Проектирование локальной вычислительной сети в УПТС Арселор МиталлСтил (ш.Костенко)

Обзор существующих принципов построения локальных вычислительных сетей. Структурированные кабельные системы (СКС), коммутационное оборудование. Проект локальной вычислительной сети: технические требования, программное обеспечение, пропускная способность.

Рубрика Коммуникации, связь, цифровые приборы и радиоэлектроника
Вид дипломная работа
Язык русский
Дата добавления 25.02.2011
Размер файла 1,8 M

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

Например, шнур, коммутирующий две точки подключения (patch) называется пэтч-кордом или шнуром переключения, а идентичный ему шнур, коммутирующий точку подключения и хаб носит название аппаратный шнур или шнур активного оборудования. Шнур, соединяющий рабочую станцию с коннектором телекоммуникационной розетки также называется аппаратным шнуром. Аппаратные шнуры иногда носят название пользовательских шнуров, поскольку они в основном подключаются конечным пользователем, а не монтажником. И, наконец, все эти шнуры иногда называют кабелями. Единственной условной чертой, отличающей пэтч-корд от пользовательского шнура, является его меньшая длина.

Основной характеристикой пэтч-корда является его гибкость. Это означает, что он должен быть изготовлен из многожильных проводников и иметь гибкую пластиковую внешнюю оболочку. Как правило, пэтч-корды состоят из четырех медных многожильных пар 100 0м с размером проводника 24 AWG в пластиковой изоляции и в общей пластиковой оболочке. Разрешается использовать проводники размером 22 AWG, но применяются они редко. Пластиковая изоляция - это обычно PVC (ПВХ) или компаунд со сходными характеристиками. Поскольку пэтч-корды используются на рабочих местах и в телекоммуникационных шкафах, не являющихся пространствами категории plenum, они не требуют применения специальных материалов оболочки.

Цветовая кодировка проводников пэтч-кордов может быть самой разнообразной, но, в основном, применяется стандартный 4-парный код.

Стандарт TIA 568-А, кроме основного, предлагает альтернативный цветовой код, в который входят восемь уникальных сплошных цветов.

Для пэтч-кордов существует отдельная система требований к рабочим характеристикам, которые несколько отличаются от характеристик горизонтального кабеля. Большинство требований к передающим свойствам такие же, за исключением допущения увеличения затухания на 20% (TIA 568-А) по сравнению с одножильными проводниками и некоторых требований к конструкции.

Это требование более жесткое по сравнению с требованием ISO 11801, в котором допустимое отклонение значений затухания определено в 50%. Пределы затухания различны для трех категорий рабочих характеристик и определены для длины 100 м. При приобретении готовых пэтч-кордов необходимо удостовериться, что они сертифицированы производителем на соответствие требованиям стандарта TIA 568-А к определенной категории рабочих характеристик. Сертификационное тестирование независимой организацией, такой как, например, UL, является показателем качества и гарантий.

Тестирование пэтч-кордов представляет собой довольно сложную задачу для конечного пользователя и для производителя. Стандарты содержат детальные спецификации требований к рабочим характеристикам кабельных компонентов и коммутационного оборудования, но на настоящий момент не существует спецификаций для пэтч-кордов в сборе. Кроме этого, некоторые тесты, такие как тест NEXT, дают не достоверные результаты для линий короче 15 м вследствие явления, называемого резонансом. Многие тестеры не способны измерять характеристики кабеля короче 6 м. Производители телекоммуникационных компонентов для тестирования пэтч-кордов используют сетевые анализаторы - лабораторные анализаторы частотных характеристик с высокими уровнями точности измерений. Вследствие этого, при изготовлении пэтч-кордов в непроизводственных условиях единственной гарантией качества рабочих характеристик пэтч-корда является использование высококачественных компонентов, и тщательное соблюдение технологических правил. Качество работы имеет первостепенное значение, поскольку необходимо произвести развитие пары перед присоединением модульной вилки. Если развитие пары не удалось минимизировать, вилка терминированная подобным образом, внесет свой вклад в деградацию рабочих характеристик линии в гораздо большей степени, чем недостатки ее конструкции. Именно по этой причине, вследствие неотвратимого развития пар при терминировании, конструкция модульной вилки до сих пор не имеет спецификаций высокочастотных рабочих характеристик. В Приложении B к стандарту TIA 568-А показаны и описаны детальные процедуры сборки и терминирования пэтч-кордов. [4, c.133]

1.3.8 Волоконно-оптическое коммутационное оборудование и пэтч-корды

В волоконно-оптических линиях часто используются пэтч-панели и пэтч-корды в телекоммуникационных шкафах. По своей природе любое волоконно-оптическое межсоединение почти всегда является фактом коммутации, так как требуется поддержание непрерывности пути прохождения светового потока. Оптические кабели, приходящие от рабочих станций или из других телекоммуникационных шкафов, обычно терминируются в специальных боксах, позволяющих защитить оптическое волокно от случайных повреждений. Терминационные боксы могут служить и в качестве точек коммутации небольшого числа соединений, а для крупных систем применяются выделенные коммутационные кроссы, обслуживающие все входящие и выходящие волоконно-оптические кабели.

Оптические пэтч-панели, сконструированные в соответствии с требованиями стандарта TIA 568-А, используют точно такие же пассивные дуплексные адаптеры SC, которые применяются в телекоммуникационных розетках на рабочем месте. Волокна оптических кабелей терминируются непосредственно коннекторами SC (или другим типом) без прохождения через какое-либо промежуточное устройство, такое как, например, коммутационный блок в медном каблировании.

Волоконно-оптическая пэтч-панель состоит из матрицы дуплексных адаптеров SC или гибридных адаптеров. Если во всей системе, включая волоконно-оптические хабы, репитеры или сетевые адаптеры, используются рекомендуемые волоконные коннекторы SC, матрица адаптеров формируется из SC-адаптеров.

Однако иногда требуется конвертирование соединений между различными типами коннекторов. Существуют сотни типов сетевого оборудования с волоконно-оптическими интерфейсами, использующими разнообразные типы коннекторов, такие, как, например, популярные коннекторы ST или SMA. На протяжении нескольких лет еще понадобится конверсия между различными типами коннекторов. В Приложении F стандарта TIA 568-А предписывается переход на систему коннекторов SC. Причиной выбора коннектора SC в качестве рекомендуемого стандартом послужила его прямоугольная конструкция, позволяющая осуществлять быстрое подключение и отключение и легкость компоновки поляризованных пар коннекторов (дуплексных коннекторов).

Для реализации перехода от другого типа коннектора на коннектор SC необходимо использовать гибридный адаптер или конвертирующий кабель.

Гибридный адаптер является пассивным переходником, соединяющим два разнородных коннектора, а конвертирующий кабель просто имеет разные коннекторы, установленные на противоположных его концах. Другие типы коннекторов, как правило, не имеют интегрированного свойства поляризации, поэтому при коммутации приходится уделять внимание тому, какой из коннекторов в дуплексной линии должен подключаться к приемнику, а какой - к передатчику.

