармонического магнитного поля. Получение такого поля достигается либо с помощью неравномерного воздушного зазора между ротором и статором, либо с помощью дополнительных полюсов статора и намагничивания ротора в последовательности N-0-S-N-0-S (0 - область ротора с отсутствием намагничивания, N,S - области ротора, намагниченные северным и южным полюсом соответственно). Не вдаваясь в дальнейшие подробности, отметим лишь, что на практике встречаются двигатели как первого, так и второго типа. На рис. 2.10,а,б показаны поперечные сечения обоих типов двигателей.

Холловская интегральная схема (ХИС).

Для усиления выходных сигналов датчика Холла совместно с ним необходимо использовать один или более транзисторов. В настоящее время на одном кристалле устанавливают как элемент Холла, так и некоторые электронные схемы, образуя холловскую интегральную схему (ХИС). Внешний вид типичной ХИС, а также ее функциональная схема, показаны на рис.2.10.

Рисунок 2.10 - Сечение двухфазного вентильного двигателя с внешним ротором:

а) - с неравномерным воздушным зазором; б) - с дополнительными неподвижными полюсами;

1 - ферритовый постоянный магнит ( а) - 4 полюсный, б) - намагниченный в последовательности N-S-0-N-S-0; 2 холловская интегральная схема;

3 - магнитопровод (ярмо) якоря; 4 - магнитопровод статора; 5 - обмотка статора

Рисунок 2.11 - Холловская интегральная схема (ХИС) (а)

и ее функциональный состав (б):

1 - элемент Холла; 2 - дифференциальный усилитель;3- выходной каскад

Существуют два типа ХИС: линейные и релейные. На рис. 2.12 изображены характеристики чувствительности ХИС обоих типов. Выбор типа ХИС зависит от конструкции и области применения двигателя.

Выходной сигнал датчика Холла 1, предварительно усиленный операционным усилителем 2, поступает на вход выходного каскада 3. Выходной сигнал ХИС управляет состоянием силового транзистора, регулирующего токи в обмотках двигателя.

Рисунок 2.12 - Характеристики ХИС линейного (а) и релейного (б) типа SU8025-M.

Рассмотрим в качестве примера работу принципиальной схемы двигателя вентилятора Super-Ultra модель SU8025-M (Тайвань) (рис. 2.13). Этот двигатель имеет следующие основные технические характеристики:

* напряжение питания 12V DC;

* потребляемый ток 120mA.

ХИС HG типа UF1301 управляет состоянием транзисторов Q1, Q2. Транзисторы работают в ключевом режиме и состояние их всегда противоположно. Поэтому ток протекает через обе фазы обмотки статора поочередно, т.к. эти фазы подключены к коллекторам Q1, Q2. Обмотка статора состоит из четырех катушек, при этом обмотки первой и второй фаз наматываются совместно таким образом, как это показано на рис. 2.14. Магнитные полярности этих обмоток у каждого из полюсов двигателя противоположны друг другу. Такой тип обмотки называют бифилярной обмоткой. Это позволяет запитывать обе обмотки напряжением одной полярности.

Рисунок 2.13 - Принципиальная электрическая схема двухфазового вентильного двигателя SU8025-M (SUPERULTRA, TAIWAN)

В зависимости от положения ротора на выходе 3 ХИС вырабатывается сигнал L- или Н-уровня. Если на выходе ХИС вырабатывается сигнал L-уровня, то транзистор Q1 будет закрыт, а транзистор Q2 открыт. При этом ток, создающий магнитный поток возбуждения, протекает через обмотки фазы В.

Рисунок 2.14 - Бифилярная обмотка

Когда ротор поворачивается и вектор магнитной индукции, порождаемый магнитным полем ротора, меняет свое направление, то на выходе 3 ХИС вырабатывается сигнал Н-уровня, транзистор Q1 будет открыт, а транзистор Q2 закрыт. При этом ток, создающий магнитный поток возбуждения, протекает через обмотки фазы А, и ротор продолжает вращение в том же направлении.

Из сказанного следует, что при работе двигателя вентилятора через фазы обмоток статора протекают импульсные токи. Поэтому на индуктивностях обмоток возникают выбросы противо-ЭДС при запирании коммутирующих транзисторов. Для сглаживания этих выбросов к коллекторам транзисторов подключены конденсаторы C1, C2. Кроме того, для того чтобы эти выбросы не проникали в шину выходного напряжения +12В, питание на обмотки подается через развязывающий диод D1.

Ниже приведены краткие характеристики кулера RADEON-LUX FA-DC-8, 80x80x25mm, 2Ball (два шароподшипника з пониженим уровнем шуму), 3pin, 2000 об/мин, 11 дБ.

Данный вентилятор устраивает нас относительно низкой ценой и низким уровнем шума.

2.4 Установка вентилятора

Так выглядела видеокарта на базе чипа NVidia GT218 до установки (Рис. 1.4) и после установки (Рис. 2.15 - 2.16) вентилятора RADEON-LUX FA-DC-8

Рисунок 2.15 - Видеокарта на базе чипа NVidia GT218 после установки вентилятора RADEON-LUX FA-DC-8 ( вид спереди)

Особых навыков для установки вентилятора не требуется. К плате приклеиваются эпоксидной смолой втулки, на которые будет крепиться вентилятор. После установки дополнительного вентилятора был произведено тестирование компьютера на температуру на видеокарте, уровень шума всего компьютера, потребляемую мощность (Таблица 2.1).

Рисунок 2.16 - Видеокарта на базе чипа NVidia GT218 после установки вентилятора RADEON-LUX FA-DC-8 ( вид сверху)

Таблица 2.1 - Тестирование компьютера до установки и после установки дополнительного вентилятора на видеокарту

Показатель, единица измерения

До установки

После

установки

1.Температура, ?С

45-60

25-30

2.Уровень шума, дБ

21

27

3.Потребляемая мощность, Вт (225В в сети)

170

172

Как видим характеристики работы видеокарты улучшились, т.е. мы добились поставленной цели.

Схема принципиальная электрическая до усовершенствования видеокарты выглядела таким образом (сокращенная) (Рисунок 2.17).

