Экспериментальное исследование распространения атмосфериков и динамики мировой грозовой активности

Принципы конструирования широкополосного приемника прямого усиления СДВ диапазона. Влияние поперечных резонансов, возникающих в вертикальном сечении полости Земля-ионосфера, на спектры СДВ-атмосфериков. Результаты морского мониторинга грозовой активности.

Рубрика Коммуникации, связь, цифровые приборы и радиоэлектроника
Вид автореферат
Язык русский
Дата добавления 29.05.2009
Размер файла 107,4 K

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

3.3 Постановка эксперимента

Измерения азимутальных распределений и вариаций интенсивности потока СДВ-атмосфериков проводились на борту научно-исследовательского судна (НИС) "Академик Вернадский" в 42-ом рейсе в период с февраля по апрель 1991 г. Вертикальная электрическая антенна была вынесена на верхнюю точку грот-мачты судна. Две ортогональные магнитные экранированные воздушные рамочные антенны, укрепленные на станине высотой 2.5м. были установлены на верхней (пеленгаторной) палубе по правому борту судна и ориентированы соответственно вдоль и перпендикулярно курсу судна. По кабелям длиной около 100 м. сигналы с электрической и магнитных антенн подавались на вход приемника универсального комплекса, установленного в лаборатории.

Измерение пеленгов велось круглосуточно. Зарегистрированные данные обрабатывались с помощью компьютера и по результатам обработки строились гистограммы азимутальных распределений, накопленных в течение часового (с 12 по 17 февраля) или получасового интервала (все остальное время). Всего за сутки получалось 24 или 48 гистограмм азимутальных распределений и столько же отсчетов в зависимости количества принятых атмосфериков. Пеленг определялся с помощью вектора Умова - Пойнтинга по наиболее мощной высокочастотной начальной части зарегистрированного атмосферика длительностью 2.56 мсек в широкой полосе. Разрешение по азимуту при построении гистограмм составляло 5 . Путем подсчета общего количества зарегистрированных импульсов за те же стандартные интервалы времени измерялись вариации интенсивности потока атмосфериков. Полученные гистограммы и значения потока записывались в виде файлов данных на гибкие магнитные диски и использовались для дальнейшей обработки. Информация о курсе и координатах корабля, необходимая для вычисления азимута прихода атмосферика в географической системе координат, поступала от штурманской службы и регистрировалась в лабораторном журнале.

В Табл.3.3.1 приведены основные данные, описывающие условия проведения морских измерений на борту научно-исследовательского судна "Академик Вернадский". В первой колонке приведены даты наблюдений. Две последующие колонки содержат координаты судна на 12 часов московского времени, причем сначала идет широта (градусы и минуты), а затем - долгота точки наблюдения в тех же единицах измерения. В двух последних колонках приведены моменты локальных восходов и заходов солнца над пунктом приема. Временные данные Табл.3.3.1 приведены в московском декретном (а не летнем) времени.

Табл. 3.3.1. Координаты моменты восходов и заходов по маршруту НИС "Академик Вернадский" в 42 рейсе.

Дата (1991г.)

