курсовая работа Обучение персептрона с использованием нормированной функции настройки
Понятия интеллектуальной информационной системы. Нейронные сети и информационные программные средства для реализации их алгоритмов. Моделирование систем в среде MATLAB. Особенности выполнения демонстрационного примера "Обучение персептрона с Learnpn".
Нажав на кнопку "Скачать архив", вы скачаете нужный вам файл совершенно бесплатно.
Перед скачиванием данного файла вспомните о тех хороших рефератах, контрольных, курсовых, дипломных работах, статьях и других документах, которые лежат невостребованными в вашем компьютере. Это ваш труд, он должен участвовать в развитии общества и приносить пользу людям. Найдите эти работы и отправьте в базу знаний.
Мы и все студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будем вам очень благодарны.
Чтобы скачать архив с документом, в поле, расположенное ниже, впишите пятизначное число и нажмите кнопку "Скачать архив"
Рубрика | Программирование, компьютеры и кибернетика |
Вид | курсовая работа |
Язык | русский |
Дата добавления | 20.02.2013 |
Размер файла | 572,8 K |
Подобные документы
Понятие, закономерности функционирования нейронных сетей, Обзор информационных технологий, программных средств для реализации соответствующих алгоритмов. Детальное описание особенностей выполнения демонстрационного примера, составление программного кода.
курсовая работа [551,3 K], добавлен 09.04.2015Принципы организации и функционирования биологических нейронных сетей. Система соединенных и взаимодействующих между собой простых процессоров. Нейронные сети Маккалока и Питтса. Оценка качества кластеризации. Обучение многослойного персептрона.
курсовая работа [1,1 M], добавлен 06.12.2010Математическая модель искусственной нейронной сети. Структура многослойного персептрона. Обучение без учителя, методом соревнования. Правило коррекции по ошибке. Метод Хэбба. Генетический алгоритм. Применение нейронных сетей для синтеза регуляторов.
дипломная работа [1,5 M], добавлен 17.09.2013История возникновения, примеры использования и основные виды искусственных нейронных сетей. Анализ задач, решаемых при помощи Персептрона Розенблатта, создание схемы имитационной модели в среде Delphi. Исходные коды компьютерной программы Perseptron.
дипломная работа [933,1 K], добавлен 18.12.2011Программные средства имитационного моделирования систем массового обслуживания. Программная среда Matlab, ее структура и основные компоненты, функциональные особенности, а также назначение. Разработка подсистем моделирования. Инструкция пользователя.
дипломная работа [3,3 M], добавлен 10.07.2017Преимущества и недостатки нейронных сетей с радиальными базисными функциями (РБФ). Функции newrbe и newrb для построения РБФ общего вида и автоматической настройки весов и смещений. Пример построения нейронной сети с РБФ в математической среде Matlab.
лабораторная работа [238,7 K], добавлен 05.10.2010Понятие искусственного нейрона и искусственных нейронных сетей. Сущность процесса обучения нейронной сети и аппроксимации функции. Смысл алгоритма обучения с учителем. Построение и обучение нейронной сети для аппроксимации функции в среде Matlab.
лабораторная работа [1,1 M], добавлен 05.10.2010Разработка системы оценки кредитоспособности заемщика с использованием персептрона. Сущность скоринговых систем, нейронных сетей. Скоринговые системы как средство минимизации кредитного риска. Этапы проектирования сети. Определение значимости параметров.
презентация [882,9 K], добавлен 19.08.2013Лазерные средства отображения информации. Особенности сопряжения имитационной модели Matlab-Simulink и программное обеспечение визуализации. Возможности средств разработки виртуальных миров, использующих VRML, для визуализации моделирования системы.
курсовая работа [1,6 M], добавлен 01.12.2014Сущность и понятие кластеризации, ее цель, задачи, алгоритмы; использование искусственных нейронных сетей для кластеризации данных. Сеть Кохонена, самоорганизующиеся нейронные сети: структура, архитектура; моделирование кластеризации данных в MATLAB NNT.
дипломная работа [3,1 M], добавлен 21.03.2011