Конструирование и технология изготовления звукового сигнализатора отключения сетевого напряжения
Выбор элементной базы и технологии изготовления, сборки и монтажа устройства для подачи акустических сигналов с определенной частотой сразу же после пропажи напряжения в сети. Поэлементный расчет и порядок проектирования конструкции данного устройства.
Рубрика | Коммуникации, связь, цифровые приборы и радиоэлектроника |
Вид | курсовая работа |
Язык | русский |
Дата добавления | 19.09.2010 |
Размер файла | 4,0 M |
Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже
Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.
- прессование;
- литье под давлением;
- формование.
Для изготовления нашего корпуса будем использовать способ обработки в виде литья под давлением.
Литье под давлением - процесс, во время которого материал переводится в вязко-текучее состояние и затем впрыскивается под давлением в форму, где происходит оформление изделия.
Методом литья под давлением производят изделия массой от долей грамма до десятков килограммов. Этот способ является наиболее распространенным в переработке большинства промышленных термопластов. Кроме того, литьем под давлением производят изделия армированные, гибридные, полые, многоцветные, из вспенивающихся пластиков и др.
Основным оборудованием процесса является термопластоавтомат, оснащенный пресс-формами
Отличительной особенностью метода является его цикличность, что ограничивает его производительность.
К основным достоинствам литья под давлением относятся:
- универсальность по видам перерабатываемых пластиков,
- высокая производительность,
- высокое качество получаемых изделий,
- возможность изготовления деталей весьма сложной конфигурации или тонкостенных изделий,
- отсутствие дополнительной обработки конечного продукта (за исключением операции удаления литников),
- полная автоматизация процесса.
Недостатки метода:
- литьевые машины являются сложными и недешевыми устройствами, насыщенными современными техническими решениями;
- применение термопластоавтоматов для реализации конкретного технологического процесса требует квалифицированного технико-экономического обоснования.
Принципиально, суть технологии литья под давлением состоит в следующем (рис. 24). Расплав полимера подготавливается и накапливается в материальном цилиндре литьевой машины (в данном случае - червячного типа) к дальнейшей подаче в сомкнутую форму (позиция а).
Затем материальный цилиндр смыкается с узлом формы, а пластикатор (в нашем случае - невращающийся червяк) в процессе осевого движения перемещает расплав в форму (позиция б). В результате чего форма заполняется расплавом полимерного материала, а пластикатор смещается в крайнее левое (на рисунке) положение (позиция в).
Далее расплав в форме застывает (или отверждается - в случае реактопластов) с образованием твердого изделия (позиция г). Материальный цилиндр продолжает оставаться в сомкнутом с системой формы положении. В этой ситуации червяк начинает вращаться с заданной скоростью, подготавливает и транспортирует расплав в переднюю зону материального цилиндра и при этом отодвигается назад. В конце накопления требуемого объема расплава вращение червяка прекращается. Он занимает исходное положение.
После завершения процесса затвердевания (отверждения) пластмассы форма размыкается, и изделие удаляется из нее (позиция д). Для облегчения съема изделия материальный цилиндр может к этому моменту отодвинуться от узла формы. Далее цикл литья под давлением повторяется.
Рис. 26. Схема процесса литья под давлением
Процесс литья под давлением можно разбить на следующие стадии:
1. Дозирование материала и загрузка его в цилиндр.
2. Пластикация материала.
3. Впрыск пластифицированного материала в сомкнутую форму и выдержка его под давлением.
4. Охлаждение изделия в форме.
5. Размыкание формы и удаление изделия из неё.
К технологическим параметрам литья под давлением относятся: температура пластикационного цилиндра, температура формы, удельное давление литья и продолжительность стадий цикла.
Температура пластикации должна быть выше температуры текучести полимера на 10 - 20 °С. При более высоких температурах уменьшается вязкость расплава, облегчаются условия формования, повышается производительность литьевой машины, но увеличивается скорость термической и термоокислительной деструкции.
Температура формы должна быть меньше температуры размягчения полимера, но слишком низкая температура формы может быть препятствием к нормальному её заполнению при впрыске.
Выбор оптимальной температуры определяется способностью полимера к кристаллизации, скоростью кристаллизации, его теплофизическими свойствами, а также конструктивными особенностями формы, давлением литья и температурой поступающего в форму расплава.