Эти пэтч-корды обычно изготавливаются из гибкого дуплексного волоконного кабеля, довольно часто носящего название "zip cord", так как они сходны по внешнему виду с бытовыми электрическими шнурами с таким же именем. Так как волокна всегда коммутируются парами, двухволоконная конструкция кабеля создана так, что кабель легко разделяется на две части.

Для соединения двух коннекторов SC в один модуль применяется дуплексный замок. Волоконные коннекторы, соединенные таким образом, ориентированы точно в соответствии с ориентацией адаптеров. Таким образом, коннекторы А и В будут однозначно вставлены в адаптер на свои места. Существует две ориентации коннекторов в волоконно-оптических пэтч-кордах - АВ и ВА. На самом деле, не имеет значения, какая ориентация используется на разных концах пэтч-корда при условии, что она реверсирована и полярность волокна меняется при переходе от одного конца к другому. Адаптеры и коннекторы могут иметь цветовую кодировку, например, красный или белый цвет, что помогает при монтаже и впоследствии при соединении. Стандарт TIA не определяет специальные цвета. Следует помнить, что позиции А и В не определяют направление распространения оптического сигнала, а просто служат маркировкой, подобной номерам коннекторов в обычном медном коннекторе.

Принцип коммутации сегментов в оптической линии заключается в следующем - сколько бы ни было задействовано в линии кабельных сегментов, адаптеров и коннекторов, сигнал, начавший свое путешествии по линии с позиции А на одном конце, должен прийти в позицию В на другом. Это делается для создания переходов передатчик-приемник, обеспечивающих функционирование линии. [4, c.139]

1.3.9 Коннекторы

Кабельные коннекторы

В данном разделе рассмотрены три основных типа "медных" кабельных коннекторов -модульные коннекторы, коаксиальные коннекторы и коннекторы IBM Data, - и волоконно-оптические коннекторы. Модульный коннектор является наиболее распространенным в современных телекоммуникационных системах вследствие растущего использования кабелей витая пара. Коаксиал в течение продолжительного времени использовался в традиционных системах Ethernet и Arcnet, но постепенно он исключается из большинства инсталляций. Коннектор IBM Data Connector является одним из основных компонентов в системах на основе ЭВП и специфицирован для применения стандартом TIA 568-А. [4, c.141]

1.3.10 Модульные коннекторы

Основой информационной розетки является модульный разъем. Проводники, покрытые пленкой золота, обеспечивают стабильный, надежный электрический контакт с ламелями модульной вилки. Качество контакта также улучшается за счет механизма притирки проводников разъема и ламелей вилки во время ее вставления в разъем. Корпус розетки снабжен интегрированным замком, который после вставления вилки позволяет выдерживать значительные усилия растяжения на стыке розетка-вилка.

Модульный разъем в информационной розетке может быть двух видов - 6- или 8-позиционным. Контакты во всех разъемах нумеруются слева направо по отношению к передней стороне разъема при ориентированном вниз ключе замка.

Модульные коннекторы, используемые в телекоммуникационных системах, аналогичны коннекторам, применяемым в кабельных системах телефонии.

Коннектор существует в нескольких вариантах размеров и конфигураций контактов, начиная с четырех и заканчивая восемью позициями и от двух до восьми контактов. Самым популярным типом разъема является так называемый USOC (Universal Service Order Code), имеющий номенклатурные префиксы "RJ", за которыми следует номер серии. Часто этими названиями пользуются для обозначения приложений, не имеющих к коду никакого отношения. Так, например, обычную 6-контактную телефонную вилку часто называют RJ-11, а 8-контактную модульную вилку - RJ-45. 8-контактная модульная вилка используется в соответствии с TIA 568-А как для телефонии, так и для приложений передачи данных, 8-контактный модульный разъем также служит интерфейсом для таких приложений как 10BaseT, 100BaseT, 100VG-AnyLAN, Token-Ring/UTP.

8-позиционный модульный разъем очень часто неверно называют именем специализированного коннектора RJ-45. Схема разводки интерфейса RJ-45 (включающая в себя интерфейсный программный резистор) настолько радикально отличается от схем Т568А и В, что нет абсолютно никаких оснований для смешивания этих двух названий. Правильное название для разъема - "8-позиционный модульный". В действительности все модульные коннекторы с одинаковым количеством позиций конструкционно одинаковы до момента терминирования. После терминирования возможно называть их по имени схемы разводки. Например, при реализации интерфейса и схемы разводки 10BaseT можно подключить только четыре пары 8-позиционного модульного разъема. В этом случае, он не может называться ни Т568А, ни В, так как обе эти схемы требуют подключения всех восьми контактов. Также он не будет соответствовать схеме RJ-45, так как схема разводки будет неверной, а программный резистор отсутствовать.

8-позиционный модульный разъем, используемый в стандартных кабельных и системах, описан в стандарте IEC 603-7. Этот же разъем определен в стандарте TIA 568-А и сопутствующих документах, а также в ISO/IEC IS-11801.

Модульные коннекторы, в основном, предназначены для терминирования кабелей с многожильными проводниками. Первоначально коннектор был создан для терминирования плоского кабеля, состоящего из 2-8 многожильных проводников. Его назначение было ограничено аудиочастотами телефонных линий, хотя официально его рабочие частотные характеристики определены до 3 МГц. К сожалению, промышленность не только вынуждена использовать эти коннекторы на частотах намного превышающие специфицированные стандартом, но и использовать их для терминирования витых пар круглых кабелей. Для того, чтобы разрешить использование модульных коннекторов на рабочих частотах кабельных систем от 10 до 100 МГц, TIA просто определяет критерии рабочих характеристик (в основном, затухание и NEXT), которым должен соответствовать коннектор. При условии соответствия конкретного коннектора этим спецификациям, он может быть использован для работы с приложениями до категории 5.

Существуют модульные коннекторы, предназначенные для терминирования одножильных проводников, несмотря на то, что терминирование одножильных проводников даже с помощью специальных коннекторов настоятельно не рекомендуется. Модульный контакт представляет собой плоский контакт с заостренным концом, который при терминировании прорезает изоляцию проводника и создает электрический контакт с медным многожильным проводником. Контакт может создаваться в одной или нескольких точках.

Если применять эту технологию к одножильному проводнику, при терминировании он может сдвинуться в сторону от концов контакта и может образоваться неполноценный контакт или вообще отсутствие контакта. По этой причине контакты для терминирования одножильных проводников имеют три заостренных выступа на нижней стороне. При терминировании проводник центрируется между тремя выступами и удерживается ими с созданием надежного контакта.

