Комбинированное звуковое USB-устройство с функциями автономного MP3-плеера и поддержкой Bluetooth

Обзор мультимедиа-устройств с поддержкой USB и Bluetooth. Разработка структурной и функциональной схем устройства. Возможности его аппаратной модернизации. Разработка печатной платы устройства. Расчет схемы подключения питания и USB входа к AT91SAM7SE.

Рубрика Программирование, компьютеры и кибернетика
Вид дипломная работа
Язык русский
Дата добавления 18.06.2010
Размер файла 749,0 K

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

NANDCS - сигнал выбора памяти (пин E у NAND08GW3B2A);

NANDOE - сигнал разрешения для выходных буферов данных (пин R у NAND08GW3B2A);

NANDWE - сигнал разрешения записи команды, данных или адреса (пин W у NAND08GW3B2A);

NANDCLE - сигнал разрешения защёлки команды (пин CL у NAND08GW3B2A);

NANDALE - сигнал разрешения защёлки адреса (пин AL у NAND08GW3B2A).

Сигнал RB означает готовность устройства либо наоборот невозможность обращения к нему в данный момент времени. Сигнал PRL отвечает за автоматическое выполнение операции чтения при включении питания.

Также используются 8 линий ввода/вывода, по которым передаются и данные, и адреса.

Встроенный контроллер памяти AT91SAM7SE (Static Memory Controller, SMC) используется для управления внешней памятью или периферийными устройствами, в том числе LCD-контроллерами. SMC содержит следующие входы/выходы:

NCS[7:0] - 8 линий выбора внешних устройств;

NRD - сигнал чтения;

NWR0/NEW - сигнал разрешения записи;

NWR1/NUB - сигнал разрешения записи или сигнал выбора старшего байта;

A0/NLB - нулевой бит адреса или сигнал выбора младшего байта;

A[22:1] - линии шины адреса;

D[15:0] - линии шины данных;

NWAIT - внешний сигнал ожидания.

SMC контроллер полностью программируем и может обеспечить соединение с использованием 22-разрядной линии адреса и 16-разрядной шины данных.

LCD-дисплей SG12864H имеет встроенный ST7565-совместимый контроллер, обеспечивающий 8-разрядное параллельное соединение с процессором устройства. Для управления им используются следующие сигналы:

RES - сигнал сброса;

CS - сигнал выбора дисплея;

RS - сигнал выбора типа данных;

WR - сигнал записи;

RD - сигнал чтения.

Таким образом, можно организовать соединение микроконтроллера AT91SAM7SE и LCD-дисплея SG12864H по 8-разрядной шине данных с использованием управляющих сигналов SMC контроллера.

4.6 Возможности аппаратной модернизации устройства

Учесть и применить в устройстве все возможности, которые предоставляют базовые компоненты устройства крайне сложно. На процесс разработки устройства оказывают влияние такие факторы, как сроки, ограниченные информационные возможности разработчика и его опыт.

Поэтому остаются неучтенными некоторые возможности устройства, реализовать которые не удалось.

При разработке данного устройства, к сожалению, также не были учтены некоторые возможности его базовых компонентов, которые будут перечислены и рассмотрены в данном подразделе.

Модуль F2M03MLA имеет 4 линии, предназначенные для аудио входа, однако производитель пока еще не предоставил информацию о возможности их использования при подключении стерео микрофона. Неизвестны и программные возможности и особенности модуля, которые могли бы помочь при рассмотрении этого вопроса.

Интерфейс SPI управляющего микроконтроллера AT91SAM7SE может работать с еще 3 внешними периферийными устройствами помимо модуля F2M03MLA. В роли одного из этих устройств может выступать MMC, SD или microSD карта памяти. При рассмотрении этого вопроса нужно учесть максимальное быстродействие SPI порта AT91SAM7SE и его реальные возможности по обслуживанию и модуля, и карты памяти, чтобы избежать “зависания” устройства.

5. Программная часть

Программная часть данного дипломного проекта состоит из программы для процессора устройства (AT91SAM7SE) и драйвера устройства для операционной системы Windows XP.

Программирование управляющего микроконтроллера может осуществляться несколькими способами:

через параллельный интерфейс быстрого программирования (Fast Flash Programming Interface, FFPI), в этом случае микроконтроллер воспринимается как EEPROM память;

через последовательный интерфейс быстрого программирования (FFPI), используя стандартный протокол IEEE 1149.1 JTAG;

через UART порт микроконтроллера, используя встроенную программу-автозагрузчик;

через USB порт микроконтроллера, используя встроенную программу-автозагрузчик.

Помимо этого есть возможность просмотра программы микроконтроллера в режиме отладки и тестирования, используя JTAG/ICE (Embedded ICE) порт и порт UART.

Atmel также предлагает аппаратные средства для работы с AT91SAM7SE в виде отладочной платы AT91SAM7SE-EK, позволяющее подробно изучить возможности микроконтроллера. На официальном сайте компании (www.atmel.com) доступны демонстрационные программные коды и различная литература для этой отладочной платы.

Драйвер устройства должен обеспечить возможность работы с ним средствами операционной системы Windows при подключении к USB-порту компьютера.

5.1 Обзор средств разработки

Для программирования микропроцессоров необходимо несколько инструментов:

обязательные:

компилятор языка C, ассемблер и линковщик;

программатор;

необязательные:

отладчик;

эмулятор.

Несколько лет назад разработчики обходились без компилятора языка C и писали программы исключительно на ассемблере. Однако с развитием и повсеместным распространением микропроцессорных систем сроки разработки проектов существенно сократились, а требования к качеству повысились. Поэтому появились компиляторы языков высокого уровня для программирования микроконтроллеров, так как это позволяло не только сократить время на написание программы, но и облегчить работу программиста (так как языки высокого уровня дали дополнительные возможности, например, встроенные функции, процедуры и прочее).

Для микроконтроллера AT91SAM7SE существует несколько компиляторов языка C. Перечислим их:

IAR (IAR KickStart и усеченная версия IAR Embedded Workbench);

Keil;

ICCARM (пока что не доработан полностью);

GCC (бесплатный C-компилятор для Windows и Linux);

WinARM.

Программатор предназначен для “заливки” программы в память микропроцессора. Существует несколько способов программирования, различающихся по типу соединения, например, возможно программирование по интерфейсу SPI, JTAG или USB. Последний способ представляется наиболее удобным и доступным, так как не требует использования дополнительных разъемов, проводов и оборудования.

Программатор состоит из трех составляющих: программы программатора, драйвера и кабеля для подключения. В случае программирования через USB применяется обычный USB кабель.