Широта

Долгота

Восход

Заход

град мин

град мин

час

час

31-12

37 33 N

25 46 E

8.20

18.15

01-01

33 43 N

28 28 E

8.21

18.17

02-01

31 58 N

29 22 E

8.08

18.19

03-01

31 58 N

29 36 E

8.07

18.18

06-01

33 31 N

22 41 E

8.60

18.42

07-01

35 6 N

17 40 E

9.00

18.90

08-01

37 22 N

11 2 E

9.54

19.26

09-01

37 21 N

3 58 E

10.00

19.75

10-01

36 23 N

2 59 W

10.43

20.27

11-01

33 35 N

9 17 W

10.73

20.82

12-01

28 26 N

13 27 W

10.82

21.30

13-01

23 31 N

17 46 W

10.95

21.76

14-01

17 24 N

18 45 W

10.83

22.02

15-01

11 17 N

17 35 W

10.59

22.12

16-01

5 48 N

14 46 W

10.29

22.08

17-01

1 12 N

10 33 W

9.86

21.92

18-01

3 21 S

6 35 W

9.49

21.78

19-01

7 44 S

2 33 W

9.12

21.63

20-01

12 15 S

1 26 E

8.74

21.48

21-01

16 42 S

5 33 E

8.36

21.33

22-01

21 7 S

9 45 E

7.96

21.17

23-01

22 10 S

12 30 E

7.76

21.01

24-01

22 56 S

14 14 E

7.63

20.92

26-01

26 42 S

14 43 E

7.51

20.99

27-01

31 47 S

16 48 E

7.23

21.00

28-01

34 48 S

20 58 E

6.86

20.82

29-01

34 0 S

27 32 E

6.47

20.34

30-01

31 31 S

33 12 E

6.19

19.87

31-01

29 10 S

38 47 E

5.90

19.42

01-02

27 12 S

42 54 E

5.69

19.09

02-02

25 1 S

47 1 E

5.49

18.75

06-02

24 15 S

51 22 E

5.26

18.41

07-02

23 16 S

56 34 E

4.95

18.03

08-02

22 0 S

62 33 E

4.59

17.59

09-02

21 25 S

65 12 E

4.44

17.40

10-02

19 39 S

71 58 E

4.06

16.92

11-02

19 6 S

73 57 E

3.92

16.75

12-02

17 33 S

78 27 E

3.66

16.41

13-02

15 16 S

84 27 E

3.31

15.96

14-02

13 29 S

88 53 E

3.05

15.62

15-02

11 9 S

94 0 E

2.75

15.24

16-02

8 57 S

99 0 E

2.46

14.86

17-02

7 29 S

101 59 E

2.29

14.64

18-02

6 30 S

106 0 E

2.04

14.35

23-02

1 32 S

106 38 E

2.06

14.22

24-02

0 6 S

105 38 E

2.15

14.26

25-02

1 14 N

103 55 E

2.27

14.36

06-03

2 50 N

101 0 E

2.43

14.51

07-03

5 40 N

93 18 E

2.96

15.00

08-03

4 25 N

89 45 E

3.18

15.24

09-03

3 8 N

86 18 E

3.40

15.48

10-03

1 30 N

81 54 E

3.68

15.77

11-03

0 32 N

76 12 E

4.04

16.16

12-03

1 20 S

74 13 E

4.16

16.29

13-03

2 0 S

72 0 E

4.31

16.43

14-03

2 14 S

67 23 E

4.61

16.74

15-03

2 14 S

65 48 E

4.71

16.83

16-03

2 30 S

62 0 E

4.96

17.08

17-03

3 6 S

59 9 E

5.14

17.27

18-03

4 38 S

55 26 E

5.38

17.51

21-03

7 46 S

59 15 E

5.12

17.23

22-03

8 20 S

60 8 E

5.06

17.15

24-03

9 49 S

54 31 E

5.43

17.51

25-03

11 3 S

48 31 E

5.83

17.90

26-03

12 15 S

46 10 E

5.78

17.82

29-03

14 5 S

46 10 E

6.00

18.00

30-03

17 0 S

41 0 E

6.36

18.31

31-03

21 30 S

39 0 E

6.52

18.42

01-04

26 0 S

36 0 E

6.74

18.58

02-04

31 51 S

29 54 E

7.20

18.93

03-04

34 0 S

26 30 E

7.45

19.12

04-04

33 50 S

17 0 E

8.10

19.73

05-04

29 0 S

12 0 E

8.40

20.08

06-04

24 33 S

8 3 E

8.63

20.37

07-04

20 30 S

4 2 E

8.87

20.65

08-04

14 54 S

1 54 E

8.98

20.82

09-04

11 28 S

0 2 E

9.06

20.97

10-04

8 0 S

3 36 W

9.27

21.24

11-04

5 43 S

6 18 W

9.43

21.43

12-04

4 22 S

8 14 W

9.54

21.57

13-04

2 0 S

10 30 W

9.66

21.74

14-04

1 10 N

12 0 W

9.72

21.86

15-04

5 0 N

13 0 W

9.74

21.97

16-04

9 25 N

13 44 W

9.73

22.07

19-04

11 33 N

17 24 W

9.92

22.35

20-04

17 22 N

18 2 W

9.86

22.48

21-04

22 0 N

17 30 W

9.74

22.52

22-04

24 0 N

16 30 W

9.62

22.49

24-04

28 0 N

15 0 W

9.40

22.50

27-04

30 30 N

12 30 W

9.15

22.14

28-04

34 30 N

9 0 W

8.80

22.28

29-04

35 30 N

3 0 W

8.35

21.92

30-04

37 0 N

6 0 E

7.69

21.38

01-05

35 0 N

13 0 E

7.25

20.88

3.4 Результаты измерений вариаций плотности потока СДВ-атмосфериков

На Рис.3.5.а, приведен пример суточного хода интенсивности потока атмосфериков, зарегистрированных в течение 30 и 31 марта 91 г. Здесь вдоль оси х отложено московское время, а по оси y - количество импульсов. Нижняя кривая на графике соответствует реально измеренному потоку, в то время, как верхняя построена с учетом максимальных потерь при регистрации за счет ограниченного быстродействия регистрирующей аппаратуры (см. Табл.3.2.1). Таким образом, истинное значение плотности потока лежит между этими двумя кривыми.