Рисунок 2.17 - Схема видеокарты до установки вентилятора RADEON-LUX FA-DC-8

После установки вентилятора RADEON-LUX FA-DC-8 на плату видеокарты схема приобретет вид, изображенный на рисунке 2.18.

Рисунок 2.18 - Схема видеокарты после усовершенствования (добавлена схема управления вентилятором RADEON-LUX FA-DC-8)

После выбора типа вентилятора и типа платы видеокарты, произведем технико-экономическое обоснование проекта.

3 ТЕХНИКО-ЭКОНОМИЧЕСКОЕ ОБОСНОВАНИЕ ОБЪЕКТА РАЗРАБОТКИ

Первичными исходными данными для определения стоимости проекта являются показатели, которые используются на предприятии ГПО «МОНОЛИТ» г. Харьков.

Эти показатели сведены в таблицу 3.1.

Таблица 3.1 - Данные предприятия ГПО «МОНОЛИТ» г. Харьков состоянием на 01.01.2010 г.

Статьи расходов

Усл.обоз.

Единицы

измер.

Величина

1

2

3

4

Разработка (проектирование) КД

Тарифная ставка конструктора - технолога

Зсист

грн.

1200

Тарифная ставка обслуживающего персонала

Зперс

грн.

1200

Зарплата других категорий рабочих, задействованных в процессе разработки КД

Зин.роб.

грн.

1500

Тариф на электроэнергию

Се/е

грн.

0,56

Мощность компьютера, модема, принтера и др.

квт /час.

0,3

Стоимость ЭВМ, принтера, модема для базового и нового изделия (IBMPentium/32/200/ SVG)

Втз

грн.

3200,00

Амортизационные отчисления

Ааморт

%

10

Стоимость 1-го часа использования ЭВМ

Вг

грн.

6,5

Норма дополнительной зарплаты

Нд

%

10

Отчисление на социальные мероприятия

Нсоц

%

37,2

Общепроизводственные (накладные) расходы

Ннакл

%

25

Транспортно-заготовительные расходы

Нтрв

%

4

Время обслуживания систем ЭВМ

То

час/год

180

Норма амортизационных отчислений на ЭВМ

На

%

10

Отчисление на удерживание и ремонт ЭВМ

Нр

%

10

3.1 Расчет расходов на стадии проектирования (разработки) КД усовершенствованной видеокарты

а) Трудоемкость разработки КД нового изделия

Для определения трудоемкости выполнения проектных работ прежде всего складывается перечень всех этапов и видов работ, которые должны быть выполнены (логически, упорядочено и последовательно). Нужно определить квалификационный уровень (должности) исполнителей.

Расходы на разработку КД представляет собой оплату труда разработчиков схемы электрической принципиальной, конструкторов и технологов.

Расчет расходов на КД выводится методом калькуляции расходов, в основу которого положенная трудоемкость и заработная плата разработчиков.

а) Трудоемкость разработки КД изделия (Т) рассчитывается по формуле:

, (3.1)

где Татз - расходы труда на анализ технического задания (ТЗ), чел./час;

Трес - расходы труда на разработку электрических схем, чел./час;

Трк - расходы труда на разработку конструкции, чел./час;

Трт - расходы труда на разработку технологии, чел./час;

Токд - расходы труда на оформление КД, чел./час;

Твидз - расходы труда на изготовление и испытание опытного образца, чел./час.

Данные расчета заносятся в таблицу 3.2.

Таблица 3.2 - Расчет заработной платы на разработку КД изделия

Виды работ

Условные обозначения

Почасовая тарифная ставка -
Сст, грн.

Фактические расходы времени

чел./час;

Сдельная зарплата, грн.

1. Анализ ТЗ

Татз

4,28

1

4,28

2. Разработка электрических схем

Трес

4,28

1

4,28

3. Разработка конструкции

Трк

4,28

2

8,56

4. Разработка технологии

Трт

4,28

2

8,56

5. Оформление КД

Токд

4,28

3

12,84

6. Изготовление и испытание опытного образца

Твидз

4,28

2

8,56

ВСЕГО:

4,28

11

47,08

Заработная плата на разработку КД изделия С определяется за формулой:

, (3.2)

где - почасовая тарифная ставка разработчика, грн

- трудоемкость разработки КД изделия (определяется в гривнях с двумя десятинными знаками (00,00грн.)

б) Расчет материальных расходов на разработку КД

Материальные расходы Мв, которые необходимы для разработки (создании) КД, приведенные в таблице 3.3.

Таблица 3.3 - Расчет материальных расходов на разработку КД

Материал

Условные

обознач.

Факт. количество

Цена за ед., грн.

Сумма, грн.

1. CD DVD

диск

1

2,00

2,00

2. Бумага

лист

200

0,07

14,00

3. Другие материалы

Ми

-

-

-

ВСЕГО

16,00

ТЗР (4%)

0,64

ИТОГО

Мв

16,64

в) Расходы на использование ЭВМ при разработке КД (если они есть).

Расходы, на использование ЭВМ при разработке КД, рассчитываются исходя из расходов работы одного часа ЭВМ по формуле. грн.:

, (3.3)

где Вг - стоимость работы одного часа ЭВМ, грн.

Трес - расходы труда на разработку электрических схем, чел./час;

Трк - расходы труда на разработку конструкции, чел./час;

Трт - расходы труда на разработку технологии, чел./час;

Токд - расходы труда на оформление КД, чел./час;

При этом, стоимость работы одного часа ЭВМ (других технических средств - ТЗ) Вг определяется по формуле, грн.:

, (3.4)

где Те/е - расходы на электроэнергию, грн.;

Ваморт - величина 1-го часа амортизации ЭВМ, грн.;

Зперс - почасовая зарплата обслуживающего персонала, грн.;

Трем - расходы на ремонт, покупку деталей, грн.;

Стоимость одного часа амортизации Ваморт определяется по формуле, грн.:

при 40 часовой рабочей неделе:

, (3.5)

где Втз - стоимость технических средств, грн.

На - норма годовой амортизации (%).

Кт - количество недель в год (52 недели/год).

Гт - количество рабочих часов в неделю (40 часов/неделю)

Почасовая оплата обслуживающего персонала Зперс рассчитывается по формуле, грн.:

, (3.6)

где Окл - месячный оклад обслуживающего персонала, грн.

