презентация Современные системы моделирования. Метод конечных элементов. Введение в ANSYS
Решение дифференциальных уравнений с частными производными. Метод конечных элементов, история развития, преимущества и недостатки. История разработки программной системы. Задачи, решаемые с помощью программного комплекса, области применения ANSYS.
Нажав на кнопку "Скачать архив", вы скачаете нужный вам файл совершенно бесплатно.
Перед скачиванием данного файла вспомните о тех хороших рефератах, контрольных, курсовых, дипломных работах, статьях и других документах, которые лежат невостребованными в вашем компьютере. Это ваш труд, он должен участвовать в развитии общества и приносить пользу людям. Найдите эти работы и отправьте в базу знаний.
Мы и все студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будем вам очень благодарны.
Чтобы скачать архив с документом, в поле, расположенное ниже, впишите пятизначное число и нажмите кнопку "Скачать архив"
Рубрика | Программирование, компьютеры и кибернетика |
Вид | презентация |
Язык | русский |
Дата добавления | 07.03.2013 |
Размер файла | 1,7 M |
Подобные документы
Основные численные методы моделирования. Понятие метода конечных элементов. Описание основных типов конечных элементов и построение сетки. Реализация модели конструкции в пакете ANSYS, на языке программирования C#. Реализация интерфейса пользователя.
курсовая работа [2,3 M], добавлен 22.01.2016Упругие волны, волновое уравнение, дифракция волн. Метод коллокаций, конечных и граничных элементов. Методы возбуждения ультразвуковых волн в объекте. Численный метод решения дифференциальных уравнений с частными производными. Уменьшение зоны смещения.
дипломная работа [1,4 M], добавлен 14.10.2013Основные уравнения газовой динамики, численные методы решения дифференциальных уравнений и его структура. Сущность метода контрольного объема центрированного по узлу и ячейке в программном пакете ANSYS CFX. Основы моделирования нестационарного обтекания.
дипломная работа [1,8 M], добавлен 01.06.2010Ручной расчет трехстержневой фермы в ansys 14.5. Расчет пластины при одноосном растяжении, термическом расширении. Нахождение параметров профильного диска при вращении с постоянной угловой скоростью. Определение перемещений, напряжений в круглой пластине.
курсовая работа [2,5 M], добавлен 09.12.2013О методе конечных элементов. Методика анализа формоизменяющих операций листовой штамповки с использованием программного комплекса ANSYS\LS-DYNA. Анализ операции осесимметричной вытяжки тонколистовой заготовки. Отображение значений напряжений и деформаций.
дипломная работа [4,3 M], добавлен 10.09.2013Основные этапы математического моделирования. Метод Эйлера как наиболее простой численный метод решения обыкновенных дифференциальных уравнений. Написание компьютерной программы, которая позволит изучать графики системы дифференциальных уравнений.
курсовая работа [1,9 M], добавлен 05.01.2013Анализ многозондовой системы для формирования нанообъектов на подложке методом конечных элементов. Метод конечных элементов. Функционирование многозондовой системы для формирования нанообъектов на подложке. Автоматизированное управление и защита.
дипломная работа [2,1 M], добавлен 03.07.2017Расчет аэродинамических характеристик плоского профиля методами физического и численного экспериментов. Описание программных комплексов ANSYS ICEM и ANSYS CFX. Потенциально-опасные и вредные производственные факторы при работе на ПЭВМ, планирование НИР.
дипломная работа [4,1 M], добавлен 01.06.2010Основные положения метода конечных элементов для решения электромагнитных задач. Общая характеристика, назначение и сравнение основных функциональных возможностей двух устройств с постоянными магнитами NdFeB: магнитной пружины и магнитного держателя.
дипломная работа [3,1 M], добавлен 30.08.2010Численные методы решения задачи Коши для обыкновенных дифференциальных уравнений: Эйлера, Рунге-Кутта, Адамса и Рунге. Техники приближенного решения данных уравнений: метод конечных разностей, разностной прогонки, коллокаций; анализ результатов.
курсовая работа [532,9 K], добавлен 14.01.2014