В это время корабль находился в непосредственной близости от юго-восточного побережья Африки и Мадагаскара (см. карту с маршрутом судна, Рис.3.1). В этом фрагменте наблюдаются хорошо выраженные повторяющиеся от суток к суткам максимумы в плотности потока атмосфериков, приходящиеся на 18 часов Мск. Это время согласуется с максимумом активности Африканского мирового грозового центра согласно данным на Рис.3.6, где приведены усредненные по многолетним метеонаблюдениям суточные кривые интенсивности мировых грозовых центров [34]. Временная зависимость потока СДВ импульсов отличается наличием плато, следующего после главного максимума. Положение этого плато совпадает с американским максимумом, тем не менее, как будет показано ниже измерениями азимутов прихода атмосфериков, оно относится к ночной грозовой активности Африки. Минимум активности приходится на период с 6 до 13 часов Мск.

Вариации интенсивности потока атмосфериков, измеренные в другой точке ( вблизи Конакри, Гвинея ) за период 17-19 апреля, приведены на Рис. 3.5.б. По сравнению с графиками на Рис. 3.5.а эти зависимости имеют более сложную структуру, обусловленную влиянием не одного, а двух мировых грозовых центров - Африканского и Американского.

Обзорные графики вариаций интенсивности общего потока атмосфериков за весь период наблюдений приведены на Рис. 3.7 а-ж в верхней части. Цифры между графиками указывают дату измерений. В данных, измеренных за период 12-17 февраля (Рис.3.7.а) наблюдается ограничение уровня потока, вызванное низкой скоростью алгоритма обработки данных. Начиная с марта эта скорость была увеличена почти на порядок, что позволило в дальнейшем достоверно оценивать динамику вариаций потока. Именно для этого случая в п. 3.2 были приведены оценки потерь. На этих же рисунках приведены зависимости парциальных потоков из секторов, охватывающих мировые грозовые центры, а на нижних графиках - суточные зависимости азимутальных центров тяжести потоков из этих секторов. Чтобы не загромождать графики, на них приведены нижние оценки интенсивности потока, т.е. значения, полученные в измерениях.

Из проведенных измерений можно сделать следующий вывод: потоки варьируют в течение суток; эти вариации легко интерпретируются изменением активности континентальных грозовых центров; иных грозовых центров, кроме континентальных не наблюдается.

Известно, что в области сверхнизких частот (СНЧ) ( Шумановские резонансы и выше) уровень шума вследствие малого затухания определяется глобальной грозовой активностью Земли. В связи с этим, представляет интерес сравнить вариации интенсивности потока СДВ атмосфериков с вариациями уровня шума на СНЧ. Такие измерения были проведены 1 и 4 апреля 1991г. на участке маршрута " Академика Вернадского ", охватывающем южную оконечность Африки. Данные по уровням СНЧ шумов были предоставлены П.Г.Фурманом и В.К.Муштаком из исследовательской группы Санкт-Петербургского университета, работавшими по собственной программе одновременно с автором на борту НИС "Академик Вернадский" и любезно согласившимися провести совместные измерения в течение указанных суток.

На Рис.3.8 жирной кривой в относительных единицах представлены графики суточных вариаций амплитуды электрического поля в атмосфере <|E(t)|> вблизи 100 Гц, а тонкой линией интенсивность потока СДВ- атмосфериков N(t) за 1 и 4 апреля 1991г. Отсчеты <|Е(t)|> и N(t) представляют собой усредненные за 24 минуты значения. Время t - московское, которое 1.4.91 совпадает с местным, а 4.4.91 - на 1 час отстает от местного времени.

Из сравнения кривых видно, что в вечерние и утренние часы (период активности Африканских мировых грозовых центров) наблюдается хорошее совпадение хода средней спектральной плотности шума на СНЧ и плотности потока атмосфериков. Для оценки связи были рассчитаны коэффициенты линейной регрессии.