Время цикла формования определяется временем пластикации материала, временем впрыска материала в форму и выдержки под давлением, временем охлаждения изделия в форме.
Время пластикации зависит от теплопроводности полимера и характеристик нагревательного цилиндра. На общее время цикла почти не влияет.
Стадия выдержки под давлением заканчивается в момент застывания расплава в впускных каналах. Затрачиваемое время зависит от температуры расплава и формы, а также от формы и размеров литниковой системы.
Время охлаждения определяется температурой расплава, формы и объемом отливки. Вносит наибольший вклад в общее время цикла.
Усилие смыкания формы и удельное давление литья характеризуют конструктивные особенности узла смыкания (рис. 27) и определяют возможность изготовления изделия на данном термопластоавтомате и максимальную площадь отливаемого изделия.
Рис. 27. Узел смыкания и впрыска
Основную часть отходов при литье под давлением составляет материал, застывший в литниковых системах. Для уменьшения литниковых отходов в настоящий момент производители используют «горячеканальные» формы, которые дают также ряд других преимуществ.
Все отходы литьевого производства могут быть использованы для вторичной переработки.
Требуется две прессформы - для корпуса и крышки корпуса. Контур прессформ по форме напоминает контур деталей.
Подбор литьевых машин осуществляется по усилию смыкания пресс-форм и по массе получаемых деталей. Наиболее распространены литьевые машины немецкой фирмы DEMAG, где смыкание осуществляется усилием и кулачками.
Литьевые машины:
Д-125 предназначены для изготовления деталей весом до 240 гр;
Д-400 - для изготовления деталей 1 кг 200 гр.
На литьевой машине с ЧПУ время заливки составляет 5 секунд, а охлаждения -15-20 секунд.
Чертежи прессформ корпуса и крышки приведены в приложении.
3.3 Разработка технологического процесса изготовления, сборки и монтажа
Технологический процесс (ТП) изготовления радиоаппаратуры представляет собой сложный комплекс действий оборудования и исполнителей по преобразованию исходных материалов в готовое изделие. Построение технологического процесса предприятия и его оснащенность определяются количеством выпускаемых изделий. В зависимости от количества выпускаемых изделий различают единичное, серийное и массовое производство.
При серийном производстве изготовление изделий ведут чередующимися партиями. В зависимости от величины партии различают мелкосерийное и крупносерийное производство. При мелкосерийном производстве используют специальную оснастку и инструмент, подробно разрабатывают технологический процесс, операции закрепляют за определенными рабочими местами. При крупносерийном производстве рабочие места оснащают специальными приспособлениями и инструментами, используют рабочих более низкой квалификации, так как технологические операции упрощаются.
Процесс монтажа состоит из следующих частей:
а) установка и пайка элементов, монтируемых в отверстия;
б) контроль.
Рассмотрим каждую из составляющих технологического процесса подробнее.
Пайка двойной волной припоя.
Пайка двойной волной припоя применяется в настоящее время для одного типа коммутационных плат: с традиционными компонентами на лицевой стороне и монтируемыми на поверхность простыми компонентами (чипами и транзисторами) на обратной. Некоторые компоненты для ТПМК (даже пассивные) могут быть повреждены при погружении в припой во время пайки. Поэтому важно учитывать их термостойкость. Если пайка двойной волной применяется для монтажа плат с установленными на их поверхности компонентами сложной структуры, необходимы некоторые предосторожности:
- применять поверхностно монтируемые ИС, не чувствительные к тепловому воздействию;
- снизить скорость транспортера;
- проектировать коммутационную плату таким образом, чтобы исключить эффект затенения.
Хорошо разнесенные, не загораживающие друг друга компоненты способствуют попаданию припоя на каждый требуемый участок платы, но при этом снижается плотность монтажа.
В волне типа «Омега» объединены преимущества двухволновой системы в одной волне (см. рис. 28)
Рис. 28. Волна «Омега»
В системе используют вертикальную заслонку, совершающую горизонтальные колебания с малой амплитудой, в результате чего на поверхности припоя возникает турбулентный участок с высоким уровнем давления на плату.
В данном курсовом проекте для пайки двойной волной припоя будем использовать установку ATF 33/33 (40)
ATF 33/33 (40) - наилучшее решение для производственных участков с небольшими объемами выпускаемой продукции. Позволяет использовать как свинцовые, так и бессвинцовые технологии.