Существует несколько программ, позволяющих производить программирование AT91SAM7SE по интерфейсу USB:

FLIP - это стандартный программатор, предоставляемый компанией Atmel для своих микроконтроллеров;

ER-Tronic - это узко специализированный программатор для данного микроконтроллера;

Rowley Associates;

SAM-BA (SAM Boot Assistant) - бесплатный загрузчик от Atmel.

К достоинствам программы FLIP относят поддержку большого числа функций: очистка, проверка, чтение и запись EEPROM- и Flash-памяти; возможность ручного редактирования буферов памяти; возможность загрузки и сохранения буферов в HEX-формате; отслеживание изменений в процессе разработки. Недостатками данной программы являются некоторая запутанность интерфейса и слабая справочная система.

ER-Tronic имеет понятный интерфейс и удобный редактор кода, однако совсем не имеет справки.

Другая сторона разработки устройства с точки зрения программиста - это разработка драйвера устройства.

Процесс создания драйверов достаточно сложен и трудоемок, и, конечно, на рынке программного обеспечения появились программы, облегчающие написание и тестирование драйверов.

Наиболее популярные из них - это NuMega Driver Studio, Jungo WinDriver и Jungo Kernel Driver.

NuMega Driver Studio - это программный комплекс, входящий в состав среды разработки Microsoft Visual Studio. NuMega Driver Studio представляет собой программу-помощника, отвечая на вопросы которого, можно получить вполне работоспособный шаблон драйвера. Для компиляции полученного кода потребуются классы и библиотеки NuMega и Microsoft DDK.

Jungo WinDriver - это программный пакет, предназначенный для разработки драйверов устройств, использующих стандарты PCI, Compact PCI, USB, ISA, ISA PnP, EISA и работающих под управлением операционных систем Windows9X/Me/NT/2000/XP. Позволяет обращаться к физической памяти, портам, устанавливать собственные обработчики аппаратных прерываний. Не требует наличия Windows DDK и программирования на уровне ядра. Используется графическая оболочка для диагностики оборудования и автоматической генерации кода на языка C/C++ или Pascal (Delphi).

Jungo Kernel Driver имеет те же характеристики, что и Jungo WinDriver. Единственное отличие в том, что этот программный пакет обеспечивает более высокую производительность и требует наличия Windows DDK. Также используется графическая оболочка для диагностики оборудования и автоматической генерации кода.

5.2 Разработка блок-схемы алгоритма управляющей программы

Управляющий микроконтроллер AT91SAM7SE имеет встроенную программу-загрузчик, которая определяет дальнейший характер его работы. Во-первых, инициализируются DBGU-порт и USB-порт микроконтроллера, затем управление передается программе-загрузчику SAM-BA.

Загрузочная последовательность представлена на рис. 13.

Рис. 13. Загрузочная последовательность AT91SAM7SE

Инициализация управляющего микроконтроллера состоит из следующих этапов:

инициализация FIQ (линии быстрого прерывания);

установка стека в режим supervisor;

инициализация встроенного Flash контроллера;

обнаружение внешнего резонатора;

если не обнаружен внешний резонатор, то настройка внутреннего резонатора микроконтроллера;

переключение основной частоты устройства на главный внутренний резонатор;

копирование кода в SRAM-память;

инициализация переменных C;

инициализация PLL;

выключение сторожевого таймера, активация возможности сброса;

инициализация USB-порта;

передача управления загрузчику SAM-BA.

Перед началом работы устройства, необходимо инициализировать управляющий контроллер и определить дальнейший характер его работы.

Если есть соединение по USB, то в зависимости от установок, хранящихся в энергонезависимой памяти устройства, необходимо сконфигурировать микроконтроллер для работы в качестве звуковой USB-карты или флеш-памяти.

В режиме звуковой карты управляющий микроконтроллер должен выполнять следующие действия:

получать данные от USB-порта компьютера;

передавать их дальше цифро-аналоговому преобразователю в составе модуля F2M03MLA.

В режиме флеш-памяти AT91SAM7SE должен обеспечить работу со встроенной памятью устройства.

Если нет соединения по USB, то устройство должно выполнять функции MP3-плеера, а именно:

управление при помощи управляющих клавиш;

выдача информации на LCD-дисплей;

считывание информации со встроенной памяти устройства и передача стерео кодеку в составе модуля F2M03MLA;

обеспечение возможности передачи звука на беспроводные наушники.

Таким образом, получили следующую блок-схему алгоритма управляющей программы (рис. 14).

Рис. 14. Блок-схема алгоритма управляющей программы

Работа в качестве звуковой карты, съемного диска или MP3-плеера представляет собой отдельные блоки в прошивке управляющего микроконтроллера.

5.3 Разработка шаблона драйвера устройства

Фирмы-разработчики аппаратного обеспечения постоянно совершенствуют внешние устройства и другие узлы персонального компьютера. Постоянно появляются новая периферийная аппаратура и новые модификации уже существующих устройств. Старые устройства наделяются новыми возможностями, новые делают такое, о чем раньше не приходилось и мечтать.

Интуитивно ясно, что должна существовать какая-то программная прослойка между аппаратным и программным обеспечением, выполняющая “согласующие” и “унифицирующие” действия. Эта прослойка работает напрямую с аппаратурой, а прикладное и системное программное обеспечение имеет дело только с этой интерфейсной прослойкой. Этой программной прослойкой являются драйвера устройств.

Рассмотрим внутреннюю организацию шины USB.

Система USB подразделяется на три логических уровня с определенными правилами взаимодействия. Устройство содержит интерфейсную, логическую и функциональную части. Все передачи инициируются хостом, а периферийные устройства могут лишь реагировать на его запросы. Хост также делится на три части - интерфейсную, системную и программное обеспечение.

Связь между логическим уровнем устройства и системной частью хоста осуществляется при помощи логического потока на уровне устройств. Связь между функциональной частью устройства и программным обеспечением хоста осуществляется логическим потоком на уровне функций.

Уровень клиентского программного обеспечения в хосте обычно представляется драйвером устройства.

Логическое устройство USB представляет собой набор независимых конечных точек, с которыми клиентское программное обеспечение обменивается информацией. Каждому логическому устройству USB назначается свой адрес, уникальный на данной шине USB. Каждая конечная точка характеризуется своим номером и направлением передачи.

Транзакция на шине USB - это последовательность обмена пакетами между хостом и периферийным устройством, в ходе которой может быть передан или принят один пакет данных. Когда клиентское программное обеспечение передает запрос уровню системного драйвера, USB-драйвер преобразует его в одну или несколько транзакций шины и затем передает получившийся перечень транзакций контроллеру хоста.

