Автоматизированная система защиты и контроля доступа в помещения
Типы и функции электронных систем защиты и контроля доступа в помещения. Структура технических средств. Архитектура системы, общие процедуры безопасности. Принципиальная схема контроллера шлюза, расчет платы. Разработка алгоритма управляющей программы.
Рубрика | Коммуникации, связь, цифровые приборы и радиоэлектроника |
Вид | дипломная работа |
Язык | русский |
Дата добавления | 24.06.2010 |
Размер файла | 177,9 K |
Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже
Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.
Расчет заземлителей в проектируемой системе с напряжением до 1кВ выполняют методом коэффицента использования по допустимому сопротивлению заземлителя растеканию тока.
Вначале определим допустимое сопротивление заземляющего устройства Rз.доп. Согласно ПУЭ значение Rз.доп устанавливается в зависимости от напряжения сети и суммарной мощности трансформаторов, питающих эту сеть, а именно: при напряжении до 1000В и мощности менее 1000 кВ*А допустимое заземляющее сопротивление Rз.доп=4Ом. Возможно на территории где будет эксплуатироваться СЗКДП будут присутствовать естественные заземлители, которые можно использовать. Поэтому общее сопротивление заземляющего устройства Rз.у будет складываться из сопротивления естественных и искусственных заземлителей, т.е.
1/ Rз.у=1/Rест + 1/Rиск < Rз.доп (8.4)
Так как требуемое значение Rз.доп может быть обеспечено только естественнымизаземлителями, то сначала необходимо выполнить расчет сопротивления естественных заземлителей и полученный результат сравнить с требуемым значением Rз.доп.В виду того, что отсутствуют исходные данные для расчета сопротивления естественных заземлителей, произведем расчет искусственных заземлителей.
Для заземления стационарных установок наибольшее распространение получили групповые искусственные заземлители, размещенные в грунте на определенной глубине. Они представляют собой систему вертикальных электродов, параллельно соединенных горизонтальным проводником связи. Расстояние (Q) между соседними вертикальными электродами рекомендуется выбирать не менее 2,5 м. Для заземлителей, расположенных в ряд отношение Q к длине (L) вертикального электрода предпочтительно выбирать равным около 2, а при расположении электродов по контуру -- равным 3.
В начале определим сопротивление одиночного вертикального электрода. Предполагается использовать заземлитель стержневой круглого сечения или уголковый у поверхности земли (рис.8.2).
Rв=р/(6,28*L)*ln(4*L/d) (8.5)
где Rв - сопротивление одиночного заземлителя;
p - удельное сопротивление земли;
L - длина стержня;
d - ширина стержня.
Удельное сопротивление земли (p) определяется эксперементально и зависит от типа грунта. Из таблицы [ ] выбираем наиболее распространенный вид грунта -- почва. Рекомендуемое значение p для почвы равно 200 Ом*м. С учетом коэффицента сезонности (y) из таблицы определим рассчетное сопротивление грунта,
pp=p*y (8.6)
Коэффицент сезонности y исходя из таблицы для вертикального электрода длиной 3 метра равен 1,5. Тогда
pp=200*1,5=300 Ом*м
Ширину заземлителя (d) выберем равной 0,05 метров. Теперь найдем сопротивление одиночного заземлителя,
Rв=300/(6,28*2)*ln(4*2/0,1)=20 Ом
Далее определим ориентировочное количество вертикальных электродов (n) с некоторым избытком. Для этого находят произведение коэффицента использования вертикальных электродов (nв) на их количество (n) по формуле
n*nв=Rв/Rз (8.7)
n*nв=20/4=5
Для нахождения числа электродов используем таблицу [ ].
Из таблицы видно, что при размещении в ряд получим:
nв=0,77 ; n=6
Далее, зная ориентировочное количество электродов, с учетом их размещения в грунте, найдем длину горизонтального проводника связи при расположении в ряд,
l=1,05*(n- 1)*a=1,05*(6-1)*10=52,5 м.
Рассчитаем сопротивление растекания тока горизонтального проводника связи (в виде стальной полосы шириной (b)), соединяющего верхние концы вертикальных электродов из выражения,
Rr=рр/(6,28*L)*ln(2*l2/b) , Ом (8.8)
Тогда
Rr=300/(6,28*3)*ln(2*52,52/0,05)=84 Ом.