Общие особенности: все модели пайки волной являются конвейерными системами и при желании могут быстро встраиваться в конвейерные линии, обеспечивая высокую гибкость производственного процесса. Это очень важный момент, если учесть невысокую стоимость данного оборудования по сравнению с конкурентами. Все установки пайки волной снабжены двумя типами волн, а именно чип-волной и ?-волной с минимальным расстоянием для уменьшения шлакообразования и остывания плат в процессе пайки. Также в данной модели имеется две зоны предварительного подогрева. Подогрев осуществляется с помощью ИК-нагревателей с возможностью добавления модуля конвекции. Зона флюсователя представляет из себя пенный флюсователь (базовая комплектация) с возможностью замены на спрей-флюсователь с одной либо с двумя головками распыления.
Основные достоинства
- Высокое качество пайки
- Высокая надежность
- Простота использования
- Невысокая стоимость
Краткие технические характеристики ATF 33/33 (40)
Длина x ширина…………………………..2500 x 1100 мм
Высота…………………………………….1430 мм
Вес…………………………………………450 кг
Рабочая ширина…………………………..330 мм (400 мм)
Кол-во зон предварительного нагрева…..2
Длина зоны предварительного нагрева…1200 мм
Угол наклона конвейера………………….5° - 9°
Скорость движения конвейера…………..0.2 - 2.5 м/мин
Максимальная температура припоя…….300° C
Вес припоя …………………………………………320 кг
Объем емкости с флюсом (пенный флюсователь)..4.5 л
Объем емкости с флюсом (спрей флюсователь)….15 л
Производительность блока вытяжки………………2 трубы x 600 м?/ч
Потребление воздуха………………………………..60 л/мин 6 Бар
Потребляемая мощность макс………………………27 кВт
Электропитание………………………………………3-х фазн. 230/400В 50/60 Гц
Рис. 29. Установка для пайки ATF 33/33 (40)
Далее проводим контроль пайки.
Визуальная проверка ведется на стерео увеличителе Mantis (микроскопе МБС-10, при необходимости).
Mantis Compact - это микроскоп визуального контроля с невысоким увеличением, обеспечивающий получение превосходного трехмерного изображения и непревзойденную свободу движений головы. Произведенный с использованием запатентованной безокулярной технологии компании Vision Engineering, Mantis Compact является стереомикроскопом невысокого увеличения, который выбирают для выполнения задач по контролю, обработке или ремонту изделий при необходимости увеличения изображения. Возможность быстрой смены объективов с кратностью увеличения x2, x4, x6, x8
Светодиодная подсветка холодным светом с реалистичной цветопередачей гарантирует работу свыше 10 000 часов и полное отсутствие теней
Превосходная эргономичность для увеличения производительности работы
Превосходная зрительная координация движений рук при выполнении задач контроля и обработки
Большое рабочее расстояние для простоты выполнения операций по обработке и ремонту
Выбор штатива. Подвижный штатив с малой установочной площадью; Универсальный шарнирный штатив для применений, требующих увеличенной рабочей зоны; Жесткий настольный штатив для создания дополнительной устойчивости либо использования дополнительных осветительных опций.
Запатентованная оптическая технология позволяет большую свободу движений головы оператора для обеспечения превосходной эргономичности и зрительной координации движений рук, а также дает возможность при необходимости носить очки. Можно добиться повышения производительности и качества работы оператора по доступной цене.
Рис. 30. Стерео увеличитель Mantis
Основными документами при разработке технологических процессов являются технологические карты. В картах указывается структура технологического процесса и его содержание, последовательность выполнения операций, применяемое оборудование, режимы обработки и тому подобное. Применяются технологические карты трех видов: маршрутные, технологического процесса и операционные.
Маршрутные карты представляют собой технологический документ, содержащий описание технологического процесса изготовления или ремонта изделия по всем операциям различных видов в технологической последовательности с указанием данных об оборудовании, оснастки, материальных и трудовых нормативах, в соответствии с установленными нормами. Эти карты определяют последовательность прохождения обрабатываемого изделия по цехам. Они применяются в единичном и мелкосерийном производстве в тех случаях, когда не требуется точной деталировки технологического процесса и обрабатываемое изделие твердо не закреплено за операциями на длительное время.