Хост контроллер передает данные периферийному устройству в виде кадров. Каждая передача состоит из одной или нескольких транзакций. Каждая транзакция состоит из пакетов. Каждый пакет состоит из идентификатора пакета, данных и контрольной суммы.

Существует четыре различных типа передачи:

управляющие передачи - для конфигурирования устройства во время подключения, для управления устройство и получения статусной информации в процессе работы;

передачи массивов данных - для обеспечения гарантированной доставки данных, однако время доставки неограниченно;

передачи по прерываниям - передача одиночных пакетов данных небольшого размера за ограниченное время;

изохронные передачи - для обмена данными в реальном времени, имеют наивысший приоритет.

Конечная точка представляет собой буфер и имеет следующие основные параметры: частота доступа к шине, допустимая величина задержки обслуживания, требуемая ширина полосы пропускания канала, номер конечной точки, способ обработки ошибок, максимальный размер пакета, используемый тип посылок и направление передачи данных.

Запрос к устройству и его параметры передаются в виде конфигурационного пакета. Стандартные запросы к устройству - это:

получение состояния (GET_STATUS) - позволяет определить состояние устройства, интерфейса или конечной точки;

сброс свойства (CLEAR_FEATURE) - для запрета свойства или состояния;

разрешение свойства (SET_FEATURE);

задание адреса на шине (SET_ADDRESS) - для присвоения устройству адреса;

получение дескриптора (GET_DESCRIPTOR) - для получения дескриптора устройства, конфигурации или точки;

передача дескриптора (SET_DESCRIPTOR) - позволяет дополнить существующий дескриптор или добавить новый дескриптор устройства, конфигурации или строки;

получение кода конфигурации (GET_CONFIGURATION) - устройство выдает код своей текущей конфигурации;

задание кода конфигурации (SET_CONFIGURATION) - позволяет задать устройству новую конфигурацию.

Дескриптор устройства - это структура данных или форматированный блок информации, который позволяет хосту получить описание устройства.

Стандартный дескриптор устройства содержит основную информацию об USB-устройстве и его конфигурациях. Устройство должно иметь только один такой дескриптор, однако если устройство может работать в нескольких режимах (на разных скоростях), то оно должно иметь еще и уточняющий дескриптор.

Дескриптор конфигурации содержит информацию об одной из возможных конфигураций устройства.

Дескриптор интерфейса содержит информацию об одном из интерфейсов, доступных при определенной конфигурации устройства.

Дескриптор конечной точки содержит информацию об одной из конечных точек, доступных при использовании определенного интерфейса.

Дескриптор строки (необязателен) содержит текст в формате UNICODE.

Также могут быть использованы специфические дескрипторы.

В Windows 2000/XP драйверная поддержка реализуется на основе WDM. С точки зрения WDM существует три типа драйверов:

драйвер шины - для обслуживания шины;

функциональный драйвер - основной драйвер устройства;

драйвер фильтра - для поддержания дополнительной функциональности устройства.

Основные процедуры драйвера WDM - это:

DriverEntry - точка входа драйвера;

AddDevice - создание объекта драйвера;

UnLoad - для возможности выгрузки драйвера без перезагрузки системы;

Модель WDM предоставляет следующие типы устройств:

Hub Device (hubclass.sys) - хабы (устройство, обеспечивающее дополнительные порты на шине USB) ;

HID (Human Interface Device) Device (hidclass.sys) - мыши, клавиатуры, джойстики;

Audio Device (sysaudio.sys) - звуковые колонки, виртуальные MIDI-устройства;

Mass Storage Device (usbstor.sys) - устройства хранения данных, флеш-диски;

Printer (usbprinter.sys) - принтеры;

Communication Device (usb8023.sys, mdismp.sys) - устройства коммуникации (модемы, сетевые карты).

Для данного устройства необходимо реализовать два драйвера (аудио устройство и устройство хранения данных), каждый из них будет использоваться в зависимости от настроек процессора устройства.

При разработке драйвера устройства использовалась программная среда NuMega Driver Studio 2.0, а также классы драйверов устройств и библиотеки в составе Windows 2000 DDK.

После установки Visual Studio появляется дополнительное окно с возможностями запуска помощника создания драйвера, запуска помощника создания сетевого драйвера, изменения переменных окружения и компиляции с помощью утилиты Build из DDK.

Библиотека классов Driver Studio представляет собой надстройку над чистым WDM API, что избавляет программиста от использования довольно запутанных низкоуровневых функций и позволяет выполнять все необходимые операции. Базовым классом устройства является класс KDriver, который предоставляет базовые функции драйвера. Для управления оборудованием используется класс KDevice, который обрабатывает запросы на чтение/запись к устройству. Класс KIrp представляет собой оболочку для структуры пакета запроса. Класс KRegistryKey позволяет обращаться к данным драйвера, сохраненным в реестре.

Собственно для работы с USB-устройствами предназначены следующие классы:

KUsbInterface - предоставляет функции для работы с USB-интерфейсами, драйвер может создавать столько интерфейсов, сколько их описано в дескрипторе устройства;

KUsbPipe - предоставляет функции для работы с конечными точками, драйвер должен создавать конечные точки только с параметрами, как они описаны в дескрипторе конфигурации.

Принцип работы с этими классами следующий:

в конструкторе экземпляра KDriver создается экземпляр класса KPnpDevice (для поддержки Plug-n-Play);

в конструкторе экземпляра KPnpDevice создаются экземпляры классов - KUsbLowerDevice (базовый класс для устройств нижнего уровня), KUsbInterface, KUsbPipe;

в функции драйвера OnStartDevice выполняется активизация одной из точек конфигурации при помощи вызова функции m_Lower.ActivateConfiguration();

при получении запроса ввода/вывода производятся следующие действия - создание и инициализация пакетов, передача запросу драйверу нижнего уровня, передача данных программе-инициатору запроса.

Для создания шаблона драйвера нужно создать проект и выбрать архитектуру создаваемого драйвера (WDM или Windows NT 4.0). Выбираем модель WDM. Теперь необходимо выбрать шину, на которой будет располагаться устройство. Выбираем шину USB. Для USB-устройства необходимо указать идентификатор производителя (USB Vendor ID) и идентификатор продукта (USB Product ID), они должны соответствовать значениям в дескрипторе устройства.

Указанные значения идентификаторов будут записаны в inf-файл.

Следующий шаг - задание набора конечных точек. У управляющего микроконтроллера 8 конечных точек.

Теперь необходимо выбрать функции драйвера. Возможные варианты - Read (обработка запросов на чтение), Write (обработка запросов на запись), Flush (поддержка функции сброса буферов), Device Control (поддержка пользовательских запросов), Internal Device Control (обработка запросов от других драйверов) и Cleanup (обработка запросов на очистку буферов обмена).