Экранированные модульные вилки были разработаны для терминирования экранированных кабелей различных типов. Как правило, вилка состоит из стандартного модульного коннектора с металлическим рукавом, проходящим по внешней поверхности коннектора и повторяющего его форму. При использовании таких вилок необходимо применять розетки, совместимые с этими вилками для обеспечения правильного функционирования экрана. Иногда заземляющий проводник экрана кабеля может терминироваться на одном из контактов вилки 8-позиционного модульного разъема, но при этом утрачивается возможность стандартного соединения четырех сбалансированных пар. Единственным экранированным коннектором, рекомендованным стандартом TIA, является так называемый IBM Data Connector (STP-A, 2 пары, 150 0м). [4, c.149]

1.3.11 Терминирование модульных коннекторов

Процедура терминирования кабеля модульной вилкой заключается в следующем.

Оболочка кабеля удаляется на расстояние как минимум 20 мм от конца проводников. Пары раскладываются в том порядке цветов, который соответствует выбранной схеме разводки (например, 1-2, 3-6, 4-5 и 7-8).

Цвет первых двух пар зависит от выбранной схемы - Т568А или Т568В. Концу оболочки кабеля придается плоская форма для обеспечения возможности расположения пар в один ряд. Пары развиваются вплоть до края оболочки кабеля. Проводники раскладываются таким образом, чтобы формировался плоский слой из параллельно расположенных проводников. Проводник 6 должен пересекать проводники 4 и 5 так, чтобы кроссовер находился на расстоянии не более 4 мм от края оболочки кабеля.

Проводники подрезаются на расстояние около 14 мм от края оболочки кабеля.

Вилка помещается на проводники так, что они проходят до терминационных каналов в вилке, а оболочка кабеля заходит в вилку, по крайней мере, на расстояние 6 мм. Вилка обжимается с помощью специального обжимного инструмента. После терминирования обоих концов кабеля, он проверяется на непрерывность и схему разводки. [4, c.148]

1.3.12 Волоконно-оптические коннекторы

Данное руководство по волоконно-оптическим коннекторам дает краткое описание наиболее распространенных типов коннекторов, доступных для использования с любым типом волоконно-оптического кабельного узла.

ST-совместимый. Коннектор небольшого размера с замковым байонетом для простого соединения и рассоединения. Жесткое соединение. Предлагается в многомодовом и одномодовом вариантах. Полностью совместим с существующим ST-оборудованием.

Применяется для систем обработки данных, телекоммуникаций и локальных сетей, измерительной аппаратуры и других приложений. Имеет низкий показатель потерь на переходе и при отражении.

SMA. Коннектор небольшого размера с фиксирующей гайкой типа SMA. Жесткое соединение. Используются с многомодовыми кабелями в устройствах связи передачи данных, таких как локальные сети и сети для обработки данных, в измерительной аппаратуре. Имеет низкий показатель потерь на переходе.

Полностью совместим с существующим SMA-оборудованием.

Biconic (двухконусный). Коннектор небольшого размера с винтовой резьбой, колпачком и пружинным замковым механизмом. Имеет низкий показатель потерь на переходе и при отражении. Совместим со всем оборудованием Biconic.

Escon (торговая марка IBM). Совместим с оборудованием IBM Escon.

Существует в одномодовом и многомодовом вариантах.

FDDI. Дуплексная волоконно-оптическая система коннекторов с керамической манжетой, полностью совместимая с стандартом ANSI FDDI PMD. Применяется в устройствах связи передачи данных, включая магистральные линии связи FDDI, IEEE 802.4. Жесткое соединение, с замковым механизмом. Имеет низкий показатель потерь на переходе.

FC. Модульный коннектор, разработанный для упрощения процедуры терминирования. Совместим с оборудованием NTT-FC и NTT-D3. Жесткое резьбовое соединение. Существует в одномодовом и многомодовом вариантах.

Применяется в телекоммуникациях, сетях обработки данных, в измерительной аппаратуре. Имеет низкий показатель потерь на переходе и при отражении.

D4. Совместим с оборудованием NTT-D4. Имеет ключ на манжете для надежного соединения. Износоустойчивая конструкция, дающая возможность продолжительного использования. Имеет низкий показатель потерь на переходе и при отражении.

SC. Квадратный профиль, обеспечивающий высокую плотность конструкции.

Функция "тяни-толкай" облегчает соединение. Существует в одномодовом и многомодовом вариантах. Имеет низкий показатель потерь на переходе и при отражении. [4, c.151]

1.3.13 Быстрофиксируемые коннекторы

Адгезивная технология с ультрафиолетовым отверженцем. В данном технологическом процессе используется адгезив, затвердевающий при облучении ультрафиолетовым излучением. Время фиксации коннектора составляет менее одной минуты и коннектор после обработки ультрафиолетом не нагревается и готов к полировке. Кроме этих преимуществ, УФ-лампа довольно легкая и может питаться от сети переменного тока и от аккумуляторов.

Адгезивная технология с горячим плавлением. При данной технологии коннектор заранее заполняется адгезивом и нет необходимости готовить и смешивать эпоксидную смолу. Коннектор нагревается, волокно вставляется в него, а затем коннектор охлаждается. После этого производится полировка в один этап.

Анаэробная адгезивная система. Анаэробный адгезив застывает при отсутствии кислорода. Адгезивом заполняется фильера манжеты коннектора, затем вставляется волокно. Так как воздух вытесняется из фильеры волокном, адгезив застывает. Технология не требует использования печей, нагревателей, а также источников электропитания. Для завершения процедуры терминирования производится полировка коннектора.

Технология терминирования коннекторов без применения процессов полировки и застывания адгезива.

1.3.14 Система CamLite (Siecor).

Коннектор CamLite использует при терминировании уникальную - безадгезивную и безполировочную технологию. Отрезок волокна устанавливается в манжете коннектора и конец манжеты полируется в производственных условиях. Другой конец куска волокна прецизионно скалывается и помещается в патентованный позиционирующий механизм. Таким образом, при монтаже в полевых условиях необходимо только сколоть конец волокна и вставить его в муфту. Полировка не требуется и качество контакта гарантировано. [4, c.159]

1.3.15 Система LightCrimp (АМР).

Коннектор LightCrimp использует при терминировании безадгезивную и безэпоксидную технологию. Волокно в буферной оболочке фиксируется в коннекторе с помощью трех сфер, расположенных в корпусе коннектора. При обжиме сферы деформируются под воздействием инструмента и удерживают волокно на месте. После процедуры обжима волокно, выступающее из манжеты, скалывается, и коннектор быстро полируется.

Система CrimpLok (ЗМ). Коннектор CrimpLok использует при терминировании безадгезивную и безэпоксидную технологию. Волокно без буферной оболочки фиксируется в коннекторе с помощью обжима в прецизионном позиционирующем металлическом элементе. После процедуры обжима волокно, выступающее из Манжеты, скалывается, и коннектор быстро полируется. [4, c.159]

1.3.16 Каблирование на основе волоконно-оптического кабеля

Приведенные ниже спецификации по волоконно-оптическому каблированию состоят из одного признанного типа кабеля для горизонтальных подсистем и двух типов кабеля для магистральных подсистем. Горизонтальные - многомодовое волокно 62,5/125 мкм (два волокна на одну розетку).