Сравнение коэффициента пропорциональности A между уровнем СНЧ шума и интенсивностью потока СДВ-атмосфериков за разные периоды измерений указывает на стабильность линейной связи от суток к суткам. В то же время, из графиков видно, что эта пропорциональность нарушается в периоды минимальной интенсивности потока атмосфериков. Это нарушение пропорциональности объясняется тем, что за счет малого затухания при распространении в полости Земля - ионосфера уровень регистрируемого шума на СНЧ определяют области грозовой активности, охватывающие всю Землю, в то время , как на СДВ дальность приема ограничена большим затуханием, а также фиксированным уровнем срабатывания входного порогового устройства и ограниченной скоростью регистрации. Таким образом, проведенные сопоставления показывают, что в течение суток существуют периоды в течение которых наблюдается значительная корреляция между интенсивностью потока СДВ атмосфериков и уровнем естественных электромагнитных полей СНЧ диапазона. Это обстоятельство позволяет прогнозировать величину СНЧ шума по измерениям потока СДВ атмосфериков.

По результатам измерений вариаций интенсивности общего потока атмосфериков можно сделать следующие выводы:

Интенсивность потока СДВ атмосфериков может варьировать в течение суток от 2 до 10 раз.

Максимальные значения интенсивности потока за весь период измерений, с учетом систематической погрешности, находились в пределах от 1100 (открытый океан)до 3800 (Гвинейский залив, Конакри) импульсов за получасовой интервал.

Положение пиков интенсивности общего потока в суточных вариациях хорошо привязывается к периодам максимальной активности континентальных мировых грозовых центров.

Суточный ход интенсивности потока, формируемого Африканским центром, отличается наличием плато, характеризующего ночную континентальную грозовую активность.

3.5 Вариации пеленгов источников СДВ атмосфериков

Данные о направлениях прихода атмосфериков накапливались в виде гистограмм. Пара гистограмм W(A), которые проясняют вклад в общий поток атмосфериков (Рис. 3.5.б, стр. 108), приходящих с различных направлений, приведена на Рис. 3.9. Моменты времени измерений помечены стрелками (1 и 2) на Рис. 3.5.б. Вдоль оси х на гистограммах отложен географический азимут прихода атмосфериков ( с учетом ориентации судна) и отмечены направления сторон света. По оси y отложено количество импульсов, принятых в каждом из 72 стандартных секторов шириной 5 градусов. Из сопоставления рисунков видно, что утренний пик в зависимости N(t) на Рис.3.5.а (помеченный цифрой 2) порожден американскими грозами, в то время, как вечерний максимум (помеченный цифрой 1) обусловлен источниками африканского континента.

Результаты измерений пеленгов в Индийском океане показали, что постоянно существуют два преобладающих направления прихода атмосфериков, которые согласуются с местоположением континентальных мировых грозовых центров. Этот факт демонстрируется на Рис.3.10, где приведены усредненные за сутки азимутальные распределения в полярной системе координат, построенные по результатам измерений 14-17 февраля и 12-15 марта. Видно, что хотя основная часть потока сосредоточена в достаточно узких секторах, структура азимутальных распределений имеет многомодовый характер. Тем не менее, чтобы оценить пеленги и характерные размеры мировых грозовых центров, определим средние значения и их дисперсии по азимутальным распределениям за указанные интервалы времени. Средние значения пеленгов <A > и дисперсии s для k-го сектора вычислялись из полученных экспериментально гистограмм W(A) по следующим формулам:

Суммирование по i производилось в пределах соответствующего сектора. Полученные результаты усреднения гистограмм азимутальных распределений представлены на Рис.3.11. Стрелками здесь отмечены средние направления на мировые грозовые центры и их угловые размеры, характеризуемые среднеквадратичными отклонениями.

Чтобы проследить динамику угловых распределений направлений прихода атмосфериков в течение суток и более, были построены трехмерные профили азимутальных распределений, показанные на Рис.3.12 и 3.13.

Специфической особенностью этих азимутальных распределений является очень высокая стабильность расположения максимумов W(A) относительно оси направлений. В течение суток могут наблюдаться изменения уровня максимумов и даже их исчезновение, однако, временные изменения в их угловом положении очень малы. Здесь азимутальные распределения за 15 февраля 1991 г. построены в координатах азимут, время и W(A). Направления на север, восток, юг, запад помечены вдоль абсциссы, метки вдоль ординаты соответствуют 6-часовым интервалам времени. Как можно видеть, максимумы в распределениях W(A) занимают одни и те же угловые положения в течение всего дня, в то время как их амплитуда существенно изменяется.