Крг - количество рабочих часов в месяц (160 часов/месяц);

Нрем - расходы на оплату труда ремонта ЭВМ (6 % Окл).

Расходы на ремонт, покупку деталей для ЭВМ Трем определяются по формуле, грн.:

, (3.7)

где Втз - стоимость технических средств, грн.

Нрем - процент расходов на ремонт, покупку деталей (%);

Кт - количество недель на год (52 недели/год).

Гт - количество рабочих часов на неделю (36 168 час./неделя)

Расходы на использование электроэнергии ЭВМ и техническими средствами Те/е определяются по формуле, грн.:

, (3.8)

где Ве/е - стоимость одного кВт/час электроэнергии, грн.;

Wпот - мощность компьютера, принтера и сканера (за 1 час), (кВт/час.).

Таким образом, стоимость одного часа работы ЭВМ при разработке КД будет составлять (см. формулу 3.4), грн.:

.

Расходы на использование ЭВМ при разработке, грн. (см. формулу 3.3):

г) Расчет технологической себестоимости создания КД

Расчет технологической себестоимости создания КД усовершенствованной видеокарты проводится методом калькуляции расходов (таблица 3.4).

Таблица 3.4 - Калькуляция технологических расходов на создание КД изделия

п/п

Наименование статей

Условны

обозначения

Расходы (грн.)

1

2

3

4

1.

Материальные расходы

Мв

16,64

2.

Основная зарплата

Зо

47,08

3.

Дополнительная зарплата

Зд

7,06

4.

Отчисление на социальные мероприятия

Нсоц

20,14

5.

Накладные расходы предприятия

Ннакл

13,54

6.

Расходы на использование ЭВМ

ВМ

8,06

7.

Себестоимость КД изделия

Скд = (16)

112,52

Себестоимость разработанной конструкторской документации Скд рассчитывается как сумма пунктов 1-6.

3.2 Расчет расходов на стадии производства изделия

Себестоимость изделия что разрабатывается рассчитывается на основе норм материальных и трудовых расходов. Среди исходных данных, которые используются для расчета себестоимости изделия, выделяют нормы расходов сырья и основных материалов на одно изделие (таблица 3.5).

Таблица 3.5 - Расчет расходов на сырье и основные материалы на одно изделие

Материалы

Норма расходов

(единиц)

Оптовая цена грн./ед.

Фактические расходы

(единиц)

Сумма

грн.

1

2

3

4

5

Припой ПОС - 61 (ГОСТ 21930 - 76), кг

0,2

25,00

0,2

5,00

Лак ЭП-9114 (ГОСТ 2785-76), кг

0,1

10,00

0,1

1,00

Другие

-

--

-

-

ВСЕГО:

6,00

Транспортно-заготовительные расходы (4%)

0,24

ИТОГО:

6,24

В ходе расчета себестоимости изделия, как исходные данные, используют спецификации материалов, покупных комплектующих изделии и полуфабрикатов, что используются при изготовления одного изделия (таблица 3.6).

Таблица 3.6 - Ведомость комплектующих элементов на усовершенствование материнской платы

Наименование

Стоимость

единицы, грн.

Количество, шт.

Сумма, грн.

1

Резистор МЛТ 0,125

10 кОм / 5%

0,4

1

0,4

2

Переменный резистор

СПО-1 10 Ом

3,0

1

3,0

3

Вентилятором RADEON-LUX FA-DC-8

82,74

1

82,74

4

Переключатель ТП-1-2

1,60

1

1,60

5

Всего:

87,74

5

Транспортно-заготовительные расходы (4%)

3,51

ИТОГО:

91,25

Расчет зарплаты основных производственных рабочих проводим на основе норм трудоемкости по видам работ и почасовыми ставками рабочих (таблица 3.7).

Калькуляция себестоимости и определения цены выполняется в таблице 3.8.

Таблица 3.7 - Расчет основной зарплаты

Наименование операции

Почасовая тарифная ставка, грн.

Норма времени чел./час.

Сдельная зарплата, грн.

1

2

3

4

Заготовительная

5,91

0,5

2,96

Слесарная

5,91

1

5,91

Сборка

5,91

1

5,91

Монтажная

5,91

1

5,91

Настройка

5,91

0,5

2,96

Другие

-

-

-

ВСЕГО:

4

23,64

Таблица 3.8 - Калькуляция себестоимости и определения цены изделии по новой КД

Наименование статей расходов

Сумма, грн.

Сырье и материалы

6,24

Покупные комплектующие изделия

91,25

Основная зарплата рабочих

23,64

Дополнительная зарплата (15%)

3,55

Отчисление на социальные мероприятия (37,2%)

10,11

Накладные расходы (25% по данным предприятия)

6,80

Производственная себестоимость

141,59

Стоимость видеокарты до модернизации

240,34

Общая стоимость на подготовку конструкторской документации и модернизацию видеокарты составляет 141,59 +112,52 = 254,11 (грн.).

Если не устанавливать вентилятор отказ может произойти в течении 1-1,5 лет, т.е придется осуществлять замену видеокарты, а это будет стоить порядка 250 грн. Если же установить вентилятор, отказ может произойти лишь приблизительно через 6-8 лет.

Рисунок 3.1 - Продолжительность работы видеокарты на базе чипа NVidia GT218 (на отказ) (http://www.xard.ru/):

1- до усовершенствования;

2- после усовершенствования.

Возьмем, что после усовершенствования плата видеокарты проработает в течении 7 лет, без усовершенствования - 1,5 года. Общая стоимость усовершенствованной платы будет составлять: 240,34 + 254,11 = 494,45 (грн.). Согласно статистических данных за семь лет эксплуатации, неусовершенствованная плата может выйти со строя 7 : 1,5 ? 4,6 раза, т.е. придется менять видеокарту где-то 4 раза. Приобретая 4 раза видеокарту мы понесем затраты: 240,34 х х 4= 961,36 (грн.). Значит экономический эффект за один год составит:

Кэф = (961,36 - 494,45) /7 ? 67 (грн.)., а за семь лет эксплуатации 469,00 грн.

В процессе работы нами был выбран вентилятор RADEON-LUX FA-DC-8.