Маршрутные карты содержат сведения о материале и маршрутах заготовки, цехах и мастерских, в которых производится обработка, а так же перечень операций, оборудования, технологической оснастки, профессий и разряды рабочих, а так же нормированные сведения.
Маршрутные карты технологического процесса сборки печатной платы приведены в приложении. Технологический процесс разработан в соответствии с ОСТ 4ГО.019.432
Контроль
Рабочее место на основе системы визуального контроля MANTIS отвечает всем требованиям эргономики, уменьшает усталость работника в процессе работы, повышает его производительность за счет снижения напряжения зрения и уменьшения утомляемости глаз.
Стереоизображение с высокой разрешающей способностью, большая глубина резкости, оптимальная цветопередача и хорошее регулируемое освещение обеспечивают более эффективное проведение работ. Эффективность системы MANTIS сохраняется при работе в очках или с контактными линзами.
Пользователю доступны пять объективов с различной степенью увеличения, два из которых постоянно находятся на турели и могут быть выбраны простым переключением рычага. Для работы в условиях сильного загрязнения, например, при пайке, объективы могут быть оснащены прозрачными защитными фильтрами. Применение сменного патрона с влагопоглотителем препятствует запотеванию оптической системы прибора.
Достоинства:
- максимальное увеличение до 10 крат;
- стереоизображение с высокой разрешающей способностью;
- антибликовый экран;
- регулируемое освещение;
- низкая утомляемость оператора.
Все вышеперечисленное позволяет добиться высокого качества изготовления проектируемого изделия.
Основными документами при разработке технологических процессов являются технологические карты. В картах указывается структура технологического процесса и его содержание, последовательность выполнения операций, применяемое оборудование, режимы обработки и тому подобное. Применяются технологические карты трех видов: маршрутные, технологического процесса и операционные.
Маршрутные карты представляют собой технологический документ, содержащий описание технологического процесса изготовления или ремонта изделия по всем операциям различных видов в технологической последовательности с указанием данных об оборудовании, оснастки, материальных и трудовых нормативах, в соответствии с установленными нормами. Эти карты определяют последовательность прохождения обрабатываемого изделия по цехам. Они применяются в единичном и мелкосерийном производстве в тех случаях, когда не требуется точной деталировки технологического процесса и обрабатываемое изделие твердо не закреплено за операциями на длительное время.
Маршрутные карты содержат сведения о материале и маршрутах заготовки, цехах и мастерских, в которых производится обработка, а так же перечень операций, оборудования, технологической оснастки, профессий и разряды рабочих, а так же нормированные сведения.
Маршрутные карты технологического процесса сборки печатной платы приведены в приложении. Технологический процесс разработан в соответствии с ОСТ 4ГО.019.432
3.4 Инженерные расчеты
3.4.1 Расчет надежности
Надежность - свойство изделия выполнять заданные функции, сохраняя свои эксплуатационные показатели в заданных пределах в течении требуемого промежутка времени.
Все устройства с точки зрения надежности делят на восстанавливаемые и невосстанавливаемые. Восстанавливаемым считается устройство, работа которого после отказа может быть восстановлена в результате проведения необходимых восстановительных работ. Устройство, работа которого после отказа полностью невозможна или нецелесообразна, называется невосстанавливаемым. Разрабатываемое устройство является восстанавливаемым.
В технических условиях на аппаратуру устанавливают допустимые пределы изменения основных параметров. Если происходит нарушение нормальной работы, при котором наступает полное нарушение (прекращение) работоспособности системы (элемента), или параметры выходят за пределы установленных допусков, то такое состояние называют отказом. Различают отказы внезапные и постепенные. Внезапные отказы возникают в результате скачкообразного изменения параметров устройств (например, пробой диэлектрика, сгорание резистора). Постепенные отказы возникают вследствие медленного изменения параметров устройств за счет действия различных дестабилизирующих факторов. Деление отказов на внезапные и постепенные условно. Эти понятия отражают только скорость изменения параметров во времени.
Надежность - это мера способности аппаратуры работать безотказно. Количественно надежность устройств выражается показателями надежности. Расчет надежности заключается в определении показателей надежности изделия по известным характеристикам надежности составляющих компонентов. Важным показателем надежности является вероятность безотказной работы аппаратуры в течении заданного периода времени.
Результаты расчетов надежности позволяют решать различные задачи конструирования РЭА:
выбирать из различных вариантов системы лучшую по надежности;
принять или отклонить конструкцию до ее практического выполнения, не расходуя средств на ее изготовление и испытания;
определить пути повышения надежности создаваемой конструкции.