Азимутальная стабильность еще более заметна на длительных интервалах времени,(см. данные с 14 по 17 февраля, приведенные на Рис.3.13). Данные на этом рисунке представлены в том же виде, что и на Рис.3.12., только каждая кривая соответствует азимутальному распределению источников, усредненному за четырехчасовой период. Результаты четырех последовательных суток показаны вместе с датами.

Из приведенных графиков видно, что основная часть потока атмосфериков сосредоточена в секторах, охватывающих континентальные и островные области, а в течение суток происходит перераспределение активности между ними. Чтобы оценить динамику активности мировых грозовых центров, была проведена обработка данных, с помощью которой общий поток был разделен по этим секторам и парциальные значения потока представлены на обзорных графиках 3.7 а-ж наряду с общим потоком (Общий) кривыми, помеченными соответственно Африка, Америка, Азия, Мадагаскар. В нижней части этих рисунков изображены графики вариаций азимутов, указывающих направление на центры тяжести азимутальных распределений, ограниченных соответствующими секторами и их среднеквадратичных отклонений.

3.6 Интерпретация полученных результатов

Результаты морских измерений убедительно показывают, что глобальная грозовая активность порождена источниками, которые располагаются на суше, при этом доминирующая роль в формировании электромагнитного фона в изучаемом диапазоне частот переходит от одного континентального грозового центра к другому, "перепрыгивая" через океаны. Физически эти результаты не соответствуют модели единого движущегося планетарного грозового центра, представление о котором явилось результатом анализа данных по шумановским резонансам [8].

Дополнительная информация об источниках была получена за счет движения приемного пункта. Навигационные данные позволяют вычислить суточные изменения положения судна, которые в совокупности с измерениями азимутов прихода атмосфериков могли бы дать оценку размера площади, где сконцентрированы континентальные грозы.

Результаты такого анализа, которые были выполнены по данным, полученным в окрестности Мыса Доброй Надежды, представлены на Рис.3.14. В течение этого времени от суток к суткам происходило существенное изменение наблюдаемых азимутов прихода атмосфериков, вызванное движением пункта наблюдения. В целом, измеренные профили углов прихода интерпретировать весьма затруднительно. Оказалось, что гораздо проще сравнить вычисленные пеленги Мадагаскарских, Африканских и Американских источников с экспериментальными результатами. Кривые на Рис.3.14. были вычислены с помощью формул сферической тригонометрии [6] для координат компактных грозовых центров, которые взяты из Справочника по геофизике [34] и приведены в Табл.3.6.1. Точки и стрелки представляют собой результаты измерений и демонстрируют хорошее согласие с рассчитанными кривыми.

Табл.3.6.1. Координаты основных грозовых центров из Справочника по геофизике [34].

---------------------------------------

Название Март Апрель

---------------------------------------

Мадагаскар 18 S 48 E 15 S 48 E

Африка 11 S 35 E 8 N 7 W

5 N 6 W 7 N 8 E

1 S 32 E

1 S 55 W

Америка не учитыв. 17 S 57 W

8 S 62 W

---------------------------------------]

Данные, полученные на достаточном удалении от африканского континента оказалось интерпретировать гораздо легче. На участках маршрута судна 14-17 февраля и 12-15 марта, были получены оценки среднего направления на африканский центр грозовой активности (Рис.3.11.) Для февральского периода среднее значение равно А =260 , для марта оно составило А = 265 . Поскольку проекция данных участков на меридиональное сечение континента составила приблизительно 15 , оценка смещения областей грозовой активности с юга на север в Африке за указанный месячный период, охвативший смену сезона, дает величину около 1500 км, что находится в хорошем соответствии с климатологическими данными [34].

3.7 Основные результаты и выводы главы

Результаты измерений и анализа данных, проведенные в настоящей главе, позволяют сделать следующие выводы:

Разработана и апробирована методика определения пеленгов импульсных сигналов, основанная на вычислении средних компонент вектора Умова-Пойнтинга во временном представлении, позволившая провести измерения азимутальных распределений и вариаций интенсивности потока СДВ-атмосфериков с помощью аналого-цифрового комплекса в реальном масштабе времени при интенсивности потока до 6000 событий в час.

Длительные непрерывные морские измерения показали, что основной вклад в мировую грозовую активность дают континентальные и островные мировые грозовые центры.

Вариации интенсивности потока СДВ-атмосфериков N(t) хорошо коррелируют по времени с максимальной активностью известных мировых грозовых очагов.