Драйвер для режима звуковой карты должен иметь только функцию Write. А драйвер для режима флеш-диска должен иметь функции Read и Write.

Следующий шаг - выбор способа обработки запросов:

None - запросы не буферизуются в очереди;

Driver Managed - драйвер содержит одну или более очередей, в которых хранятся запросы ввода/вывода;

System Managed - драйвер использует только одну очередь сообщений.

Выберем для обоих драйверов - System Managed.

Также можно задать сохраняемые параметры драйвера (для данного устройства это необязательно) и свойства драйвера - имя, способ передачи буферов памяти, способ управления энергопотреблением.

Последний шаг - задание кодов функции Device Control и задание дополнительных настроек - создание тестового приложения для драйвера (необязательно), настройки отладки и создания лога событий.

Таким образом, получили два шаблона драйвера, с которыми будет работать разработанное устройство в различных режимах.

Для доработки шаблона драйвера требуется дописать функции ввода/вывода и по необходимости расширить список интерфейсов каждого драйвера.

Рассмотрим процесс установки драйвера.

Скомпилировав проекты получим два драйвера - AT91UsbSounCard и AT91UsbMassStorage.

Теперь подключив устройство в режиме звуковой карты, нужно установить драйвер AT91UsbSounCard, указав путь к файлу AT91UsbSounCard.inf и файлу самого драйвера. Система обнаружит драйвер и установит его.

Аналогично в режиме флеш-диска нужно установить драйвер AT91UsbMassStorage.

Теперь необходимо доработать оба драйвера согласно вышеуказанным требованиям.

Тексты проекты шаблонов драйверов приведены в приложении.

5.4 Возможности расширения функциональности устройства

Микропроцессорные системы предоставляют массу возможностей по программной модернизации и модификации проекта. Поменяв прошивку микроконтроллера, можно из невзрачного устройства сделать многофункциональный продукт.

Осуществить программную модификация данного устройства очень просто: подключаете устройство к USB-порту компьютера и при помощи программы-загрузчика “заливаете” новую прошивку.

При выборе базовых компонентов устройства и при разработке аппаратной части устройства была заложены широкие возможности для программной модификации, которые впоследствии могут быть применены для расширения функциональности устройства.

К таким возможностям относится расширение Bluetooth профилей устройства за счет перепрошивки модуля F2M03MLA, например, реализация возможности передачи файлов по Bluetooth (производители модуля в скором времени планируют реализовать эту возможность). Для драйвера можно разработать утилиту для управления характеристиками устройства.

6. Конструкторская часть

6.1 Обзор средств разработки печатных плат

Современные высокотехнологичные печатные платы невозможно спроектировать и верифицировать, не имея соответствующих САПР высокого уровня. Без них разработчики обречены на многочисленные итерации с получением нулевого результата. Есть и такие продукты, которые позволяют решить специфические проблемы разработки высокоскоростных печатных плат, возникающие из-за того, что сейчас платы имеют много слоев и компонентов, а время переключения их элементов постоянно сокращается. В результате возникает необходимость предварительного анализа целостности сигналов, перекрестных наводок и электромагнитной совместимости.

На начальном этапе распространения в нашей стране САПР электронной аппаратуры на персональных компьютерах наибольшее распространение получили пакеты программ PCAD и OrCAD. Оба пакета решали примерно одинаковые задачи: графический ввод принципиальных схем и разработка печатных плат, моделирование цифровых устройств и проектирование программируемых логических интегральных схем (ПЛИС).

Пакет PCAD на некоторое время стал фактическим стандартом на промышленных предприятиях, обеспечивая выпуск конструкторской и технологической документации.

Однако со временем ситуация изменилась.

Появились новых версий старых систем проектирования печатных плат, причем часть из них претерпела значительные изменения.

Наилучших результатов добилась компания Mentor Graphics, развивающая линии продуктов Expedition PCB и PADS PowerPCB. Ключом к успеху компании явилась ориентация на современные интегрированные среды проектирования для Windows.

Пакет Expedition PCB представляет сейчас наиболее мощное решение в области проектирования плат. Основу системы составляет среда AutoActive, позволяющая реализовать такие функции, как предтопологический анализ целостности сигналов, интерактивная и автоматическая трассировка с учетом требований высокочастотных плат и специальных технологических ограничений, накладываемых использованием современной элементной базы.

Другой продукт компании Mentor, система PADS PowerPCB предлагает более дешевое решение. Эта система может похвастаться лучшим автотрассировщиком BlaseRouter, поддерживающим все необходимые при трассировке высокочастотных плат функции. Пакет имеет модули предтопологичекого и посттопологического анализа, тесно взаимодействующих с системой контроля ограничений.

Далее по мощности предлагаемых решений идет компания Cadence. Для верхнего уровня проектирования предлагается пакет PCB Design Studio, а в качестве редактора печатных плат здесь используется программа Allegro, позволяющая разрабатывать многослойные и высокоскоростные платы с высокой плотностью размещения компонентов. В качестве штатного модуля авторазмещения и автотрассировки здесь используется программа SPECCTRA, управляемая обширным набором правил проектирования и технологических ограничений. Анализ электромагнитной совместимости топологии платы выполняется с помощью специального модуля SPECCTRAQuest SI Expert, для предварительного анализа проекта и подготовки наборов правил проектирования используется модуль SigXplorer.

Другой продукт компании Cadence, пакет OrCAD рекомендуется как более легкое и дешевое решение для проектирования печатных плат. В последнее время продукт почти не развивается.

Третьим производителем САПР печатных плат можно назвать австралийскую компанию Altium, развивающую пакет Protel DXP. Этот пакет обеспечивает сквозной цикл проектирования смешанных аналого-цифровых печатных плат с использованием программируемой логики фирм Xilinx и Altera. Весь инструментарий реализован на базе интегрированной среды проектирования Design Explorer, работающей под управлением операционной системы Windows XP. К имевшимся ранее средствам посттопологического анализа целостности сигналов (Signal Integrity) добавилась возможность выполнять предтопологический анализ. Но главным новшеством системы Protel DXP должен был стать топологический автотрассировщик Situs, призванный реализовать новый подход к автоматической разводке плат.

На фоне полной мобилизации усилий на разработку пакета Protel DXP компания Altium продолжает развивать свой второй пакет проектирования печатных плат PCAD. Эта система остается достаточно популярной в России, что скорее определяется привязанностью наших разработчиков к названию PCAD.