Магистральные - многомодовое волокно 62,5/125 мкм или одномодовое волокно.

Все компоненты волоконно-оптических систем, а также методы монтажа должны отвечать требованиям соответствующих строительных нормативов и нормативов безопасности.

Волоконно-оптические кабели. Горизонтальные кабели должны содержать не менее 2-х волокон. Это требование связано с необходимостью обеспечения минимальной конфигурации линии приемник-передатчик, так как современные технологии передачи информации по оптическому волокну используют симплексный метод. Обычно в магистральном каблировании используются кабели с числом волокон, кратным 6 или 12 (американский стандарт), или 4 (европейский стандарт).

Многомодовое волокно 62,5/125 мкм должно обладать градиентным показателем преломления.

Для одномодового волокна спецификации стандарта определяют диаметр ядра от 8,7 до 10 мкм и внешний диаметр демпфера 125 мкм. Номинальный полевой модальный диаметр должен составлять от 8,7 до 10,0 мкм с допуском ± 0,5 мкм на длине волны 1300 нм при измерении в соответствии с требованиями стандартов ANSI/EIA/TIA-455-164 (Far Field Scanning) или ANSI/EIA/TIA-455-167 (Variable Aperture Method in the Far Field).

Кабель должен быть маркирован в соответствии с применимыми электрическими нормативами. [4, c.168]

1.3.17 Соединение волоконно-оптических кабелей.

Рекомендуемый стандартом тип адаптера и коннектора - 568SC (дуплексный SC). С кабельной стороны пэтч-панели и телекоммуникационной розетки допускается использование как симплексного, так и дуплексного коннекторов. Если применяются коннекторы типа SC, пользовательской стороной пэтч-панели и телекоммуникационной розетки должен быть адаптер 568SC. Применение коннекторов ST допускается там, где уже существует ранее установленная база ST.

Коннекторы и адаптеры типа ST считаются устаревшей технологией и не рекомендуются для использования в новых системах.

Для двухволоконных приложений требуются пэтч-корды, терминированные коннекторами 568SC (дуплексные SC). Идентификация типов волокна в коннекторах 568SC по требованию стандарта должна быть следующей: многомодовые коннекторы и адаптеры должны быть бежевого цвета: одномодовые коннекторы и адаптеры должны быть голубого цвета. Две позиции в дуплексном коннекторе обозначаются как "позиция А" и "позиция В". Адаптер 568SC обеспечивает логический кроссовер позиций А и В двух коннекторов.

Стандарт регламентирует некоторые эксплуатационные свойства волоконно-оптических коннекторов и адаптеров. Минимальное число циклов коммутации коннектора 568SC должно составлять 500. Волоконно-оптическая розетка должна обеспечивать следующее:

- защиту оптических волокон от внешних воздействий; средства укладки кабеля, гарантирующие поддержание минимального радиуса изгиба 30 мм;

- механизм для хранения запаса волоконно-оптического кабеля не менее 1 м.

Нетерминированные волокна должны храниться в монтажной коробке телекоммуникационной розетки. [4, c.166]

1.3.18 Монтаж волоконно-оптического коммутационного оборудования

Коммутационное оборудование для оптического волокна должно обладать способностью к терминированию не более 144 оптических волокон на 14 rms (rms - rack mount space, единица измерения монтажного пространства в аппаратных стойках, 1 rms = 1+3/4" или 44,45 мм) в стойках или на участке стены площадью 0,6 м х 0,6 м. Должно быть обеспечено место для размещения 12 или более волокон на 1 rms в стойках. Коннекторы должны быть защищены от физического повреждения и влаги. Волоконно-оптические пэтч-корды должны быть изготовлены из двухволоконного кабеля того же типа, что и сегменты волоконной кабельной системы, которые они коммутируют, должны обеспечивать простое соединение и рассоединение и гарантировать сохранение полярности волоконно-оптической линии. Для сохранения полярности линии пэтч-корды должны выполнять логический (а не физический) кроссовер волоконных позиций А и В. Если используется двойная симплексная конфигурация, на концах волокна коннекторы должны иметь метки "А" и "В". [4, c.169 ]

1.4 Типы устройств Fast Ethernet

MII интерфейс - обеспечивает связь между подуровнями согласования и физического кодирования. Основное его назначение - упростить использование разных типов среды. MII интерфейс предполагает дальнейшее подключение трансивера Fast Ethernet. Для связи используется 40-контактный разъем.

Каждый трансивер должен использовать свой собственный набор схем кодирования, наилучшим образом подходящий для соответствующего физического интерфейса, например набор 4B/5B и NRZI для стандарта 100Base-FX.

Трансивер - это двухпортовое устройство, имеющее с одной стороны, MII интерфейс, с другой - один из средозависимых физических интерфейсов (100Base-FX, 100Base-TX или 100Base-T4). Трансиверы используются сравнительно редко, как и редко используются сетевые карты, повторители и коммутаторы с интерфейсом MII. [5]

Сетевая карта. Наиболее широкое распространение получили сетевые карты с интерфейсом 100Base-TX на шину PCI. Необязательными, но крайне желательными, функциями порта RJ-45 являются автоконфигурирование 100/10 Мбит/с и поддержка дуплексного режима. Большинство современных выпускаемых карт поддерживают эти функции. Выпускаются также сетевые карты с оптическим интерфейсом 100Base-FX - с основным оптическим разъемом SC на многомодовое волокно.

Конвертер - это двухпортовое устройство, оба порта которого представляют средозависимые интерфейсы. Конвертеры, в отличие от повторителей, могут работать в дуплексном режиме. Распространены конвертеры 100Base- TX/100Base-FX.

Повторитель - многопортовое устройство, которое позволяет объединить несколько сегментов. Принимая кадр или сигнал коллизии по одному из своих портов, повторитель перенаправляет его во все остальные порты.

Распространены устройства с несколькими портами на витую пару (12, 16 или 24 порта RJ-45), одним портом BNC и одним портом AUI. Повторители работают на физическом уровне модели OSI. По параметру максимальных временных задержек при ретрансляции кадров, повторители Fast Ethernet подразделяются на два класса:

Класс I. Задержка на двойном пробеге RTD не должна превышать 130 BT. В силу менее жестких требований, повторители этого класса могут иметь порты T4 и TX/FX, а также объединяться в стек.

Класс II. К повторителям этого класса предъявляются более жесткие требования по задержке на двойном пробеге: RTD < 92 BT, если порты типа TX/FX, и RTD < 67 BT, если все порты типа Т4. (В силу значительных отличий в организации физических уровней возникает большая задержка кадра при ретрансляции между портами интерфейсов Т4 и TX/FX. Поэтому повторители, совмещающие в пределах одного устройства порты Т4 с TX/FX отнесены к классу I.)