Азимутальные распределения СДВ-атмосфериков W(A) согласуются с вариациями потока N(t) и интерпретируются той же моделью континентальных источников.

По сезонным измерениям пеленгов W(A) отмечен сезонный дрейф африканских грозовых источников с юга на север, что согласуется с геофизическими данными, измерена его величина: 1500 км. за период с февраля по март.

Все данные о континентальных грозах хорошо интерпретируются и в том случае, когда смещение приемника относительно источника является существенным.

Результаты морских измерений показывают, что глобальная грозовая активность может рассматриваться, как порожденная источниками, расположенными на суше в континентальных грозовых центрах. Доминирующая роль в глобальной грозовой активности переходит от одного грозового центра к другому, "перепрыгивая" через океаны, вслед за движением границы день - ночь (терминатора).

Сопоставление суточных вариаций интенсивности потока атмосфериков и уровня шума в СНЧ диапазоне, (по результатам измерений вблизи южной оконечности Африки) указывает на линейную связь между ними. Данное обстоятельство может быть использовано для оценки уровня поля на СНЧ с помощью простой методики счета СДВ-атмосфериков.


Подобные документы

  • Технические требования по модернизации оптических и радиотехнических средств радиополигона "Орбита". Шумы и предел чувствительности приемника. Радиометры для мониторинга солнечной активности: облучатель антенны ТНА-57; модуляционные РМ-10 и РМ-30.

    дипломная работа [6,1 M], добавлен 19.07.2012

  • Особенности функционирования РТС в высоких широтах. Экспериментальное исследование процессов нелинейного преобразования (при наклонном распространении), умножения и смещения (при вертикальном зондировании) частоты мощных радиосигналов в ионосфере.

    курсовая работа [5,0 M], добавлен 26.01.2010

  • Структурная схема приемника прямого усиления. Применение, классификация, назначение, показатели устройств. Разработка структурной схемы. Исследование принципа работы приемника. Изготовление печатной платы устройства, порядок расположения деталей.

    курсовая работа [3,9 M], добавлен 20.05.2013

  • Вычисление основных качественных показателей и полный электрический расчет блоков приемника для диапазона СВ. Конструктивное исследование магнитной антенны. Определение необходимой чувствительности, избирательности и диапазона воспроизводимых частот РВП.

    курсовая работа [588,6 K], добавлен 07.07.2011

  • Выбор и расчет блок-схемы приемника, полосы пропускания, промежуточной частоты. Выбор числа контуров преселектора. Определение необходимого числа каскадов усиления. Расчет детектора АМ диапазона, усилителя звуковой и промежуточной частоты, гетеродина.

    курсовая работа [1,1 M], добавлен 15.02.2012

  • Выбор диапазона углов необходимых для работы лазера. Численное исследование пространственно–энергетических характеристик двух низших по потерям поперечных мод волноводного диэлектрического резонатора от изменения угла раскрыва конического зеркала.

    дипломная работа [923,4 K], добавлен 19.07.2013

  • Разработка функциональной блок-схемы, расчет цепей настройки варикапов и входной, элементов колебательного контура УСЧ и первого каскада УПЧ с целью проектирования портативного радиовещательного приемника длинноволнового диапазона по заданным параметрам.

    курсовая работа [357,8 K], добавлен 27.01.2010

  • Структурная схема приемника. Расчет полосы пропускания приемника. Выбор промежуточной частоты и транзистора для входного каскада УВЧ. Расчет реальной чувствительности, коэффициента усиления детекторного тракта, параметров высокочастотной части приемника.

    курсовая работа [1,4 M], добавлен 14.11.2013

  • Расчет входного каскада широкополосного усилителя. Расчет нижней и верхней граничной частоты. Распределение частотных искажений. Схема регулировки усиления. Расчет параметров обратной связи. Топология элементов широкополосного усилителя мощности.

    курсовая работа [77,0 K], добавлен 20.10.2009

  • Расчет полосы пропускании общего радиотракта приемника. Выбор числа преобразований частоты и номиналов промежуточных частот. Структурная схема приемника. Распределение избирательности и усиления по трактам. Определение коэффициента шума приемника.

    курсовая работа [143,8 K], добавлен 13.05.2009

Работы в архивах красиво оформлены согласно требованиям ВУЗов и содержат рисунки, диаграммы, формулы и т.д.
PPT, PPTX и PDF-файлы представлены только в архивах.
Рекомендуем скачать работу.