Основывался такой выбор прежде всего:

- во-первых, дешевизной самого вентилятора;

- во-вторых, относительно высокой продуктивностью и низким уровнем шума;;

- и последнее, возможность размещения на видеокарте на базе чипа NVidia GT218 (выбор видеокарты основывается на наличии теста данной видеокарты в Интернете).

Можно сделать вывод.

В процессе усовершенствования видеокарты была разработана конструкторская документация, произведен расчет себестоимости затрат на модернизацию видеокарты. При осуществлении модернизации продолжительность работы видеокарты увеличится почти в четыре раза, чем будет вызван экономический эффект порядка 70 грн. в год.

4 ОХРАНА ТРУДА

Научно-технический прогресс внес серьезные изменения в условия производственной деятельности работников умственного труда. Их труд стал более интенсивным, напряженным, требующим значительных затрат умственной, эмоциональной и физической энергии. Это потребовало комплексного решения проблем эргономики, гигиены и организации труда, регламентации режимов труда и отдыха.

В настоящее время компьютерная техника широко применяется во всех областях деятельности человека. При работе с компьютером человек подвергается воздействию ряда опасных и вредных производственных факторов: электромагнитных полей (диапазон радиочастот: ВЧ, УВЧ и СВЧ), инфракрасного и ионизирующего излучений, шума и вибрации, статического электричества и др..

Работа с компьютером характеризуется значительным умственным напряжением и нервно-эмоциональной нагрузкой операторов, высокой напряженностью зрительной работы и достаточно большой нагрузкой на мышцы рук при работе с клавиатурой ЭВМ. Большое значение имеет рациональная конструкция и расположение элементов рабочего места, что важно для поддержания оптимальной рабочей позы человека-оператора.

В процессе работы с компьютером необходимо соблюдать правильный режим труда и отдыха. В противном случае у персонала отмечаются значительное напряжение зрительного аппарата с появлением жалоб на неудовлетворенность работой, головные боли, раздражительность, нарушение сна, усталость и болезненные ощущения в глазах, в пояснице, в области шеи и руках.

4.1 Требования к производственным помещениям

4.1.1 Окраска и коэффициенты отражения

Окраска помещений и мебели должна способствовать созданию благоприятных условий для зрительного восприятия, хорошего настроения.

Источники света, такие как светильники и окна, которые дают отражение от поверхности экрана, значительно ухудшают точность знаков и влекут за собой помехи физиологического характера, которые могут выразиться в значительном напряжении, особенно при продолжительной работе. Отражение, включая отражения от вторичных источников света, должно быть сведено к минимуму.

Для защиты от избыточной яркости окон могут быть применены шторы и экраны.

В зависимости от ориентации окон рекомендуется следующая окраска стен и пола:

окна ориентированы на юг: - стены зеленовато-голубого или светло-голубого цвета; пол - зеленый;

окна ориентированы на север: - стены светло-оранжевого или оранжево-желтого цвета; пол - красновато-оранжевый;

окна ориентированы на восток: - стены желто-зеленого цвета; пол зеленый или красновато-оранжевый;

окна ориентированы на запад: - стены желто-зеленого или голубовато-зеленого цвета; пол зеленый или красновато-оранжевый.

В помещениях, где находится компьютер, необходимо обеспечить следующие величины коэффициента отражения: для потолка: 60-70%, для стен: 40-50%, для пола: около 30%. Для других поверхностей и рабочей мебели: 30-40%.

4.1.2 Освещение

Правильно спроектированное и выполненное производственное освещение улучшает условия зрительной работы, снижает утомляемость, способствует повышению производительности труда, благотворно влияет на производственную среду, оказывая положительное психологическое воздействие на работающего, повышает безопасность труда и снижает травматизм.

Недостаточность освещения приводит к напряжению зрения, ослабляет внимание, приводит к наступлению преждевременной утомленности. Чрезмерно яркое освещение вызывает ослепление, раздражение и резь в глазах.

Неправильное направление света на рабочем месте может создавать резкие тени, блики, дезориентировать работающего. Все эти причины могут привести к несчастному случаю или профзаболеваниям, поэтому столь важен правильный расчет освещенности.

Существует три вида освещения - естественное, искусственное и совмещенное (естественное и искусственное вместе).

Естественное освещение - освещение помещений дневным светом, проникающим через световые проемы в наружных ограждающих конструкциях помещений.

Естественное освещение характеризуется тем, что меняется в широких пределах в зависимости от времени дня, времени года, характера области и ряда других факторов.

Искусственное освещение применяется при работе в темное время суток и днем, когда не удается обеспечить нормированные значения коэффициента естественного освещения (пасмурная погода, короткий световой день).

Освещение, при котором недостаточное по нормам естественное освещение дополняется искусственным, называется совмещенным освещением.

Искусственное освещение подразделяется на рабочее, аварийное, эвакуационное, охранное. Рабочее освещение, в свою очередь, может быть общим или комбинированным. Общее - освещение, при котором светильники размещаются в верхней зоне помещения равномерно или применительно к расположению оборудования. Комбинированное - освещение, при котором к общему добавляется местное освещение.

Согласно СНиП II-4-79 в помещений вычислительных центров необходимо применить систему комбинированного освещения.

При выполнении работ категории высокой зрительной точности (наименьший размер объекта различения 0,3…0,5мм) величина коэффициента естественного освещения (КЕО) должна быть не ниже 1,5%, а при зрительной работе средней точности (наименьший размер объекта различения 0,5…1,0 мм) КЕО должен быть не ниже 1,0%. В качестве источников искусственного освещения обычно используются люминесцентные лампы типа ЛБ или ДРЛ, которые попарно объединяются в светильники, которые должны располагаться над рабочими поверхностями равномерно.

Требования к освещенности в помещениях, где установлены компьютеры, следующие: при выполнении зрительных работ высокой точности общая освещенность должна составлять 300лк, а комбинированная - 750лк; аналогичные требования при выполнении работ средней точности - 200 и 300лк соответственно.

Кроме того все поле зрения должно быть освещено достаточно равномерно - это основное гигиеническое требование. Иными словами, степень освещения помещения и яркость экрана компьютера должны быть примерно одинаковыми, т.к. яркий свет в районе периферийного зрения значительно увеличивает напряженность глаз и, как следствие, приводит к их быстрой утомляемости.