Коммутатор - одно из наиболее важных устройств при построении корпоративных сетей. Коммутатор работает на втором канальном уровне модели OSI. Главное назначение коммутатора - разгрузка сети посредством локализации трафика в пределах отдельных сегментов.

Ключевым звеном коммутатора является архитектура без блокирования (non-blocking), которая позволяет установить множественные связи Ethernet между разными парами портов одновременно, причем кадры не теряются в процессе коммутации. Сам трафик между взаимодействующими сетевыми устройствами остается локализованными. Локализация осуществляется с помощью адресных таблиц, устанавливающих связь каждого порта с адресами сетевых устройств, относящихся к сегменту этого порта. Таблица заполняется в процессе анализа коммутатором адресов станций отправителей в передаваемых ими кадрах. Кадр передается через коммутатор локально в соответствующий порт только тогда, когда адрес станции назначения, указанный в поле кадра, уже содержится в адресной таблице этого порта. В случае отсутствия в таблице адреса станции назначения, кадр рассылается во все остальные сегменты. Если коммутатор обнаруживает, что MAC-адрес станции назначения приходящего кадра находится в таблице MAC-адресов, приписанной за портом, то этот кадр сбрасывается - его непосредственно получит станция назначения, находящаяся в данном сегменте. И, наконец, если приходящий кадр является широковещательным (broadcast), т.е. если все биты поля MAC-адреса получателя в кадре задаются равными 1, то такой кадр будет размножен коммутатором (подобно концентратору), т.е. направляются во все остальные порты. [6, c.102]

Различают две альтернативные технологии коммутации:

1. Без буферизации (cut-through);

2. С буферизацией SAF (store-and-forward).

Коммутатор, работающий без буферизации, практически сразу же после чтения заголовка, перенаправляет получаемый кадр в нужный порт, не дожидаясь его полного поступления. Главное преимущество такой технологии - малая задержка пакета при переадресации. Главный недостаток - в том, что такой коммутатор будет пропускать из одной сети в другую дефектные кадры (укороченные - меньше 64 байт, или имеющие ошибки), так как выявление ошибок может происходить только при чтении всего кадра и сравнения рассчитанной контрольной суммы с той, которая записана в поле контрольной последовательности кадра. Распространение ошибок в большей степени касается сетей с более чем одним пользователем на порт. В этом случае протокол Ethernet может генерировать как укороченные, так и поврежденные кадры, поскольку коммутатор не может предвидеть возникновение коллизий в сегменте, из которого поступает кадр. [7]

Современные коммутаторы cut-through используют более продвинутый метод коммутации, который носит название ICS (interim cut-through switching - промежуточная коммутация на лету). Суть этого метода заключается в отфильтровывании укороченных кадров с длиной менее 64 байт. До тех пор, пока коммутатор не принял первые 512 бит кадра, он не начинает ретранслировать кадр в соответствующий порт. Если кадр заканчивается раньше, то содержимое буфера удаляется, кадр отфильтровывается. Несмотря на увеличение задержки до 512 ВТ и более, метод ICS значительно лучше традиционного cut-through, поскольку не пропускает укороченные кадры. К главному недостатку ICS относится возможность пропускания дефектных пакетов с длиной более 64 байт. Поэтому коммутаторы ICS не годятся на роль магистральных коммутаторов. [8, c.254]

Напротив, коммутатор, работающий с буферизацией, прежде чем начать передачу кадра в порт назначения, полностью принимает его, буферизует. Кадр сохраняется в буфере до тех пор, пока анализируется адрес назначения и сравнивается контрольная последовательность кадра, после чего коммутатором принимается решение о том, в какой порт перенаправить кадр или вообще его не передавать (отфильтровать). Главное преимущество коммутации с буферизацией в том, что этот метод гарантирует передачу только хороших кадров. Однако недостаток, связанный с задержкой кадра на время буферизации не является критичным, поскольку кадры передаются непрерывно. Поэтому в настоящее время большее предпочтение со стороны фирм-производителей отдается этой технологии коммутации. [9, c.89]

Обратное давление. Входные и выходные буферы требуются коммутатору, чтобы уменьшить количество теряемых кадров при перегруженности одного из выходных портов. Однако это не дает полного спасения при длительных передачах.

Например, допустим, в порт 1 постоянно передаются данные из портов 2, 3 и 5. Если скорости передачи по всем портам одинаковы и равны скорости канала, то после заполнения соответствующих буферов кадры начнут теряться - коммутатор просто будет сбрасывать вновь приходящие кадры по портам 2,3,5. Потери пакетов означают, что посредством протокола более высокого уровня, будет производиться повторная передача кадров. Но поскольку в протоколе задействованы конечные устройства, то времена между повторами кадров могут быть большими. Для предотвращения этого современные коммутаторы обладают функциональной возможностью контроля и управления потоками (flow control) поступающих в порты кадров. Для коммутаторов Ethernet эта функция известна как обратное давление (BP, back pressure), рис ХХХ. Ограниченность выходного канала по порту 1 приводит к заполнению входных буферов на портах 2, 3 и 5. Узел BP коммутатора, обнаруживая это, начинает передачу пустых кадров в те каналы, от которых переполняются входные буферы портов. Так, если переполняется входной буфер порта 2, то пустые кадры коммутатор шлет в сегмент B, умышленно создавая коллизии в этом сегменте, уменьшая поток кадров от передающего устройства в этом сегменте. Вместо генерации холостых кадров при отработке механизма обратного давления в коммутаторах может использоваться генерация сигнала затянувшейся передачи, причем последний метод является более эффективным средством от потери кадров.

1.5 Функциональное соответствие видов коммуникационного оборудования уровням модели OSI

Лучшим способом для понимания отличий между сетевыми адаптерами, повторителями, мостами/коммутаторами и маршрутизаторами является рассмотрение их работы в терминах модели OSI. Соотношение между функциями этих устройств и уровнями модели OSI показано на рисунке 4.

Повторитель, который регенерирует сигналы, за счет чего позволяет увеличивать длину сети, работает на физическом уровне.

Сетевой адаптер работает на физическом и канальном уровнях. К физическому уровню относится та часть функций сетевого адаптера, которая связана с приемом и передачей сигналов по линии связи, а получение доступа к разделяемой среде передачи, распознавание МАС-адреса компьютера - это уже функция канального уровня.

Мосты выполняют большую часть своей работы на канальном уровне. Для них сеть представляется набором МАС-адресов устройств. Они извлекают эти адреса из заголовков, добавленных к пакетам на канальном уровне, и используют их во время обработки пакетов для принятия решения о том, на какой порт отправить тот или иной пакет. Мосты не имеют доступа к информации об адресах сетей, относящейся к более высокому уровню. Поэтому они ограничены в принятии решений о возможных путях или маршрутах перемещения пакетов по сети.

