Інтегрування Нютона-Котеса
Опис методів обчислення формули Ньютона-Котеса та поліномів Лежандра. Розгляд програмування процедур вводу меж інтегрування, ініціації елементів квадратурних формул Гауса та Чебишева. обчислення визначеного інтеграла і виводу результатів на екран.
Рубрика | Программирование, компьютеры и кибернетика |
Предмет | Програмування |
Вид | курсовая работа |
Язык | украинский |
Прислал(а) | Андрій |
Дата добавления | 23.04.2010 |
Размер файла | 82,1 K |
Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже
Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.
Подобные документы
Обґрунтування переваги чисельного диференціювання функції з використанням інтерполяційної формули Стірлінга по відношенню до формул Ньютона, Гауса та Бесселя. Розробка оптимального алгоритму обчислення другої похідної. Лістинг, опис і тестування програми.
курсовая работа [483,2 K], добавлен 21.10.2013Дослідження методів чисельного інтегрування Чебишева та Трапеції, порівняння їх точності. Способи розробки програми на компіляторі Turbo C++, яка знаходить чисельне значення вказаного інтегралу. Обґрунтування вибору інструментальних засобів програми.
курсовая работа [262,4 K], добавлен 18.09.2010Огляд та варіантний аналіз чисельних методів моделювання, основні поняття і визначення. Опис методів моделювання на ЕОМ, метод прямокутників і трапецій. Планування вхідних та вихідних даних, аналіз задач, які вирішуються при дослідженні об’єкта на ЕОМ.
курсовая работа [373,6 K], добавлен 30.11.2009Характеристика основних методів чисельного інтегрування та розв’язання інтегралу методом Чебишева третього, четвертого та п’ятого порядків. Оцінка похибок та порівняння їх з точним обчисленнями отриманими в математичному пакеті Mathcad 2001 Professional.
курсовая работа [127,7 K], добавлен 03.12.2009Аналіз методу чисельного інтегрування, з використанням методу Гауса при обчисленні інтегралу третього, четвертого та п’ятого порядків. Алгоритм та лістинг програми, що розв’язує інтеграл методом Гауса, знаходить похибку, виводить і порівнює результати.
курсовая работа [140,4 K], добавлен 09.02.2010Дослідження застосування різницевого методу для розв’язання крайової задачі. Дослідження проводиться на прикладі заданого диференційного рівняння. Дається опис методу та задачі в цілому. Застосування при обчисленні формули Чебишева і формули Гаусса.
курсовая работа [157,2 K], добавлен 03.12.2009Реалізація інтерполяції поліномами за методами найменших квадратів і Лагранжа в Matlab. Наближення даних сплайном нульового порядку. Диференціювання полінома. Геометричний зміст похідної. Чисельне інтегрування функцій. Розв’язування диференційних рівнянь.
контрольная работа [285,3 K], добавлен 01.06.2015Лінійна програма на C++. Арифметичні вирази. Обчислення значень функції. Значення логічних виразів і логічних операцій. Види циклів, обчислення нескінченної суми з заданою точністю. Створення файлу цілих чисел з N компонент, виведення їх на екран.
контрольная работа [12,7 K], добавлен 09.09.2011Чисельне інтегрування, формула Сімпсона, значення інтегралу від функцій та формули трапецій. Знаходження коренів рівняння методом Ньютона. Наближення функцій поліномами вищого порядку. Метод Ейлера та його модифікації. Визначення похибок розрахунків.
контрольная работа [6,1 M], добавлен 04.07.2010Застосовування графічних методів розв’язку рівнянь та нерівностей. Проведення інтегрування та диференціюванні за допомогою засобів MathCAD. Змінення вигляду графіків у програмі. Освоєння методів аналітичних обрахунків та графічного відображення даних.
лабораторная работа [833,5 K], добавлен 23.09.2009