Программный пакет PCAD представляет собой набор следующих модулей:

Schematic - редактор принципиальных схем с возможностью использования иерархических структур;

РСВ - редактор топологий, поддерживает до 999 слоев, 11 из которых являются постоянными, в то время как остальные могут распределяться конструктором на сигнальные, экранные и несигнальные вспомогательные; трассировка может выполняться с помощью богатого набора интерактивного инструментария;

Library Executive - менеджер библиотек с интегрированной элементной базой, содержащей информацию о корпусах, условно-графических обозначениях и связи между ними.

Новая версия P-CAD 2004 позиционируется как средство комплексной разработки высокоскоростных систем на базе печатных плат и включает следующие новинки:

новый схемотехнический редактор с поддержкой многоканальных иерархических принципиальных схем;

новый автотрассировщик, основанный на топологическом алгоритме;

новый инструментарий интерактивной трассировки;

новые мощные средства построения проекта, которые значительно облегчают внесения изменений в него.

PCAD-2004 отличается удобством ведения проекта и мощными средствами навигации. Также реализованы возможности трассировки дифференциальных пар и полная интеграция со средствами разработки систем на базе ПЛИС, микроконтроллеров и микропроцессоров различных архитектур.

6.2 Разработка печатной платы устройства

При разработке печатной платы использовалась система автоматического проектирования PCAD-2004.

Сначала была создана база компонентов, используемых в разрабатываемом устройстве, описаны посадочные места и составлены условно-графические изображения компонентов. Для создания библиотеки элементов была использована утилита Library Executive, входящая в состав PCAD-2004.

При создании компонентов необходимо учитывать их размеры и расположение выводов на корпусе. А для удобного отображения графической информации, такой как внешний вид печатной платы, с нанесенными печатными проводниками и переходными металлизированными отверстиями, нужно подобрать оптимальный масштаб.

Приведем размеры некоторых используемых компонентов (табл. 4):

Таблица 4. Размеры используемых элементов

Элемент

Размеры, мм

AT91SAM7SE256

22 * 16

F2M03MLA

18.6 * 13.2

NAND08GW3B2A

12 * 20

SG12864H

75 * 52.7

MAX1811

6.2 * 5

Чип-резистор R 0805

1 * 2

USB вход типа А

12 * 20

Очевидно, что использование реальных размеров элементов проблематично, поэтому для удобства выберем масштаб 1:50.

После того как была создана библиотека компонентов, ее нужно подключить в других утилитах, а именно Schematic Editor и PCB, отвечающих за создание принципиальной электрической схемы и чертежа печатной платы разрабатываемого устройства.

После создания схемы подбираем формат для схемы, основываясь на ее размерах и необходимости использования не менее 60% выбранного формата. Для данной схемы подходит формат A1.

После создания принципиальной электрической схемы и проверки её на наличие ошибок генерируем список цепей при помощи пункта меню Utils>Generate NetList. Список цепей сохраняется в файл, который затем нужно открыть в PCAD PCB при помощи пункта меню Utils>Load NetList.

Получим схему, на которой требуется, как можно рациональнее разместить, все компоненты устройства.

Для трассировки печатной платы нужно воспользоваться в PCAD PCB пунктом меню Route>Autorouters.

Таким образом, получили двухстороннюю печатную плату с металлизированными монтажными и переходными отверстиями согласно заданной электрической принципиальной схеме.

Материал печатной платы должен обладать высокой механической прочностью, хорошими электроизоляционными свойствами, иметь высокую нагревостойкость, а также иметь высокую степень агдезии печатных проводников. Основным материалом печатных плат является стеклотекстолит. Стеклотекстолит обладает хорошими электроизоляционными свойствами, высокой механической прочностью и жесткостью, менее всего подвержен воздействиям химических реактивов при химическом методе изготовления печатной платы. Прочность сцепления проводящего покрытия с стеклотекстолитовым основанием высокая и плавно изменяется при повышении температуры. При изготовлении двухсторонних печатных плат на стеклотекстолитовом основании качественная металлизация отверстий не составляет трудности. Поэтому выберем в качестве материала для данной платы стеклотекстолит.

Несмотря на высокую стоимость, двусторонние печатные платы с металлизированными отверстиями характеризуются высокими коммутационными свойствами, повышенной прочностью соединения вывода навесного элемента с проводящим рисунком платы. Это позволяет уменьшить габаритные размеры платы за счет плотного монтажа навесных элементов.

7. Экономическая часть

7.1 Расчёт себестоимости устройства

7.1.1 Определение единовременных затрат

Для того, чтобы количественно показать экономическую эффективность разработки оценим срок окупаемости единовременных затрат на разработку платы.

Единовременные затраты связаны с проектированием. Устройство разрабатывается одним инженером-проектировщиком и одним инженером-программистом.

Этапы и производительность работ инженера-проектировщика указаны в табл. 5.

Таблица 5. Этапы работы инженера-проектировщика

Номер этапа

Название этапа

Время, мес.

1

Получение технического задания, уяснение цели

0.2

2

Разработка технического предложения,работа с литературой

0.5

3

Разработка технического проекта

0.5

4

Разработка рабочего проекта

1

5

Разработка программы

1

6

Отладка

0.5

Итого

3.7

Этапы и производительность работ инженера-программиста указаны в табл. 6.

Таблица 6. Этапы работы инженера-программиста

Номер этапа

Название этапа

Время, мес.

1

Получение тех. задания, уяснение цели

0.2

2

Разработка алгоритма

0.5

3

Написание программы

1

4

Отладка

0.3

Итого

2.0

Средняя зарплата обоих специалистов составляет 15 000 руб.

Накладные расходы составляют 80% от заработной платы инженеров.

В итоге единовременные затраты, затраты на проектирование платы контроллера составят:

ЕЗ = (15000.00 * 0.8 + 15000.00) * 3.7+(15000.00 * 0.8 + 15000.00) * 2.0 = 153900 руб.

7.2 Расчёт заработной платы

7.2.1 Расчёт основной заработной платы

Для расчета основной заработной платы подсчитаем время, которое рабочий затратил на изготовление одного изделия (22 часа) и умножим на стоимость одного нормо_часа Снч.

Рсд = Снч * Тшт, где Снч = 50 руб.

ЗПосн = Рсд * (1+П/100) * (1+R/100),

где ЗПосн - основная заработная плата;

П - премия выплачиваемая рабочему, равная 25%;

R - районный коэффициент, равный 15%.

ЗПосн = 22 * (1+25/100) * (1+15/100) = 52.80 руб.

7.2.2 Расчет дополнительной заработной платы

Дополнительная заработная плата берется от основной заработной платы:

ЗПдоп=ЗПосн(Н/100),

где ЗПдоп - дополнительная заработная плата;

ЗПосн - основная заработная плата; Н - норматив 15%.

ЗПдоп = 52.80 * (15/100) = 7.92 руб.