Рис. 4. Соответствие функций коммуникационного оборудования модели OSI

Маршрутизаторы работают на сетевом уровне модели OSI. Для маршрутизаторов сеть - это набор сетевых адресов устройств и множество сетевых путей. Маршрутизаторы анализируют все возможные пути между любыми двумя узлами сети и выбирают самый короткий из них. При выборе могут приниматься во внимание и другие факторы, например, состояние промежуточных узлов и линий связи, пропускная способность линий или стоимость передачи данных.

Для того, чтобы маршрутизатор мог выполнять возложенные на него функции ему должна быть доступна более развернутая информация о сети, нежели та, которая доступна мосту. В заголовке пакета сетевого уровня кроме сетевого адреса имеются данные, например, о критерии, который должен быть использован при выборе маршрута, о времени жизни пакета в сети, о том, какому протоколу верхнего уровня принадлежит пакет. [10, c.99]

Благодаря использованию дополнительной информации, маршрутизатор может осуществлять больше операций с пакетами, чем мост/коммутатор. Поэтому программное обеспечение, необходимое для работы маршрутизатора, является более сложным.

Шлюз (gateway) - это устройство, выполняющее трансляцию протоколов. Шлюз размещается между взаимодействующими сетями и служит посредником, переводящим сообщения, поступающие из одной сети, в формат другой сети. Шлюз может быть реализован как чисто программными средствами, установленными на обычном компьютере, так и на базе специализированного компьютера. Трансляция одного стека протоколов в другой представляет собой сложную интеллектуальную задачу, требующую максимально полной информации о сети, поэтому шлюз использует заголовки всех транслируемых протоколов.

2. Проект локальной вычислительной сети в УПТС Арселор МиталлСтил (ш.Костенко)

2.1 Технические требования

Основная цель дипломной работы - составить проект локальной вычислительной сети для УПТС Арселор МиталлСтил (ш.Костенко) в 3-этажном административном здании. Данная ЛВС должна соответствовать принятым международным стандартам (ANSI/TIA/EIA-568-A и ISO/IEC11801), и обеспечить передачу всех видов информации (данные, голос, видео и т.д.) с учетом перспектив развития современных информационных технологий. Кроме того, СКС должна обеспечить интеграцию и работоспособность всех элементов и систем этажа.

В частности на базе ЛВС будет развернута компьютерная и телефонная сети, охранная и пожарная сигнализации, системы оповещения, видеонаблюдения, контроля доступа, бесперебойного питания и резервного копирования. В рамках дипломной работы планируется рассмотреть реализацию некоторых из этих систем.

ЛВС должна быть выполнена в соответствии с международным стандартом ISO/IEC 11801 на кабельные системы и состоять из горизонтальной подсистемы. Горизонтальная подсистема должна быть организована на основе 4-парного медного кабеля неэкранированная витая пара категории 5е (проводка для ЛВС и телефонной системы).

Кабель должен прокладываться: по коридорам - в металлических лотках за фальшпотолком; внутри комнат - в декоративном пластиковом коробе сечением 200х100 мм.

На рабочем месте необходимо установить информационную розетку с двумя модулями RJ45 для подключения компьютера, телефонного аппарата, факсимильного аппарата или модема, две силовые розетки, подключенные к сети гарантированного электроснабжения и одну силовую розетку, подключенная к сети бытового электроснабжения.

Коммутационное оборудование устанавливается в 19-дюймовые монтажные шкафы глубиной не менее 60 см.

В состав активного оборудования ЛВС должны входить два коммутатора с поддержкой технологий виртуальных сетей и сетевого управления, шесть концентраторов, а также маршрутизатор с технологией межсетевого экрана (firewall).

Активное оборудование должно быть произведено компаниями Cisco и Allied Telesyn.

Система управления ЛВС должна обеспечить управление всеми информационными ресурсами ЛВС, в том числе и ЛВС первой очереди.

Система управления ЛВС должна осуществлять:

- инвентаризацию - получение информации о состоянии аппаратных и программных средств, входящих в сеть;

- сбор статистики и мониторинг основных параметров производительности сети: скорости передачи пакетов, нагрузки, уровня ошибок и др.;

- возможность настройки параметров сети.

Спроектированная локальная вычислительная сеть будет работать под управлением операционной системы Корпорации Microsoft Windows Server 2003.

2.2 Выбор топологии проектируемой локальной вычислительной сети

Выбор используемой топологии зависит от условий, задач и возможностей, или же определяется стандартом используемой сети. Основными факторами, влияющими на выбор топологии для построения сети, являются:

- среда передачи информации (тип кабеля);

- метод доступа к среде;

- максимальная протяженность сети;

- пропускная способность сети;

- метод передачи и др.

Рассмотрим вариант построения сети: на основе технологии Fast Ethernet (табл. 1, рис.5).

Данный стандарт предусматривает скорость передачи данных 100 Мбит/сек и поддерживает два вида передающей среды - неэкранированная витая пара и волоконно-оптический кабель.

Таблица 1. Стандарт Fast Ethernet

Название

Тип передающей среды

100Base-T

Основное название для стандарта Fast Ethernet (включает все типы передающих сред)

100Base-TX

Экранированная или неэкранированная витая пара категории 5 и выше.

100Base-FX

Многомодовый двухволоконный оптический кабель

100Base-T4

Витая пара. 4 пары категории 3, 4 или 5.

Рис. 5. Структура сети 100Base-TX

Правила проектирования топологии стандарта 100Base-T.

Следующие топологические правила и рекомендации для 100Base-TX и 100Base-FX сетей основаны на стандарте IEEE 802.3u

100Base-TX.

Правило 1: Сетевая топология должна быть физической топологией типа «звезда» без ответвлений или зацикливаний.

Правило 2: Должен использоваться кабель категории 5 или 5е.

Правило 3: Класс используемых повторителей определяет количество концентраторов, которые можно каскадировать.

- Класс 1. Можно каскадировать (стэковать) до 5 включительно концентраторов, используя специальный каскадирующий кабель.

- Класс 2. Можно каскадировать (стэковать) только 2 концентратора, используя витую пару для соединения средозависимых портов MDI обоих концентраторов.

Правило 4: Длина сегмента ограничена 100 метрами.

Правило 5: Диаметр сети не должен превышать 205 метров.

Правило 6: Метод доступа CSMA/CD.

100Base-FX.

Правило 1: Максимальное расстояние между двумя устройствами - 2 километра при полнодуплексной связи и 412 метров при полудуплексной для коммутируемых соединений.

Правило 2: Расстояние между концентратором и конечным устройством не должно превышать 208 метров.

Существует несколько факторов, которые необходимо учитывать при выборе наиболее подходящей к данной ситуации топологии (табл. 2).