4.1.3 Параметры микроклимата

Параметры микроклимата могут меняться в широких пределах, в то время как необходимым условием жизнедеятельности человека является поддержание постоянства температуры тела благодаря терморегуляции, т.е. способности организма регулировать отдачу тепла в окружающую среду. Принцип нормирования микроклимата - создание оптимальных условий для теплообмена тела человека с окружающей средой.

Вычислительная техника является источником существенных тепловыделений, что может привести к повышению температуры и снижению относительной влажности в помещении. В помещениях, где установлены компьютеры, должны соблюдаться определенные параметры микроклимата. В санитарных нормах СН-245-71 установлены величины параметров микроклимата, создающие комфортные условия. Эти нормы устанавливаются в зависимости от времени года, характера трудового процесса и характера производственного помещения (см. табл. 4.1)

Объем помещений, в которых размещены работники вычислительных центров, не должен быть меньше 19,5м3/человека с учетом максимального числа одновременно работающих в смену. Нормы подачи свежего воздуха в помещения, где расположены компьютеры, приведены в табл. 4.2.

Для обеспечения комфортных условий используются как организационные методы (рациональная организация проведения работ в зависимости от времени года и суток, чередование труда и отдыха), так и технические средства (вентиляция, кондиционирование воздуха, отопительная система).

Таблица 4.1- Параметры микроклимата для помещений, где установлены компьютеры

Период года

Параметр микроклимата

Величина

Холодный

Температура воздуха в помещении

22…24°С

Относительная влажность

40…60%

Скорость движения воздуха

до 0,1м/с

Теплый

Температура воздуха в помещении

23…25°С

Относительная влажность

40…60%

Скорость движения воздуха

0,1…0,2м/с

Таблица 4.2 - Нормы подачи свежего воздуха в помещения,где расположены компьютеры

Характеристика помещения

Объемный расход подаваемого в помещение свежего воздуха, м3 /на одного человека в час

Объем до 20м3 на человека

Не менее 30

20…40м3 на человека

Не менее 20

Более 40м3 на человека

Естественная вентиляция

4.1.4 Шум и вибрация

Шум ухудшает условия труда оказывая вредное действие на организм человека. Работающие в условиях длительного шумового воздействия испытывают раздражительность, головные боли, головокружение, снижение памяти, повышенную утомляемость, понижение аппетита, боли в ушах и т. д. Такие нарушения в работе ряда органов и систем организма человека могут вызвать негативные изменения в эмоциональном состоянии человека вплоть до стрессовых. Под воздействием шума снижается концентрация внимания, нарушаются физиологические функции, появляется усталость в связи с повышенными энергетическими затратами и нервно-психическим напряжением, ухудшается речевая коммутация. Все это снижает работоспособность человека и его производительность, качество и безопасность труда. Длительное воздействие интенсивного шума [выше 80 дБ(А)] на слух человека приводит к его частичной или полной потере.

В табл. 4.3 указаны предельные уровни звука в зависимости от категории тяжести и напряженности труда, являющиеся безопасными в отношении сохранения здоровья и работоспособности.

Таблица 4.3 - Предельные уровни звука, дБ, на рабочих местах

Категория напряженности труда

Категория тяжести труда

Легкая

Средняя

Тяжелая

Очень тяжелая

I. Мало напряженный

80

80

75

75

II. Умеренно напряженный

70

70

65

65

III. Напряженный

60

60

-

-

IV. Очень напряженный

50

50

-

-

Уровень шума на рабочем месте математиков-программистов и операторов видеоматериалов не должен превышать 50дБА, а в залах обработки информации на вычислительных машинах - 65дБА. Для снижения уровня шума стены и потолок помещений, где установлены компьютеры, могут быть облицованы звукопоглощающими материалами. Уровень вибрации в помещениях вычислительных центров может быть снижен путем установки оборудования на специальные виброизоляторы.

4.1.5 Электромагнитное и ионизирующее излучения

Большинство ученых считают, что как кратковременное, так и длительное воздействие всех видов излучения от экрана монитора не опасно для здоровья персонала, обслуживающего компьютеры. Однако исчерпывающих данных относительно опасности воздействия излучения от мониторов на работающих с компьютерами не существует и исследования в этом направлении продолжаются.

Допустимые значения параметров неионизирующих электромагнитных излучений от монитора компьютера представлены в табл. 4.4.

Максимальный уровень рентгеновского излучения на рабочем месте оператора компьютера обычно не превышает 10мкбэр/ч, а интенсивность ультрафиолетового и инфракрасного излучений от экрана монитора лежит в пределах 10-100мВт/м2.

Таблица 4.4 - Допустимые значения параметров неионизирующих

электромагнитных излучений (в соответствии с СанПиН 2.2.2.542-96)

Наименование параметра

Допустимые значения

Напряженность электрической составляющей электромагнитного поля на расстоянии 50см от поверхности видеомонитора

10В/м

Напряженность магнитной составляющей электромагнитного

поля на расстоянии 50см от поверхности видеомонитора

0,3А/м

Напряженность электростатического поля не должна превышать:

для взрослых пользователей

для детей дошкольных учреждений и учащихся средних специальных и высших учебных заведений

20кВ/м

15кВ/м

Для снижения воздействия этих видов излучения рекомендуется применять мониторы с пониженным уровнем излучения (MPR-II, TCO-92, TCO-99), устанавливать защитные экраны, а также соблюдать регламентированные режимы труда и отдыха.

4.2 Эргономические требования к рабочему месту

Проектирование рабочих мест, снабженных видеотерминалами, относится к числу важных проблем эргономического проектирования в области вычислительной техники.

Рабочее место и взаимное расположение всех его элементов должно соответствовать антропометрическим, физическим и психологическим требованиям. Большое значение имеет также характер работы. В частности, при организации рабочего места программиста должны быть соблюдены следующие основные условия: оптимальное размещение оборудования, входящего в состав рабочего места и достаточное рабочее пространство, позволяющее осуществлять все необходимые движения и перемещения.