7.3 Расчет материальных затрат

7.3.1 Расчет стоимости комплектующих изделий

Стоимости комплектующих изделий для платы котроллера приведены в табл. 7.

Таблица 7. Стоимость комплектующих изделий

Наименование

изделия

Марка изделия

Кол-во

Цена 1 шт., руб.

Микросхема

AT91SAM7SE256

1

219.18

Микросхема

F2M03MLA

1

1560.00

Микросхема

NAND08GW3B2A

320.00

ЖК дисплей

SG12864H

1

1534.92

Микросхема

MAX1811

1

44.20

Микрофон

HMO0603A

1

23.72

Динамик

LPB 2515

2

73.03

USB вход

USB A-1J

1

7.37

Аудио вход 3.5 мм

Гн. 3.5 стерео 5 конт.металл

2

6.17

Кварцевый резонатор

DT-38T

1

5.60

Чип-резистор 0805

R0805 16k7, R0805 330k,

R0805-5 10k, R0805-5 1k,

R0805-5 27R

17

0.30

NPO чип-

конденсатор

NPO 0805 100 нФ,

NPO 0805 1 нФ,

NPO 0805 47 нФ,

NPO 0805 15 пФ,

NPO 0805 8.44 нФ,

NPO 0805 76 нФ

10

0.30

X7R чип-

конденсатор

X7R 0805 4.7 мкФ,

X7R 0805 3.3 нФ,

X7R 0805 0.1 мкФ

4

0.30

Клавиатурный

кнопочный

переключатель

SKHHAJ

7

4.63

Кнопка вкл/выкл

SK-22D02-PG7

1

10.54

Аккумулятор

BAT-MOTZ3

1

309.40

Светодиод

AL-314B5C

1

8.10

Итого: 3053.33 руб.

Стоимость изделия существенно сокращается при оптовых закупках комплектующих. Скидка при оптовых закупках на данные радиоэлементы составляет в среднем 30%, а на чип-резисторы и чип-конденсаторы - 50%. То есть при условии промышленного изготовления расходы на основные комплектующие составят 2137.33 руб.

7.3.2 Расчет стоимости вспомогательных материалов

Стоимость вспомогательных материалов (Свсп) определяется по формуле:

Свсп=МРкг,

где М - масса материала в килограммах;

Ркг - расценка-стоимость одного килограмма.

Расчет стоимости вспомогательных материалов для устройства контроллера приведен в табл. 8.

Таблица 8. Стоимость вспомогательных материалов

Материал

Масса, кг

Ркг, руб./кг

Стоимость, руб.

Припой ПОС-61

0.07

60

4.2

Флюс КЭ2

0.015

25.2

0.378

Спирт этиловый

0.030

2.4

0.072

Спирто-бензиновая смесь

0.14

3

0.42

Итого

5.07

Таким образом, суммарные материальных затраты равны:

Сматвспкомпл,

где Свсп - стоимость вспомогательных материалов;

Скомпл - стоимость комплектующих изделий.

Смат = 2137.33 + 5.07 = 2142.40 руб.

7.3.3 Расчет отчислений на социальные нужды

Отчисления на социальные нужды вычисляются относительно основной и дополнительной заработной платы:

Осц=(ЗПосн+ЗПдоп) Нсц/100,

где ЗПосн - основная заработная плата; ЗПдоп - дополнительная заработная плата; Нсц - норматив отчислений на социальные нужды 39,5%.

Осц=(52.80 + 7.92) * 40/100 = 24.29 руб.

7.3.4 Расчет цеховых, общезаводских расходов. Расход заводской себестоимости

Цеховые расходы находятся по формуле:

ЦР=(ЗПосн+ЗПдоп) * Нцр/100,

где Нцр - норматив цеховых расходов 120%.

ЦР=(52.80 + 7.92) * 120/100 = 72.86 руб.

Общезаводские расходы берутся от суммы основной и дополнительной заработной платы:

ЗР = (ЗПосн+ЗПдоп) * Нзр/100,

где Нзр - норматив общезаводских расходов 350%.

ЗР = (52.80 + 7.92) * 350/100 = 212.52 руб.

Заводская себестоимость определяется как сумма материальных затрат (Смат), основной и дополнительной заработной платы (ЗПосн, ЗПдоп), отчислений на социальные нужды (Осц), цеховых и заводских расходов (ЦР, ЗР):

Сзавмат+ЗПосн+ЗПдопсц+ЦР+ЗР.

Сзав = 2142.40 + 52.80 + 9.72 + 24.92 + 72.86 + 212.52 = 2515.22 руб.

7.4 Расчет полной себестоимости

Полная себестоимость определяется по формуле:

Сп = Сзав * (1+В/100),

где В - процент внепроизводственных расходов, равный 5%

Сп = 2515.22 * (1+5/100) = 2640.98 руб.

8. Экологическая часть

Охрана труда представляет собой систему законодательных актов и соответствующих им социально-экономических, технических и организационных мероприятий, обеспечивающих безопасность, сохранение здоровья и работоспособности человека в процессе труда.

Охрана труда направлена на обеспечение в законодательных актах, организационных, технических, гигиенических и профилактических мероприятий. Создание безопасных и здоровых условий труда на каждом рабочем месте является важнейшей задачей руководящих работников и специалистов предприятий и профсоюзного актива по охране труда. Администрация обязана соблюдать требования трудового законодательства, государственных стандартов, норм и правил по охране труда, осуществлять мероприятия по технике безопасности и производственной санитарии, принимать необходимые меры по предупреждению несчастных случаев.

Администрация проводит работу по обеспечению безопасности труда совместно или по согласованию с комитетом профсоюза. Ее представители вместе с профсоюзным активом осуществляет административно-общественный контроль за состоянием условий и безопасности труда на рабочих местах. Специалисты контролируют безопасность оборудования и технологических процессов, обеспечивает их соответствие требованиям и нормам охраны труда.

Рабочие обязаны соблюдать установленные требования обращения с вверенным им производственным оборудованием, соблюдать инструкции по охране труда на рабочих местах, пользоваться выдаваемыми им средствами индивидуальной защиты.

8.1 Анализ опасных и вредных производственных факторов и их влияние на оператора

Факторы производственной среды оказывают существенное влияние на функциональное состояние и работоспособность оператора. Существует разделение производственных факторов на опасные и вредные.

Опасный производственный фактор - производственный фактор, воздействие которого на работающего в определенных условиях приводит к травме или другому внезапному резкому ухудшению здоровья.

Вредный производственный фактор - производственный фактор, воздействие которого на работающего в определенных условиях приводит к заболеванию или снижению работоспособности. В зависимости от уровня и продолжительности воздействия вредный производственный фактор может стать опасным.