Таблица 2. Преимущества и недостатки топологий

Топология

Преимущества

Недостатки

Шина

Экономный расход кабеля. Сравнительно недорогая и несложная в использовании среда передачи. Простота, надежность. Легко расширяется

При значительных объемах трафика уменьшается пропускная способность сети. Трудно локализовать проблемы. Выход из строя кабеля останавливает работу многих пользователей

Кольцо

Все компьютеры имеют равный доступ. Количество пользователей не оказывает сколько-нибудь значительного влияния на производительность

Выход из строя одного компьютера может вывести из строя всю сеть. Трудно локализовать проблемы. Изменение конфигурации сети требует остановки работы всей сети

Звезда

Легко модифицировать сеть, добавляя новые компьютеры. Централизованный контроль и управление. Выход из строя одного компьютера не влияет на работоспособность сети

Выход из строя центрального узла выводит из строя всю сеть

Исходя из всего вышеперечисленного, оптимальным видом топологии для проекта является звездная топология стандарта 100Base-TX с методом доступа CSMA/CD, так как она имеет широкое применение в наши дни, её легко модифицировать и у нее имеется высокая отказоустойчивость.

2.3 Выбор способа управления сетью

Каждая организация формулирует собственные требования к конфигурации сети, определяемые характером решаемых задач. В первую очередь необходимо определить, сколько человек будут работать в сети. От этого решения будут зависеть многие этапы создания сети.

Количество рабочих станций напрямую зависит от предполагаемого числа сотрудников. В нашем случае это 23 сотрудников, и соответственно 23 рабочих станций. Другим фактором является иерархия компании. Для фирмы с горизонтальной структурой, где все сотрудники должны иметь доступ к данным друг друга, оптимальным решением является простая одноранговая сеть. Предприятию построенному по принципу вертикальной структуры, в котором точно известно, какой сотрудник и к какой информации должен иметь доступ, следует ориентироваться на более дорогой вариант сети - с выделенным сервером. Только в такой сети существует возможность администрирования прав доступа.

Рис. 6. Выбор способа управления.

В нашем проекте на предприятии имеется 23 рабочих станции, которые требуется объединить в корпоративную сеть. Следуя из схемы выбора типа сети, решаем, что в нашем случае требуется установка сервера, так как во-первых мы должны обеспечить вертикальную структуру(то есть разграниченный доступ к информации) и во-вторых количество рабочих станций предполагает управление сетью с выделенным сервером.

2.4 Выбор комплектующих используемых в проектируемой локальной вычислительной сети

На предприятии используются компьютеры схожей конфигурации:

Процессор: Intel DualCore E2140 1.8 ГГц/ 1Мб/ 800МГц 775-LGA

Материнская плата: Intel D815EEA;

Память: DDR2 512 Mb;

Видеоадаптер: Nvidia GeForce FX 5200 128 Mb;

Жесткий диск: Seagate Baracuda 160 Gb;

Сетевая плата: Intel(R) PRO/100 VE Network Connection;

DVD-ROM: Asus D15322;

Монитор: LCD Philips 17, 1024*768;

Клавиатура: Chicony 101/102;

Мышь: Fujitsu для порта PS/2;

Сетевой фильтр Pilot L, 220-230 V, 50-60 Hz;

Сетевой принтер: HP Laser Jet 1200 Series PCL6 USB 1.1.

Компьютеры распределены следующим образом:

На первом этаже:

- отдел кадров: 3 шт.

- служба качества: 4 шт.

- отдел материально-технического снабжения: 2 шт.

- кабинет главного инженера: 1 шт.

На втором этаже:

- планово-экономический отдел: 3 шт.

- ПТО - 4 шт.

- планово-финансовый отдел - 9 шт.

- кабинет директора - 1 шт.

- бухгалтерия - 3 шт.

- администратор - сервер.

Схема расположения рабочих мест представлена на рисунке 7.

Рис.7. Расположение рабочих станций в здании

Таким образом, количество рабочих станций - 23.

При проектировании сети необходимо учитывать возможность расширения рабочих мест и их мобильность.

При монтаже компьютерной сети в коридорах кабель прокладывается в коробах по вверху стенки, или над фальшпотолком. В кабинетах - вдоль плинтусов, закрепляя гвоздиками.

Расчет необходимой длины провода представлен производиться путем сложения кабельных сегментов на отрезках:

1. серверная - кабель-канал;

2. кабель-канал - коридор;

3. коридор - кабинет (информационная розетка);

4. информационная розетка - компьютер.

В таблице 3 представлены длины кабеля на данных сегментах сети.

Таблица 3 - Расчет длины провода

№ компьютера

№ розетки

Общая длина кабеля

1 этаж

2 этаж

Длина кабеля внутри от розетки к компьютеру

Выход из серверной

Спуск

Магистраль в коридоре

Выход из серверной

Подъем

Магистраль в коридоре

1

01

91

4

1,5

83

-

-

-

2,5

2

02

90,5

4

1,5

82

-

-

-

3

3

03

79,5

4

1,5

72

-

-

-

2

4

04

77,5

4

1,5

68

-

-

-

4

5

05

68,5

4

1,5

60

-

-

-

3

6

06

63,5

4

1,5

54

-

-

-

4

7

07

66,4

4

1,5

59

-

-

-

1,9

8

08

63

4

1,5

55

-

-

-

2,5

9

09

71

4

1,5

64

-

-

-

1,5

10

10

70,5

4

1,5

63

-

-

-

2

11

11

68,5

4

1,5

60

-

-

-

3

12

12

55,2

-

-

-

2

1,2

50

2

13

13

72,2

-

-

-

2

1,2

67

2

14

14

65,2

-

-

-

2

1,2

59

3

15

15

56,7

-

-

-

2

1,2

51

2,5

16

16

53,2

-

-

-

2

1,2

46

4

17

17

48,2

-

-

-

2

1,2

42

3

18

18

46,2

-

-

-

2

1,2

41

2

19

19

21,7

-

-

-

2

1,2

17

1,5

20

20

21,2

-

-

-

2

1,2

16

2

21

21

20,9

-

-

-

2

1,2

16

1,7

22

22

17,2

-

-

-

2

1,2

12

2

23

23

9,2

-

-

-

2

1,2

3

3

Итого:

1297

44

16,5

720

24

14,4

420

58,1

Путем сложения представленных в таблице 3 длин было вычислено что общая длина требуемого для построения локальной вычислительной сети кабеля составляет 1297 метров.

Вид физической среды передачи данных: некоммутируемый канал; кабель - витая пара, 100Base-T.

Для прокладки сети потребуется 4 бухты одножильного кабеля витая пара пятой категории по 300 метров, 20 обжатых двухжильных кабелей по 2,5 м, свитч Gigabit Web-Based Smart Switch (24port 10/100 + 2port 10/100/1000Mbps), патч-панель, патч-корд, коннекторы (4 пачки), розетки (10 двойных и 3 одинарных).

