курсовая работа Решение системы линейных уравнений методом Крамера и с помощью расширенной матрицы
Разработка программы для решения системы линейных уравнений методом Крамера и с помощью расширенной матрицы на языке С++. Описание метода Крамера. Структура программы: заголовочные файлы, типы данных, переменные, идентификаторы, операторы, массивы.
Нажав на кнопку "Скачать архив", вы скачаете нужный вам файл совершенно бесплатно.
Перед скачиванием данного файла вспомните о тех хороших рефератах, контрольных, курсовых, дипломных работах, статьях и других документах, которые лежат невостребованными в вашем компьютере. Это ваш труд, он должен участвовать в развитии общества и приносить пользу людям. Найдите эти работы и отправьте в базу знаний.
Мы и все студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будем вам очень благодарны.
Чтобы скачать архив с документом, в поле, расположенное ниже, впишите пятизначное число и нажмите кнопку "Скачать архив"
Рубрика | Программирование, компьютеры и кибернетика |
Вид | курсовая работа |
Язык | русский |
Дата добавления | 19.01.2009 |
Размер файла | 32,3 K |
Подобные документы
Общее понятие о линейных уравнениях и их системах. Разработка программного продукта в среде Delphi 7 для решения методом Крамера квадратных систем линейных алгебраических уравнений с ненулевым определителем основной матрицы. Описание конкретных примеров.
курсовая работа [193,7 K], добавлен 07.07.2013История развития алгоритмических языков. Создание языка С++. Разработка программы в Visual C++ для решения линейных уравнений методом Крамера. Структура данных, этапы тестирования программного обеспечения на работоспособность и корректность расчетов.
курсовая работа [390,0 K], добавлен 29.12.2014Решение систем алгебраических линейных уравнений методом Крамера. Сущность метода прогонки. Программная реализация метода: блок-схема алгоритма, листинг программы. Проверка применимости данного способа решения для конкретной системы линейных уравнений.
курсовая работа [581,0 K], добавлен 15.06.2013Использование MS Excel для математических расчетов. Описание численных методов решения системы линейных алгебраических уравнений. Решение систем линейных алгебраических уравнений с методами Крамера и Зейделя и с помощью табличного процессора MS Excel.
курсовая работа [1,6 M], добавлен 14.02.2021Требования к языкам программирования, их эффективность, лаконичность, ясность, реальные возможности. Создание языка С#. Применение систем линейных алгебраических уравнений для практических задач, сущность и особенности метода Крамера для их решения.
курсовая работа [118,1 K], добавлен 13.11.2009Этапы развития языков программирования. Способы решения системы линейных алгебраических уравнений методом Крамера, рассмотрение особенностей. Анализ языка программирования С++. С # как прямой потомок двух самых успешных в мире компьютерных языков.
курсовая работа [770,2 K], добавлен 27.01.2013Решение систем линейных уравнений на ЭВМ методом Крамера. Запуск Microsoft Visual Basic. Форма ввода размерности системы. Форма графика системы линейного уравнения. Матрица с неизвестными переменными. Программы построения графика и перехода между формами.
курсовая работа [743,7 K], добавлен 29.06.2011Сферы использования компьютеров, сущность и языки программирования. Применение модифицированного метода Гаусса и расширенной матрицы для решения системы линейных алгебраических уравнений (СЛАУ). Разработка программы, системные требования для ее работы.
курсовая работа [657,1 K], добавлен 09.01.2014Преобразование матрицы системы линейных алгебраических уравнений (СЛАУ) с помощью алгоритма Гаусса. Решение задачи методом простой итерации. Создание блок-схемы и текста программы для решения СЛАУ, реализованной на языке программирования Turbo Pascal.
курсовая работа [1,2 M], добавлен 15.06.2013Сущность матричного метода. Разработка программы решения системы уравнений линейных алгебраических уравнений методом решения через обратную матрицу на языке программирования Delphi. Представление блок-схемы и графического интерфейса программного продукта.
курсовая работа [1,0 M], добавлен 27.09.2014