Приведем опасные и вредные факторы, воздействующие на оператора при эксплуатации системы, используя ГОСТ 12.0.003-74 "Опасные и вредные производственные факторы. Классификация". Опасные и вредные производственные факторы подразделяются по природе действия на следующие группы (будем приводить конкретные группы факторов и факторы, которые непосредственно воздействуют на оператора):

физические;

психофизические.

Физические факторы включают воздействия, оказываемые производственной техникой и рабочей средой. Психофизиологические факторы характеризуют изменения состояния человека под влиянием тяжести и напряженности труда. Включение их в систему факторов производственной опасности обусловлено тем, что чрезмерные трудовые нагрузки в итоге могут также привести к заболеваниям.

К опасным факторам при эксплуатации системы (т.е. при работе с ЭВМ) можно отнести различные экстремальные ситуации, следствием которых является резкое ухудшение здоровья оператора. Такими факторами являются в основном:

возникновение пожара (например, возгорание монитора);

нарушение изоляции токоведущих частей.

К вредным производственным факторам можно отнести следующие:

повышенный уровень шума на рабочем месте;

неблагоприятный микроклимат;

повышенный уровень электромагнитных излучений;

недостаточность естественного света;

повышенный уровень ионизирующих излучений в рабочей зоне;

повышенный уровень статического электричества;

повышенный уровень ультрафиолетовой радиации;

повышенный уровень инфракрасной радиации.

Психофизические опасные и вредные производственные факторы по характеру действия подразделяются:

физические перегрузки (статические и динамические);

нервно-психические перегрузки (умственное напряжение и перенапряжение, монотонность труда, эмоциональные перегрузки, утомление, эмоциональный стресс, эмоциональная перегрузка).

Рассмотрим эти факторы поподробнее.

8.1.1 Повышенный уровень шума на рабочем месте

Шум - это беспорядочное сочетание различных по уровню и частоте звуков. Шум на производстве создают различные механизмы и машины. Шум также может возникать при работе электромагнитных устройств, при истечении воздуха и газов, а также при движении воды и жидкости.

С физиологической точки зрения шумом является всякий нежелательный, неприятный для восприятия человека шум. Шум ухудшает условия труда, оказывая вредное воздействие на организм человека. При длительном воздействии шума на организм человека происходят нежелательные явления:

снижается острота зрения, слуха;

повышается кровяное давление;

понижается внимание.

Сильный продолжительный шум может быть причиной функциональных изменений сердечно-сосудистой и нервной систем, что приводит к заболеваниям сердца и повышенной нервозности.

Ухо человека воспринимает звуковые колебания с частотой от 16 до 20000 Гц. Звуки с частотой ниже 16 Гц называют инфразвуками, а выше 20000 Гц - ультразвуками. Инфразвуки и ультразвуки также воздействуют на человека, но он их не слышит.

В зависимости от условий работы уровень звукового давления оценивается по двум методам:

нормирование по предельному спектру шума;

нормирование уровня звука.

Первый метод нормирования является основным для постоянных шумов и выражается в децибелах среднеквадратичных звуковых давлений в восьми октавных полосах частот со среднегеометрическими частотами 63, 125, 250, 500, 1000, 2000, 4000, 8000 Гц.

Второй метод нормирования общего уровня шума, измеряемого по шкале А шумомера, называемого уровнем звука, в дБА, используется для ориентировочной оценки постоянного и непостоянного шума.

Постоянный шум - уровень звука за восьмичасовой рабочий день изменяется не менее чем на 5 дБА. Такой шум подразделяется на:

колеблющийся во времени;

прерывистый;

импульсный.

Гигиенические нормы допустимых уровней звукового давления и уровня звука на рабочих местах приводятся в СН 245-71, в СанПиН 2.2.2.542-96 “Гигиенические требования к видеодисплейным терминалам, персональным электронно-вычислительным машинам и организации работы”.

Для измерения шума применяют отечественные шумомеры Ш-63, Ш-70, прибор ИШВ-1 в комплекте с октавными фильтрами, а для анализа шума используется спектрометр типа С34. Применяются также и зарубежные приборы для измерения шума: акустические комплекты фирм РГТ (Германия) и Брюль и Къер (Дания).

8.1.2 Неблагоприятный микроклимат

Значительным физическим фактором является микроклимат рабочей зоны, особенно температура и влажность воздуха. Человек постоянно находится в процессе теплового взаимодействия с окружающей средой. Исследования показывают, что высокая температура в сочетании с высокой влажностью воздуха оказывает большое влияние на работоспособность оператора. Увеличивается время реакции оператора ЭВМ, нарушается координация движений, резко увеличивается число ошибочных действий. Высокая температура на рабочем месте оператора отрицательно влияет на психологические функции: понижается внимание, уменьшается объем оперативной памяти, снижается способность к ассоциациям.

Пониженная влажность воздуха отрицательно сказывается на состоянии кожного покрова человека: кожа теряет влагу, становится сухой и шершавой. При пониженной влажности ощущается сухость во рту, появляется жажда.

Температура, относительная влажность и скорость движения воздуха влияют на теплообмен и необходимо учитывать их комплексное воздействие. Нарушение теплообмена вызывает тепловую гипертермию, или перегрев. Наступает сильное потоотделение, значительно учащается пульс, дыхание, появляется шум в ушах.

В производственных помещениях, в которых работа на ВДТ и ПЭВМ является вспомогательной, температура, относительная влажность и скорость движения воздуха на рабочих местах должны соответствовать действующим санитарным нормам микроклимата производственных помещений (СанПиН 2.2.2.542-96 “Гигиенические требования к видеодисплейным терминалам, персональным электронно-вычислительным машинам и организации работы”).

8.1.3 Повышенный уровень излучений

Электромагнитным излучением называется излучение, прямо или косвенно вызывающее ионизацию среды. Контакт с электромагнитными излучениями представляет серьезную опасность для человека.

Электромагнитное излучение принципиально отличается от остальных вредных факторов тем, что распространяется во всех направлениях и оказывает воздействие не только на пользователя, но и на окружающих.