Результирующее сопротивление искусственного группового заземлителя будет равно,
Rи=Rв*Rr/ (Rв*nг+Rr*nв*n), Ом (8.9)
Тогда
Rи=20*84/(20*0,84+84*0,77*6)=4,14 Ом
При использовании естественного заземлителя параллельно с искусственным даст нужный результат и сопротивление заземляющих проводников не превысит требуемого значения.
Итак: проектируемый заземлитель состоит из 6 вертикальных стержневых электродов длиной по 2 метра и диаметром 10мм и горизонтального электрода в виде стальной полосы длиной 52 метра углубленных в землю (грунт). При таких условиях Rи искусственного заземлителя в самое неблагоприятное время года не превышает 4,14 Ом, при требуемом сопротивлении 4 Ом. Можно сказать, что проектируемый заземлитель соответствует требованиям электробезопасности.
Заключение
В заключении можно отметить, что проектируемая автоматизированная система защиты и контроля доступа в помещения позволяет решить все возникающие вопросы при организации ограниченного доступа на объект подлежащий защите. Она может применятся как в административных зданиях, так и на крупных предприятиях, везде где требуется организация высокого пропускного режима.
Применение таких мощных электронных средств как: электронный идентификатор, микроконтроллер серии 80С51, радиомодем TXM433F, компьютер позволяют создать мощную локальную сеть по обеспечению безопасности людей на контролируемой системой объекте.
Система производит не только идентификацию и аутентификацию пользователей, но и контроль доступа к ресурсам системы. СЗКДП постоянно производит регистрацию и анализ событий происходящих внутри системы, ведет протокол функционирования всего комплекса защиты.
Обеспечение комплексной безопасности на объекте подлежащем защите на основе проектируемой СЗКДП, позволяет создавать препятствия для любого несанкционированного вмешательства в процесс ее функционирования, а также попыток выведения или разрушения ее компонентов. То есть защиту всех компонентов системы оборудования, программного обеспечения, данных и персонала.
Cписок литературы
1. Хвощ С.Т. Организация последовательных мультиплексных каналов систем автоматического управления - Л.:Машиностроение,1989
2. Сташин В.В. Проектирование цифровых устройств на однокристальных микроконтроллерах - М.:Энергоатомиздат,1990
3. Лебедев О.Н. Изделия электронной техники. Цифровые микросхемы. Микросхемы памяти. Микросхемы ЦАП и АЦП: Справочник - М.: Радио и связь, 1994
4. Апорович А.Ф. Проектирование радиотехнических систем: Учебное пособие. - Мн.: Выш. шк., 1988
5. Халсалл Ф. Передача данных, сети компьютеров и взаимосвязь открытых систем: Пер. с англ. - М.: Радио и связь, 1995
6. Бергхаузер Т. Система автоматизированого проектирования AutoCAD: Справочник: Пер с англ. - М.: Радио и связь, 1989
7. Долин П. А. Основы техники безопасности в электроустановках: Учебное пособие для вузов. - М. Энергоатомиздат, 1984
8. Михнюк Т.Ф. Задачи и расчеты по охране труда по курсу “Охрана труда” для студентов радиотехнических и приборостроительных специальностей. В двух частях. Защита от электрического тока. - БГУИР, 1994
9. Каган Б.М. Основы проектирования микропроцессорных устройств автоматики. - М.: Энергоатомиздат, 1987
10. Гольденберг Л.М. Цифровые устройства и микропроцессорные системы: Учебное пособие для вузов. - М.: Радио и связь, 1992
11. Фролкин В.Т. Импульсные и цифровые устройства: Учубное пособие для вузов. - М.: Радио и связь, 1992
12. Ходасевич Р. Г. Методическое пособие по дипломному проектированию. - Минск , 1980.
13. ГалкинВ.И. , Булычев А.Л. , Прохоренко В.А. Полупроводниковые приборы : Справочник - Минск `` Беларусь `` , 1987.
14. Общесоюзные нормы технологического проектирования ОНТП 24-86.
15. ГОСТ 12.2.006-87. ( МЭК 65-85 ) Безопасность аппаратуры электронной сетевой и сходных с ней устройств , предназначенных для бытового и аналогичного общего применения. Общие требования и методы испытаний.