Эргономическими аспектами проектирования видеотерминальных рабочих мест, в частности, являются: высота рабочей поверхности, размеры пространства для ног, требования к расположению документов на рабочем месте (наличие и размеры подставки для документов, возможность различного размещения документов, расстояние от глаз пользователя до экрана, документа, клавиатуры и т.д.), характеристики рабочего кресла, требования к поверхности рабочего стола, регулируемость элементов рабочего места.

Главными элементами рабочего места программиста являются стол и кресло.

Основным рабочим положением является положение сидя.

Рабочая поза сидя вызывает минимальное утомление программиста.

Рациональная планировка рабочего места предусматривает четкий порядок и постоянство размещения предметов, средств труда и документации. То, что требуется для выполнения работ чаще, расположено в зоне легкой досягаемости рабочего пространства.

Моторное поле - пространство рабочего места, в котором могут осуществляться двигательные действия человека.

Максимальная зона досягаемости рук - это часть моторного поля рабочего места, ограниченного дугами, описываемыми максимально вытянутыми руками при движении их в плечевом суставе.

Оптимальная зона - часть моторного поля рабочего места, ограниченного дугами, описываемыми предплечьями при движении в локтевых суставах с опорой в точке локтя и с относительно неподвижным плечом.

На рис. 4.1 показан пример размещения основных и периферийных составляющих ПК на рабочем столе программиста.

Для комфортной работы стол должен удовлетворять следующим условиям :

- высота стола должна быть выбрана с учетом возможности сидеть свободно, в удобной позе, при необходимости опираясь на подлокотники;

- нижняя часть стола должна быть сконструирована так, чтобы программист мог удобно сидеть, не был вынужден поджимать ноги;

- поверхность стола должна обладать свойствами, исключающими появление бликов в поле зрения программиста;

- конструкция стола должна предусматривать наличие выдвижных ящиков (не менее 3 для хранения документации, листингов, канцелярских принадлежностей);

- высота рабочей поверхности рекомендуется в пределах 680-760мм;

- высота поверхности, на которую устанавливается клавиатура, должна быть около 650мм.

Большое значение придается характеристикам рабочего кресла. Так, рекомендуемая высота сиденья над уровнем пола находится в пределах 420-

550мм. Поверхность сиденья мягкая, передний край закругленный, а угол наклона спинки - регулируемый.

Рисунок 4.1- Размещения основных и периферийных составляющих ПК на рабочем столе программиста:

1 - сканер, 2 - монитор, 3 - принтер, 4 - поверхность рабочего стола,

5 - клавиатура, 6 - манипулятор типа «мышь».

Необходимо предусматривать при проектировании возможность различного размещения документов: сбоку от видеотерминала, между монитором и клавиатурой и т.п. Кроме того, в случаях, когда видеотерминал имеет низкое качество изображения, например заметны мелькания, расстояние от глаз до экрана делают больше (около 700мм), чем расстояние от глаза до документа (300-450мм). Вообще при высоком качестве изображения на видеотерминале расстояние от глаз пользователя до экрана, документа и клавиатуры может быть равным.

Положение экрана определяется:

- расстоянием считывания (0,6 - 0,7м);

- углом считывания, направлением взгляда на 20? ниже горизонтали к центру экрана, причем экран перпендикулярен этому направлению.

Должна также предусматриваться возможность регулирования экрана:

- по высоте +3 см;

- по наклону от -10? до +20? относительно вертикали;

- в левом и правом направлениях.

Большое значение также придается правильной рабочей позе пользователя.

При неудобной рабочей позе могут появиться боли в мышцах, суставах и сухожилиях. Требования к рабочей позе пользователя видеотерминала следующие:

- голова не должна быть наклонена более чем на 20?,

- плечи должны быть расслаблены,

- локти - под углом 80?-100?,

- предплечья и кисти рук - в горизонтальном положении.

Причина неправильной позы пользователей обусловлена следующими факторами: нет хорошей подставки для документов, клавиатура находится слишком высоко, а документы - низко, некуда положить руки и кисти, недостаточно пространство для ног.

В целях преодоления указанных недостатков даются общие рекомендации: лучше передвижная клавиатура; должны быть предусмотрены специальные приспособления для регулирования высоты стола, клавиатуры и экрана, а также подставка для рук.

Существенное значение для производительной и качественной работы на компьютере имеют размеры знаков, плотность их размещения, контраст и соотношение яркостей символов и фона экрана. Если расстояние от глаз оператора до экрана дисплея составляет 60-80 см, то высота знака должна быть не менее 3мм, оптимальное соотношение ширины и высоты знака составляет

3:4, а расстояние между знаками - 15-20% их высоты. Соотношение яркости фона экрана и символов - от 1:2 до 1:15.

Во время пользования компьютером медики советуют устанавливать монитор на расстоянии 50-60 см от глаз. Специалисты также считают, что верхняя часть видеодисплея должна быть на уровне глаз или чуть ниже. Когда человек смотрит прямо перед собой, его глаза открываются шире, чем когда он смотрит вниз. За счет этого площадь обзора значительно увеличивается, вызывая обезвоживание глаз. К тому же если экран установлен высоко, а глаза широко открыты, нарушается функция моргания. Это значит, что глаза не закрываются полностью, не омываются слезной жидкостью, не получают достаточного увлажнения, что приводит к их быстрой утомляемости.

Создание благоприятных условий труда и правильное эстетическое оформление рабочих мест на производстве имеет большое значение, как для облегчения труда, так и для повышения его привлекательности, положительно влияющей на производительность труда.

4.3 Режим труда

Как уже было неоднократно отмечено, при работе с персональным компьютером очень важную роль играет соблюдение правильного режима труда и отдыха. В противном случае у персонала отмечаются значительное напряжение зрительного аппарата с появлением жалоб на неудовлетворенность работой, головные боли, раздражительность, нарушение сна, усталость и болезненные ощущения в глазах, в пояснице, в области шеи и руках.

В табл. 4.5 представлены сведения о регламентированных перерывах, которые необходимо делать при работе на компьютере, в зависимости от продолжительности рабочей смены, видов и категорий трудовой деятельности с ВДТ (видеодисплейный терминал) и ПЭВМ (в соответствии с САнНиП 2.2.2 542-96 «Гигиенические требования к видеодисплейным терминалам, персональным электронно-вычислительным машинам и организации работ»).