Спектр излучения компьютерного монитора включает в себя рентгеновскую, ультрафиолетовую и инфракрасную области, а также широкий диапазон электромагнитных волн других частот. В ряде экспериментов было обнаружено, что электромагнитные поля с частотой 60 Гц (возникающие вокруг линий электропередач, видеодисплеев и даже внутренней электропроводки) могут инициировать биологические сдвиги (вплоть до нарушения синтеза ДНК) в клетках животных. В отличие от рентгеновских лучей электромагнитные волны обладают необычным свойством: опасность их воздействия совсем не обязательно уменьшается при снижении интенсивности облучения, определенные электромагнитные поля действуют на клетки лишь при малых интенсивностях излучения или на конкретных частотах - в “окнах прозрачности”. Источник высокого напряжения компьютера - строчный трансформатор - помещается в задней или боковой части терминала, уровень излучения со стороны задней панели дисплея выше, причем стенки корпуса не экранируют излучения. Поэтому пользователь должен находиться не ближе чем на 1.2 м от задних или боковых поверхностей соседних терминалов. Напряженность электростатического поля в рабочей зоне достигает 85-63 кВ/м при нормируемой 20 кВ/м. Воздействие электростатических полей в сочетании с пониженной влажностью воздуха, которая воздается при работе дисплея, может вызвать заболевание кожи лица и кистей рук в виде сыпи, покраснения, зуда и шелушения.

Следует отметить, что не только монитор, но и системный блок, и принтер - генерируют электромагнитное излучение в очень широком диапазоне частот. Но именно излучение монитора является более мощным.

Конструкция ВДТ и ПЭВМ должна обеспечивать мощность экспозиционной дозы рентгеновского излучения в любой точке на расстоянии 0,05 м. от экрана и корпуса ВДТ при любых положениях регулировочных устройств не должна превышать 7,74х10 А/кг, что соответствует эквивалентной дозе, равной 0,1 мбэр/час (100 мкР/час).

Электризация - это комплекс физических и химических процессов, приводящих к разделению в пространстве зарядов противоположных знаков или к накоплению зарядов одного знака. ЭВМ может являться источником статического электричества. Электризуется поверхность дисплея, при прикосновении к которому может возникнуть электрическая искра. Вредное воздействие статического электрического электричества сказывается не только при непосредственном контакте с зарядом, но и за счет действия электрического поля, возникающего вокруг заряженной поверхности.

В исследованиях показано, что под действием статических полей экрана монитора ионы и частички пыли приобретают положительный заряд и устремляются к ближайшему заземленному предмету - обычно им оказывается лицо пользователя, и результатом может стать не проходящая сыпь. Однако с помощью хорошего фильтра можно почти полностью освободиться от статических полей.

При статической электризации напряжение относительно земли достигает десятков, а иногда и сотен тысяч вольт. Значения токов при этих явлениях составляют, как правило, доли микроампера (0.0001-1мА). Человек начинает ощущать ток величиной 0.6-1.5мА. По ГОСТ 12.1.038-82 (Электробезопасность. Предельно допустимые значения напряжений прикосновения и токов.) напряжение электрического тока не должно превышать 42В в помещениях без повышенной опасности.

8.1.4 Недостаточность освещения

Освещение рабочего места - важнейший фактор создания нормальных условий труда. Освещению следует уделять особое внимание, так как при работе с монитором наибольшее напряжение получают глаза.

Из общего объема информации человек получает через зрительный канал около 90%. Качество поступающей информации во многом зависит от освещения: неудовлетворительное количественно или качественно оно не только утомляет зрение, но и вызывает утомление организма в целом. Освещение оказывает влияние на эргономику зрения. Рабочее место должно быть организовано таким образом, чтобы не возникали блики и отражения на мониторе, клавиатуре, на рабочей поверхности. При использовании специальных фильтров для устранения отражений и бликов может ухудшиться качество изображения. Во избежание этого следует найти другие способы устранения (встроенные фильтры, устранение источников бликов и отражений и т.д.).


Подобные документы

  • Новые сетевые технологии мобильных устройств на примере планшетов. Пути общения между людьми. Связь с помощью мобильного устройства на примере планшета. Основные сетевые технологии и схемы подключения. Сравнительные характеристики Bluetooth и NFC.

    реферат [1,7 M], добавлен 03.10.2014

  • Разработка структурной и функциональной схем устройства, в основе которой лежит аналого-цифровой преобразователь. Выбор и обоснование элементной базы для реализации устройства, разработка конструкции. Расчеты, подтверждающие работоспособность схемы.

    курсовая работа [656,0 K], добавлен 05.12.2012

  • Классификация и основные определения периферийных устройств. Устройства ввода и вывода информации, памяти, мультимедиа, связи, защиты электропитания. Интерфейсы подключения периферийных устройств. Рекомендации и правила эксплуатации компьютерной техники.

    курсовая работа [582,1 K], добавлен 06.09.2014

  • Разработка структурной и принципиальной схемы. Блок-схема основной программы и подпрограмм обработки прерываний. Имена переменных, используемых в них. Результаты моделирования работы устройства в программе ISIS пакета Рroteus. Разработка печатной платы.

    курсовая работа [1,5 M], добавлен 13.11.2016

  • Bluetooth - производственная спецификация беспроводных персональных сетей: принцип действия, устойчивость к широкополосным помехам, схемы кодирования. Технология обмена информацией между ПК и мобильными телефонами на доступной частоте для ближней связи.

    лекция [183,6 K], добавлен 15.04.2014

  • Разработка структурной схемы устройства управления учебным роботом. Выбор двигателя, микроконтроллера, микросхемы, интерфейса связи и стабилизатора. Расчет схемы электрической принципиальной. Разработка сборочного чертежа устройства и алгоритма программы.

    курсовая работа [577,8 K], добавлен 24.06.2013

  • Наименование разрабатываемого устройства. Назначение разрабатываемого устройства в городском транспорте. Обзорный анализ найденных аналогов. Обоснование актуальности разработки устройства. Разработка функциональной схемы разрабатываемого устройства.

    курсовая работа [175,6 K], добавлен 04.07.2008

  • Анализ выбора цифрового сигнального процессора и структурной схемы устройства обработки информации. Расчет надежности устройства и производительности обмена данных, разработка ленточного графика. Обзор особенностей радиального и межмодульного интерфейса.

    дипломная работа [1,8 M], добавлен 20.05.2012

  • Беспроводный метод передачи данных bluetooth, выделение его основных свойств, преимуществ и принципов работы. Технические аспекты и набор базовых протоколов технологии bluetooth, основные направления применения технологии и характеристика конкурентов.

    реферат [1,3 M], добавлен 19.11.2014

  • Сравнительный анализ существующих приборов. Разработка функциональной схемы устройства. Выбор и статистический расчет элементов, входящих в систему: датчика, источник тока, усилителя, микроконтроллера, блок питания. Блок-схема управляющей программы.

    курсовая работа [769,9 K], добавлен 12.01.2015

Работы в архивах красиво оформлены согласно требованиям ВУЗов и содержат рисунки, диаграммы, формулы и т.д.
PPT, PPTX и PDF-файлы представлены только в архивах.
Рекомендуем скачать работу.