контрольная работа Самообучающиеся системы
Характеристика моделей обучения. Общие сведения о нейроне. Искусственные нейронные сети, персептрон. Проблема XOR и пути ее решения. Нейронные сети обратного распространения. Подготовка входных и выходных данных. Нейронные сети Хопфилда и Хэмминга.
Нажав на кнопку "Скачать архив", вы скачаете нужный вам файл совершенно бесплатно.
Перед скачиванием данного файла вспомните о тех хороших рефератах, контрольных, курсовых, дипломных работах, статьях и других документах, которые лежат невостребованными в вашем компьютере. Это ваш труд, он должен участвовать в развитии общества и приносить пользу людям. Найдите эти работы и отправьте в базу знаний.
Мы и все студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будем вам очень благодарны.
Чтобы скачать архив с документом, в поле, расположенное ниже, впишите пятизначное число и нажмите кнопку "Скачать архив"
Рубрика | Программирование, компьютеры и кибернетика |
Вид | контрольная работа |
Язык | русский |
Дата добавления | 28.01.2011 |
Размер файла | 1,4 M |
Подобные документы
Основы нейрокомпьютерных систем. Искусственные нейронные сети, их применение в системах управления. Алгоритм обратного распространения. Нейронные сети Хопфилда, Хэмминга. Современные направления развития нейрокомпьютерных технологий в России и за рубежом.
дипломная работа [962,4 K], добавлен 23.06.2012Искусственные нейронные сети, строящиеся по принципам организации и функционирования их биологических аналогов. Элементарный преобразователь в сетях. Экспериментальный автопилотируемый гиперзвуковой самолет-разведчик LoFLYTE, использующий нейронные сети.
презентация [1,3 M], добавлен 23.09.2015Искусственные нейронные сети как вид математических моделей, построенных по принципу организации и функционирования сетей нервных клеток мозга. Виды сетей: полносвязные, многослойные. Классификация и аппроксимация. Алгоритм обратного распространения.
реферат [270,4 K], добавлен 07.03.2009Базовые архитектуры компьютеров: последовательная обработка символов по заданной программе и параллельное распознавание образов по обучающим примерам. Искусственные нейронные сети. Прототип для создания нейрона. Поведение искусственной нейронной сети.
контрольная работа [229,5 K], добавлен 28.05.2010Принципы организации и функционирования биологических нейронных сетей. Система соединенных и взаимодействующих между собой простых процессоров. Нейронные сети Маккалока и Питтса. Оценка качества кластеризации. Обучение многослойного персептрона.
курсовая работа [1,1 M], добавлен 06.12.2010Общие сведения о принципах построения нейронных сетей. Искусственные нейронные системы. Математическая модель нейрона. Классификация нейронных сетей. Правила обучения Хэбба, Розенблатта и Видроу-Хоффа. Алгоритм обратного распространения ошибки.
дипломная работа [814,6 K], добавлен 29.09.2014Прогнозирование на фондовом рынке с помощью нейронных сетей. Описание типа нейронной сети. Определение входных данных и их обработка. Архитектура нейронной сети. Точность результата. Моделирование торговли. Нейронная сеть прямого распространения сигнала.
дипломная работа [2,7 M], добавлен 18.02.2017Математическая модель нейронной сети. Однослойный и многослойный персептрон, рекуррентные сети. Обучение нейронных сетей с учителем и без него. Алгоритм обратного распространения ошибки. Подготовка данных, схема системы сети с динамическим объектом.
дипломная работа [2,6 M], добавлен 23.09.2013Рождение искусственного интеллекта. История развития нейронных сетей, эволюционного программирования, нечеткой логики. Генетические алгоритмы, их применение. Искусственный интеллект, нейронные сети, эволюционное программирование и нечеткая логика сейчас.
реферат [78,9 K], добавлен 22.01.2015Разработка нейронной сети, ее применение в алгоритме выбора оружия ботом в трехмерном шутере от первого лица, тестирование алгоритма и выявление достоинств и недостатков данного подхода. Обучение с подкреплением. Описание проекта в Unreal Engine 4.
контрольная работа [611,0 K], добавлен 30.11.2016