16. ГОСТ 12.2.007.0-75. ССБТ. Радиопомехи индустриальные. Методы испытаний источников индустриальных радиопомех.
17. ГОСТ 2.144-70. ТУ. Правила построения , изложения и оформления.
18. ГОСТ 29037-91. Совместимость технических средств электромагнитная. Сертификационные испытания. Общие положения.
19. ГОСТ 27570.0-87. Безопасность бытовых и аналогичных электроприборов. Общие требования и методы испытаний.
20. Селиванов Н.Р. Электроника в криминалистике.-- Москва, 1979.
21. Touch Memory Standards.-- Dallas Semiconductor Corporation , Dallas, Texas , USA , 1994.
22. Афитов Э.А. Учебное пособие : Организация и планирование производства. - Мн. : МРТИ , 1992.
23. Варламов Р.Г. Справочник конструктора РЭА. - М. : Радио и связь , 1987.
24. Рафикузаман М. Микропроцессоры и машинное проектирование микропроцессорных систем : В 2-х кн. - М. : Мир , 1988.
25. Шевкопляс Б.В. Микропроцессорные структуры. Инженерные решения : Справочник. М. : Радио и связь , 1990.
26. Хоровиц П. , Хилл У. Искусство схемотехники : В 3-х томах. - 4-е изд. перераб. и доп. - М. : Мир , 1993.
27. Кобылинский А.В. , Сабадаш Н.Г. , Тесленко А.К. Система автоматизации программирования однокристальной микроЭВМ. - Микропроцессорные средства и системы, 1986, №3.
28. Кушнир В.Е. , Панфилов Д.И. , Шаронин С.Г. - Учебная микроЭВМ на основе однокристальной ЭВМ КМ1816ВЕ48. - Микропроцессорные средства и системы , 1986 , №6.
29. Р 50-34.119-90. Рекомендации.Информационная технология. Комплекс стандартов на автоматизированные системы. Архитектура локальных вычислительных сетей в системах промышленной автоматизации. Общие положения.
30. ГОСТ 34.602-89. Информационная технология. Техниеское задание на создание автоматизированной системы.
31. РД 50-682-89. Методические указания. Информационная технология. Общие положения.
32. ГОСТ 34.601-90. Информационная технология. Комплекс стандартов на автоматизированные ситемы. Автоматизированные системы.
33. Общеотраслевые руководящие методические материалы по созданию и применению автоматизированных систем управления. (ОРММ-3АСУ ТП). М.: Государственный комитет СССР по науке и технике. 1986
34. ГОСТ 34.003-90.Информационная технология. Комплекс стандартов на автоматизированные ситемы. Автоматизированные системы. Термины и положения.
35. Р 50-34.119-90. Рекомендации.Информационная технология. Комплекс стандартов на автоматизированные системы. Архитектура локальных вычислительных сетей в системах промышленной автоматизации. Общие положения.
36. ГОСТ 26342-84. Средства охранной, пожарной и охраннопожарной-сигнализации. Типы, основные параметры и размеры.
37. 5. ГОСТ 12.2.006-87. (МЭК 65-85). Безопасность аппаратуры
38. электронной сетевой и сходных с ней устройств, предназначенных для бытового и аналогичного общего применения. Общие требования и методы испытаний.
39. 6. ГОСТ 12.2.007.0-75. ССБТ. Радиопомехи индустриальные. Методы испытаний источников индустриальных радиопомех.
40. ГОСТ Р50009-92. Совместимость технических средств охранно-пожарной сигнализации электромагнитная. Нормы и методы испытаний.
41. ГОСТ 4.188-85. СПКП. Средства охранно-пожарной сигнализации. Номенклатура показателей.
42. ГОСТ 2.144-70. ТУ. Правила построения, изложения и оформления.
43. ГОСТ 29037-91. Совместимость технических средств электромагнитная. Сертификационные испытания. Общие положения.
44. 11.ГОСТ 27570.0-87. Безопасность бытовых и аналогичных электроприборов. Общие требования и методы испытаний.
45. ГОСТ 251099-83. Средства пожарной, охранной сигнализацииОбщие технические требования и методы испытаний.
46. ГОСТ 16325-88. Машины вычислительные цифрового общего назначения. Общие технические требования.