Таблица 4.5 - Время регламентированных перерывов при работе на компьютере

Категория работы с ВДТ или ПЭВМ

Уровень нагрузки за

рабочую смену при

видах работы с ВДТ, количество знаков

Суммарное время

регламентированных перерывов, мин

При 8-часовой

смене

При 12-часовой

смене

Группа А

до 20000

30

70

Группа Б

до 40000

50

90

Группа В

до 60000

70

120

Примечание. Время перерывов дано при соблюдении указанных Санитарных правил и норм. При несоответствии фактических условий труда требованиям Санитарных правил и норм время регламентированных перерывов следует увеличить на 30%.

В соответствии со САнНиП 2.2.2 546-96 все виды трудовой деятельности, связанные с использованием компьютера, разделяются на три группы: группа А: работа по считыванию информации с экрана ВДТ или ПЭВМ с предварительным запросом; группа Б: работа по вводу информации; группа В: творческая работа в режиме диалога с ЭВМ.

Эффективность перерывов повышается при сочетании с производственной гимнастикой или организации специального помещения для отдыха персонала с удобной мягкой мебелью, аквариумом, зеленой зоной и т.п.

4.4 Расчет освещенности

Расчет освещенности рабочего места сводится к выбору системы освещения, определению необходимого числа светильников, их типа и размещения. Исходя из этого, рассчитаем параметры искусственного освещения.

Обычно искусственное освещение выполняется посредством электрических источников света двух видов: ламп накаливания и люминесцентных ламп. Будем использовать люминесцентные лампы, которые по сравнению с лампами накаливания имеют ряд существенных преимуществ:

- по спектральному составу света они близки к дневному, естественному свету;

- обладают более высоким КПД (в 1,5-2 раза выше, чем КПД ламп накаливания);

- обладают повышенной светоотдачей (в 3-4 раза выше, чем у ламп накаливания);

- более длительный срок службы.

Расчет освещения производится для комнаты площадью 15м2 , ширина которой - 5м, высота - 3 м. Воспользуемся методом светового потока.

Для определения количества светильников определим световой поток, падающий на поверхность по формуле:

F = E•S•Z•К / n , (4.1)

Где F - рассчитываемый световой поток, Лм;

Е - нормированная минимальная освещенность, Лк (определяется по таблице). Работу программиста, в соответствии с этой таблицей, можно отнести к разряду точных работ, следовательно, минимальная освещенность будет Е = 300Лк;

S - площадь освещаемого помещения (в нашем случае S = 15м2);

Z - отношение средней освещенности к минимальной (обычно принимается равным 1,1-1,15 , пусть Z = 1,1);

К - коэффициент запаса, учитывающий уменьшение светового потока лампы в результате загрязнения светильников в процессе эксплуатации (его значение зависит от типа помещения и характера проводимых в нем работ и в нашем случае К = 1,5);

n - коэффициент использования, (выражается отношением светового потока, падающего на расчетную поверхность, к суммарному потоку всех ламп и исчисляется в долях единицы; зависит от характеристик светильника, размеров помещения, окраски стен и потолка, характеризуемых коэффициентами отражения от стен (РС) и потолка (РП)), значение коэффициентов РС и РП были указаны выше: РС=40%, РП=60%. Значение n определим по таблице коэффициентов использования различных светильников.

Для этого вычислим индекс помещения по формуле:

I = A•B / h (A+B), (4.2)

где h - расчетная высота подвеса, h = 2,92 м;

A - ширина помещения, А = 3 м;

В - длина помещения, В = 5 м.

Подставив значения получим:

I= 0,642.

Зная индекс помещения I, по таблице 7 [23] находим n = 0,22.

Подставим все значения в формулу (4.1) для определения светового потока F, получаем F = 33750 Лм.

Для освещения выбираем люминесцентные лампы типа ЛБ40-1, световой поток которых Fл = 4320 Лк.

Рассчитаем необходимое количество ламп по формуле:

N = F / Fл, (4.3)

где N - определяемое число ламп;

F - световой поток, F = 33750 Лм;

Fл- световой поток лампы, Fл = 4320 Лм.

N = 8 ламп.

При выборе осветительных приборов используем светильники типа ОД. Каждый светильник комплектуется двумя лампами.

Значит требуется для помещения площадью S = 15 м2 четыре светильника типа ОД.

Расчет естественного освещения помещений

Организация правильного освещения рабочих мест, зон обработки и производственных помещений имеет большое санитарно-гигиеническое значение, способствует повышению продуктивности работы, снижения травматизма, улучшения качества продукции. И наоборот, недостаточное освещение усложняет исполнения технологического процесса и может быть причиной несчастного случая и заболевания органов зрения.

Освещение должно удовлетворять такие основные требования:

- быть равномерным и довольно сильным;

- не создавать различных теней на местах работы, контрастов между освещенным рабочем местом и окружающей обстановкой;

- не создавать ненужной яркости и блеска в поле взора работников;

- давать правильное направление светового потока;

Все производственные помещения необходимо иметь светлопрорезы, которые дают достаточное природное освещение. Без природного освещения могут быть конференц-залы заседаний, выставочные залы, раздевалки, санитарно-бытовые помещения, помещения ожидания медицинских учреждений, помещений личной гигиены, коридоры и проходы.

Коэфициент естественного освещения в соответствии с ДНБ В 25.28.2006, для нашого III пояса светового климата составляет 1,5.

Исходя из этого произведем расчет необходимой площади оконных проемов.