Надежность РЭА можно повысить в процессе конструирования следующими методами:
- применением наиболее надежных и перспективных элементов со сроком службы и техническим ресурсом не менее заданных в техническом задании на аппаратуру;
- снижением уровня электрической нагрузки элементов;
- снижением рабочей температуры в изделии;
- защитой элементов и всей конструкции от воздействий окружающей среды;
- повышением стабильности параметров элементов относительно воздействий окружающих условий;
- введением предохранителей и защитных устройств;
- упрощением схем и конструкций;
- заменой дискретных элементов интегральными схемами;
- резервированием.
При расчете надежности звукового сигнализатора отключения сетевого напряжения приняты следующие допущения:
- интенсивности отказов всех элементов постоянны;
- отказы элементов изделия являются событиями случайными и независимыми друг от друга;
- все элементы и узлы с точки зрения надежности соединены последовательно, т.е. отказ каждого элемента является отказом изделия в целом;
- при расчете надежности учитывались только внезапные отказы ЭРЭ, паек и узлов (при определении интенсивности отказов при хранении учтены и постепенные отказы).
Таблица 13. Значения интенсивностей отказов
Наименование и тип ЭРЭ |
Количество ЭРЭ, Ni |
Интенсивность отказов |
||
*10-6,1/ч |
Ni* 10-6, 1/ч |
|||
Резистор постоянный С1-4 |
6 |
0,03 |
0,18 |
|
Резистор постоянный С2-33Н |
1 |
0,034 |
0,034 |
|
Конденсатор полярный К50-12 |
3 |
0,15 |
0,45 |
|
Транзистор КТ315Б |
2 |
0,0015 |
0,003 |
|
Транзистор КТ361Б |
1 |
0,0015 |
0,0015 |
|
Диод КД102Б |
1 |
0,04 |
0,04 |
|
Светодиод L-934SRC-E |
1 |
0,06 |
0,06 |
|
Стабилитрон КС213В |
1 |
0,05 |
0,05 |
|
Звукоизлучатель НРМ14АХ |
1 |
0,7 |
0,7 |
|
Плата печатная |
1 |
0,7 |
0,7 |
|
Пайка |
37 |
0,01 |
0,37 |
|
Всего: |
55 |
2,59 |
Общая интенсивность отказов устройства с учетом условий эксплуатации найдём по формуле:
,
где и - поправочные коэффициенты в зависимости от воздействия механических факторов;
- поправочный коэффициент в зависимости от воздействия влажности и температуры;
- поправочный коэффициент в зависимости от давления воздуха;
- поправочный коэффициент в зависимости от температуры поверхности элемента и коэффициента нагрузки.
Для лабораторных условий: , , , ,= 1,0.
Среднее время наработки на отказ Tср, вычисляется по формуле:
Полученное время превышает заданную наработку на отказ (10 000 ч).
Вероятность безотказной работы устройства за время t по формуле:
P(t)=еxp(-?изд*t)=exp (-t/Tср).
Вероятность безотказной работы для времени, t=5000 ч.:
P(t) = 0,9995
Полученные результаты говорят о высокой надежности сконструированного преобразователя.
График зависимости вероятности безотказной работы от времени представлен на рисунке 28.
Рис. 31. Зависимость вероятности безотказной работы от времени эксплуатации
Вывод: Полученное среднее время наработки до отказа превышает указанное в техническом задании, следовательно, требования по надежности выполняются.
3.4.2 Расчет теплового режима
Практически все радиоэлементы схемы излучают тепловую энергию. Резисторы рассеивают тепло, выделяющееся в их резистивном слое. Транзисторы рассеивают тепло, выделяющееся в их коллекторном переходе. Конденсаторы нагреваются из-за потерь в диэлектрике. В какой-то степени нагреваются даже соединительные провода и проводники на печатной плате.
Нормальное функционирование РЭА возможно лишь при условии поддержания температур ее элементов в определенных пределах. Изменение теплового режима оказывает влияние на характеристики элементов и может привести к возникновению физико-химических процессов, выводящих элемент из строя. При этом дестабилизирующими тепловыми воздействиями являются рассеиваемые при работе элементов мощности, изменения температуры внешней среды и тепловые потоки от окружающих прибор объектов. Поэтому на этапе конструкторского проектирования РЭА при выборе вариантов конструкции и компоновки наряду с задачами обеспечения монтажно-коммутационных требований, помехоустойчивости, технологичности, вибропрочности необходимо решать задачи обеспечения нормального теплового режима.