47. СНиП 3.05.07-85. Системы автоматизации.
48. ГОСТ 24.602-86. Надежность автоматизированых систем управления. Основные положения.
Приложение 1
СТАНДАРТ I-ETS 300 220
В 1993 году Технический Комитет по Радиооборудованию и Системам европейского Института Телекоммуникационных Стандартов разработал и провел утверждение Временного Европейского Стандарта Телекоммуникаций (Interim European Telecommunication Standard, I-ETS).
Данный стандарт, получивший обозначение I-ETS 300 220, регламентирует технические характеристики и способы их измерения для радиооборудования, работающего в диапазоне частот от 25 до 1000 Мгц со всеми видами модуляции, исключая системы множественного доступа с кодовым разделением, и имеющего мощность до 500 мВт,
На работу приборов класса 1.а стандарт I-ETS 300 220 накладывает следующие ограничения:
- максимальная эффективная излучаемая мощность.........10 мВт
- тип используемой антенны.......................................встроенная
- уровень внеполосных излучений передатчика:
- в диапазонах 47...74 МГц, 87.5...118 МГц, 174...230 МГц, 470...862 МГц..........................................................4 нВт
- в других диапазонах до 1000 МГц..............................250 нВт
- на частотах свыше 1000 МГц.........................................1 мкВт
- температурный диапазон проведения тестов........-25...+55 о С
Подобные документы
Изучение средств и систем контроля доступа на объекты охраны. Особенности и виды технических средств охраны. Обзор систем контроля доступа на охраняемую территорию. Контроль и учет материальных ценностей в системе охраны и физической защиты предприятия.
контрольная работа [220,2 K], добавлен 20.05.2010Разработка охранной защиты от проникновения с подсистемами: защиты периметра, контроля и обнаружения доступа в здание или отдельные помещения. Характеристики прибора присутствия, схемы источника питания. Метод изготовления печатных плат устройства.
курсовая работа [152,0 K], добавлен 27.02.2009Установление мест, подлежащих блокированию и контролю доступа. Определение требуемого класса системы контроля доступа и системы видеонаблюдения. Разработка структуры сетей системы, подбор необходимого оборудования. Расчет затрат для реализации проекта.
дипломная работа [1,8 M], добавлен 08.06.2013Системы контроля и управления доступом (СКУД) – это совокупность технических и программных средств, предназначенных для обеспечения санкционированного доступа в отдельные зоны. Устройство системы. Выполняемые процедуры. Классификация объектов СКУД.
реферат [233,7 K], добавлен 24.01.2009Формы собственности и вид деятельности объекта защиты, расположение помещений на плане, общедоступная информация и ограниченного доступа, возможные угрозы, их предупреждение. Политика безопасности каналов, утечка, матрица доступа и блокирование.
дипломная работа [1,0 M], добавлен 22.03.2011Решение задачи ограничения перемещения людей по территории объекта с помощью систем контроля и управления доступом. Принцип работы, функции и основные составляющие данного средства безопасности. Преимущества применения видеонаблюдения. Схема сетевых СКУД.
презентация [546,3 K], добавлен 22.03.2017Биометрическая идентификация, вещественный код, временной интервал доступа (окно времени), зона доступа. Виды карточек – идентификаторов доступа. Контроль и управление доступом. Уровень доступа. Устройства преграждающие управляемые. Электронный ключ.
реферат [233,7 K], добавлен 24.01.2009Разработка микроконтроллера для контроля ритма дыхания больного в реанимационной палате. Структурная и принципиальная схемы микропроцессорного контроллера. Модули процессора, памяти, ввода и вывода, режимы индикации. Описание работы, принципиальная схема.
курсовая работа [197,6 K], добавлен 06.12.2013Разработка система охраны трансформаторного завода, включающая в себя подсистему охранной сигнализации, подсистему контроля доступа и видеонаблюдения. Настройка системы контроля. Расчёт себестоимости создания системы физической безопасности электрозавода.
дипломная работа [3,8 M], добавлен 18.06.2010В работе на базе PIC-контроллера реализуется цифровой секундомер. Выбор технических требований к устройству, к питанию. Разработка структурной схемы, принципиальной электрической схемы, алгоритма работы управляющей программы, управляющей программы.
курсовая работа [427,1 K], добавлен 20.06.2008