Расчет площади окон при боковом освещении определяется, по формуле:

Sо = (Lnз.*N0*Snзд.)/(100 *T0*r1) (4.4)

где: Ln - нормированное значение КЕО

Кз - коэффициент запаса (равен 1,2)

N0 - световая характеристика окон

Sn - площадь достаточного естественного освещения

Кзд. - коэффициент, учитывающий затенение окон противостоящими зданиями

r1 - коэффициент, учитывающий повышение КЕО при боковом освещении

T0 - общий коэффициент светопропускания, который рассчитывается по формуле:

T0 = T1 * T2 * T3 * T4 * T5, (4.5)

где T1 - коэффициент светопропускания материала;

T2 - коэффициент, учитывающий потери света в переплетах светопроема;

T3 - коэффициент, учитывающий потери света в несущих конструкциях;

T4 - коэффициент, учитывающий потери света в солнцезащитный устройствах;

T5 - коэффициент, учитывающий потери света в защитной сетке, устанавливаемой под фонарями, принимается равным 1;

Теперь следует рассчитать боковое освещение для зоны, примыкающей к наружной стене. По разряду зрительной работы нужно определить значение КЕО. КЕО = 1,5 нормированное значение КЕО с учетом светового климата необходимо вычислить по формуле:

Ln=l*m*c, (4.6)

где l - значение КЕО (l=1.5);

m - коэффициент светового климата (m=1);

c - коэффициент солнечности климата (c=1)

Ln=1,5

Теперь следует определить отношение длины помещения Ln к глубине помещения B:

Ln/B=3/5 =0,6;

Отношение глубины помещения В к высоте от уровня условной рабочей поверхности до верха окна h1 (в данном случае h1=1,8) :

B/h1=5/1,8 = 2,77.

Световая характеристика световых проемов N0=9.

Кзд=1

Значение T0=0,8*0,7*1*1*1=0,56.

Ln для 4 разряда зрительных работ равен 1,5 при мытье окон два раза в год.

Определяем r1, r1=1,5.

Кз.=1,2.

Теперь следует определить значение Sп:

Sп=Ln*В=3*10=30 м2.

Кзд.=1.

На данном этапе следует рассчитать необходимую площадь оконных проемов: (Ln* Кз.*N0*Snзд.) / (100*T0*r1)

Sо = (1,5*1,2*9*30*1)/(100*0,56*1,5)=486/84= 5,78 м2;

Принимаем количество окон 1 штука:

S1=5,78 м2 площадь одного окна

Высота одного окна составляет - 2,5 м, ширина 2,3 м.

4.5. Расчет вентиляции

В зависимости от способа перемещения воздуха вентиляция бывает естественная и принудительная.

Параметры воздуха, поступающего в приемные отверстия и проемы местных отсосов технологических и других устройств, которые расположены в рабочей зоне, следует принимать в соответствии с ГОСТ 12.1.005-76. При размерах помещения 3 на 5 метров и высоте 3 метра, его объем 45 куб.м. Следовательно, вентиляция должна обеспечивать расход воздуха в 90 куб.м/час. В летнее время следует предусмотреть установку кондиционера с целью избежания превышения температуры в помещении для устойчивой работы оборудования. Необходимо уделить должное внимание количеству пыли в воздухе, так как это непосредственно влияет на надежность и ресурс эксплуатации ЭВМ.

Мощность (точнее мощность охлаждения) кондиционера является главной его характеристикой, от неё зависит на какой объем помещения он рассчитан. Для ориентировочных расчетов берется 1 кВт на 10 м2 при высоте потолков 2,8 - 3 м (в соответствии со СНиП 2.04.05-86 "Отопление, вентиляция и кондиционирование").


Подобные документы

  • Общие принципы охлаждения, видов охлаждения ПК и блока питания. Вопросы усовершенствования охлаждения блока питания ПК. Параметры микроклимата: расчеты вентиляции, природного и искусственного освещения, уровня шума, сопоставление их с нормативными.

    дипломная работа [2,3 M], добавлен 14.07.2010

  • Анализ истории и перспектив развития видеокарт; видеосистема как часть компьютера: последние технологические разработки. Тесты сравнения видеокарт, экономический расчет их стоимости. Выбор наиболее оптимальной видеокарты для дизайнерского моделирования.

    дипломная работа [718,1 K], добавлен 16.07.2010

  • История PC-совместимых персональных компьютеров с адаптером Monochrome Display Adapter. Устройство и основные характеристики видеокарты. Разъёмы для подключения устройств вывода. Описание видеокарт 3DMark, Metro 2033 Benchmark, Unigine Tropics Demo.

    курсовая работа [7,9 M], добавлен 11.12.2014

  • История видеокарт, их назначение и устройство. Принципы обеспечения работы графического адаптера. Характеристики и интерфейс видеокарт. Сравнительный анализ аналогов производства компаний NVIDIA GeForce и AMD Radeon. Направления их совершенствования.

    контрольная работа [295,6 K], добавлен 04.12.2014

  • Общие принципы охлаждения и работы различных видов и типов охлаждения компьютерных систем. Технико-экономическое обоснование и анализ различных систем охлаждения. Проектирование и расчеты отопления, вентиляции, природного и искусственного освещения.

    дипломная работа [3,4 M], добавлен 10.07.2010

  • Факторы, влияющие на производительность графической подсистемы. Пропускная способность видеоконтроллера. Шины PCI и AGP, их основные преимущества и недостатки. Характеристики наиболее распространенных видеокарт. Графические адаптеры будущего.

    реферат [27,0 K], добавлен 12.06.2009

  • Отличительные особенности программы для создания каталога видеокарт на Visual Basic с ее занесением, изменением и удалением. Расчет максимальной и минимальной стоимости видеоносителя в порядке увеличения его стоимости и выбор параметров сортировки.

    реферат [2,9 M], добавлен 12.10.2010

  • Стандартное устройство вывода графической информации в компьютере IBM - система из монитора и видеокарты. Основные компоненты видеокарты. Графическое и цветовое разрешение экрана. Виды мониторов и видеокарт. Мультимедиа-проекторы, плазменные панели.

    контрольная работа [38,7 K], добавлен 09.06.2010

  • Материнская плата GIGABYTE A-M52LT-D3 и ее компоненты. Процессор AMD ATHLON II x2 240 (REGOR): общие характеристики. Структура многоядерных процессоров. Оперативная память Kingston. Виды звуковых и видеокарт. Блок питания и система охлаждения компьютера.

    контрольная работа [2,5 M], добавлен 15.01.2014

  • Характеристика работы видеокарты - устройства, преобразующего графический образ в форму, предназначенную для вывода на экран монитора. Понятие контроллера, буфера кадра и памяти текстур. Проведение тестов синтетических испытаний и на производительность.

    курсовая работа [1,5 M], добавлен 09.07.2011

Работы в архивах красиво оформлены согласно требованиям ВУЗов и содержат рисунки, диаграммы, формулы и т.д.
PPT, PPTX и PDF-файлы представлены только в архивах.
Рекомендуем скачать работу.