Около каждого рабочего места устанавливается розетка. От розетки до компьютера идёт гибкий кабель, называемый "патч-корд" ("patch-cord"). От розеток жесткий кабель идёт к патч-панели. К патч-панели кабель прикрепляется жёстко сзади. Патч-панель, в свою очередь, крепится к шкафу. Рядом с патч-панелью расположен свитч.

На передней стенке патч-панели располагаются пронумерованные выходы, разъёмы, число которых, соответствует количеству гнёзд сзади. Патч-панель соединена со свитчем посредством небольших гибких участков кабеля, патч-кордов.

Составим смету расходов на сетевое оборудование и приведем полученные данные в таблице 4.

Таблица 4. Смета расходов на сетевое оборудование

Комплектующее

Марка

Кол-во

Цена, тг.

Сумма, тг.

1

2

3

4

5

Сервер

HP ProLiant ML110G5 (533548-421)

1

114226

114226

Сетевой кабель жёсткий

UTP4-24R5D Кабель "Витая пара" 8 пров., 5 кат. ("Duratube", Англия)

1300 м (в том числе 10 м - запас)

25

32500

Сетевой кабель мягкий

UTP4-24SR5D-BL Кабель "Витая пара" 8 пров., кат. 5, многожильный - СИНИЙ ("Duratube", Англия)

23 шт.

500

11500

Межсетевого экран (IOS Firewall Feature Set)

Cisco 2621

1 шт.

21000

21000

Вилки для мягкого кабеля

TPS5-8P8C Вилка RJ-45 5 кат. для многожильного кабеля, со вставкой, экранир.

46 шт.

50

2300

Патч-панель

Патч-панель 19",16 портов, тип "krone"

1 шт.

38000

38000

Свитч

Gigabit Web-Based Smart Switch (24port 10/100 + 2port 10/100/1000Mbps)

1 шт.

12210

12210

1

2

3

4

5

Розетки двойные

10 шт.

300

3000

Розетки одинарные

3 шт.

150

450

Итого

235186

2.5 Выбор программного обеспечения

Тип используемых в сети протоколов - TCP/IP.

Для сервера выбрана операционная система Windows Server 2003 Standard Edition, т.е. она разработана специально для небольших отделов компаний и обеспечивает эффективное создание общего доступа к файлам и принтерам, безопасное подключение к Интернету, централизованное развертывание настольных приложений и веб-решения для организации взаимодействия сотрудников, партнеров, клиентов. Сервер Windows Server 2003 Standard Edition обеспечивает высокий уровень надежности, масштабируемости и безопасности.

Для рабочих станций выбрана операционная система Microsoft Windows XP Professional SP2b Russian, т.к. она имеет: высокий уровень безопасности, включая возможность шифрования файлов и папок с целью защиты корпоративной информации; поддержку мобильных устройств для обеспечения возможности работать автономно или подключаться к компьютеру в удаленном режиме; встроенную поддержка высокопроизводительных многопроцессорных систем; возможность работы с серверами Microsoft Windows Server и системами управления предприятиями; эффективное взаимодействие с другими пользователями по всему миру благодаря возможностям многоязычной поддержки. Программа имеет русский интерфейс, что удобно для всех пользователей предприятия.

2.6 Построение технической модели

ЛВС монтируется на 2-х этажах трехэтажного здания с размерами в плане 154x68 м. Высота этажа составляет 3.5 м, общая толщина перекрытий равна 50 см. На этаже использована однотипная коридорная планировка рабочих помещений, которые имеют примерно одинаковые размеры. Коридор шириной 2 метра проходит по всей длине продольной оси этажа.


Подобные документы

  • Проектирование локальной вычислительной сети, предназначенной для взаимодействия между сотрудниками банка и обмена информацией. Рассмотрение ее технических параметров и показателей, программного обеспечения. Используемое коммутационное оборудование.

    курсовая работа [330,7 K], добавлен 30.01.2011

  • Теоретическое обоснование построения вычислительной локальной сети. Анализ различных топологий сетей. Проработка предпосылок и условий для создания вычислительной сети. Выбор кабеля и технологий. Анализ спецификаций физической среды Fast Ethernet.

    курсовая работа [686,7 K], добавлен 22.12.2014

  • Основные возможности локальных вычислительных сетей. Потребности в интернете. Анализ существующих технологий ЛВС. Логическое проектирование ЛВС. Выбор оборудования и сетевого ПО. Расчёт затрат на создание сети. Работоспособность и безопасность сети.

    курсовая работа [979,9 K], добавлен 01.03.2011

  • Особенности локальной вычислительной сети и информационной безопасности организации. Способы предохранения, выбор средств реализации политики использования и системы контроля содержимого электронной почты. Проектирование защищенной локальной сети.

    дипломная работа [1,6 M], добавлен 01.07.2011

  • Аналитический обзор технологий локальных вычислительных сетей и их топологий. Описание кабельных подсистем для сетевых решений и их спецификаций. Расчет локальной вычислительной системы на соответствие требованиям стандарта для выбранной технологии.

    дипломная работа [652,8 K], добавлен 28.05.2013

  • Особенности проектирования и модернизация корпоративной локальной вычислительной сети и способы повышения её работоспособности. Физическая структура сети и сетевое оборудование. Построение сети ГУ "Управление Пенсионного фонда РФ по г. Лабытнанги ЯНАО".

    дипломная работа [259,1 K], добавлен 11.11.2014

  • Сети с централизованным и комбинированным управлением. Резервирование серверов и каналов. Структурированные кабельные системы. Проектирование аппаратных и кроссовых помещений, кабельных трасс. Определение необходимой пропускной способности каналов.

    дипломная работа [2,1 M], добавлен 12.09.2016

  • Построение информационной системы для автоматизации документооборота. Основные параметры будущей локальной вычислительной сети. Схема расположения рабочих станций при построении. Протокол сетевого уровня. Интеграция с глобальной вычислительной сетью.

    курсовая работа [330,8 K], добавлен 03.06.2013

  • Назначение проектируемой локальной вычислительной сети (ЛВС). Количество абонентов проектируемой ЛВС в задействованных зданиях. Перечень оборудования, связанного с прокладкой кабелей. Длина соединительных линий и сегментов для подключения абонентов.

    реферат [158,4 K], добавлен 16.09.2010

  • Телекоммуникация и сетевые технологии. Обоснование и выбор технического и программного обеспечения. Схема размещения и соединения сетевого оборудования. Топология локальных вычислительных сетей (ЛВС). Совместимость, расширяемость и масштабируемость ЛВС.

    курсовая работа [462,1 K], добавлен 30.11.2013

Работы в архивах красиво оформлены согласно требованиям ВУЗов и содержат рисунки, диаграммы, формулы и т.д.
PPT, PPTX и PDF-файлы представлены только в архивах.
Рекомендуем скачать работу.