Применение новой элементной базы, позволяющей уменьшить массу и объем устройств, во многих случаях увеличивает удельные рассеиваемые мощности, что заставляет искать новые пути решения задач обеспечения теплового режима. Часто требования к тепловому режиму приводят к необходимости использования систем охлаждения и термостатирования, конструкции которых во многом определяют конструкцию самой аппаратуры, причем массогабаритные показатели и энергопотребление системы охлаждения могут быть соизмеримы или превышать соответствующие характеристики функциональных устройств.
Из выше сказанного вытекает, что проблемы комплексной микроминиатюризации, унификации конструкций, повышения надежности и автоматизации конструкторского проектирования РЭА неразрывно связаны с разработкой эффективных систем охлаждения и методов проектирования конструкций, обеспечивающих нормальный тепловой режим.
При конструировании устройств процессы теплообмена должны рассматриваться на всех уровнях компоновки - от функциональных узлов до многоблочных конструкций и отсеков. Выбор систем охлаждения каждого уровня должен проводиться с учетом возможности отвода теплоты и наличия фоновых перегревов на более высоком конструктивном уровне. Поэтому, если это возможно, тепловое проектирование следует начинать с верхних уровней и при переходе на более низкий иметь для рассматриваемого модуля достоверную информацию о тепловых воздействиях со стороны других модулей.
Расчёт теплового режима необходим, т. к. он позволяет определить надёжность функционирования наиболее критичных к температуре радиоэлементов, позволяет проконтролировать их тепловой режим и не допустить их перегрева.
Определение мощности, выделяющейся радиоэлементами внутри аппарата, является сложной задачей, так как тепловыделение отдельного элемента зависит от большого количества факторов. Так, для цифровых микросхем потребляемая ими мощность сильно зависит от частоты работы. Для аналоговых микросхем рассеиваемая мощность определяется параметрами входных и выходных сигналов (током и напряжением). Для диодов и транзисторов, работающих в импульсном режиме, тепловыделение определяется параметрами протекающих токов (длительность импульса, амплитуда импульса тока, скважность, форма импульса и др.). Для элементов источника питания тепловыделение сильно меняется при изменениях напряжения в питающей сети и при изменениях тока нагрузки. Тепловыделение конденсаторов и индуктивностей также зависит от формы импульсов тока и напряжения, параметров диэлектрика.
Определим температуру корпуса.
1. Рассчитаем площадь внешней поверхности устройства:
,
где и габаритные размеры корпуса блока.
(м2)
2. Рассчитываем удельную поверхностную мощность корпуса:
,
где мощность, рассеиваемая устройством, Вт.
(Вт/м2).
3. Задаемся значением перегрева корпуса в первом приближении ?tk = 0,1o C.
4. Определяем коэффициент лучеиспускания для верхней л.в, боковой л.б и нижней л.н поверхностей корпуса:
,
где степень черноты i-ой наружной поверхности корпуса зададимся значением = 0,92);
5. Рассчитаем определяющую температуру:
,
(o C).
6. Для определяющей температуры рассчитываем число Грасгофа Gr для каждой поверхности корпуса:
,
где коэффициент объемного расширения ();
ускорение свободного падения, м/с2;
кинетическая вязкость газа (для воздуха);
определяющий размер i-ой поверхности.
7. Определяем число Прандтля Pr для определяющей температуры : Pr =0,702.
8. Находим режим движения газа или жидкости, обтекающих каждую поверхность корпуса:
(GrPr)m 5 10 2 режим переходный к ламинарному;
510 2 (Gr Pr)m 2 10 7 ламинарный режим;
(Gr Pr)m 2 10 7 турбулентный режим
Gr Pr = 5,218 10 7 - турбулентный режим
9. Рассчитываем коэффициенты теплообмена конвекцией для каждой поверхности корпуса блока :
,
где теплопроводность газа (для воздуха);
коэффициент, учитывающий ориентацию поверхности корпуса:
.
.
.
10. Определим площади нижней, боковой и верхней поверхностей корпуса:
,
,
(м2).
(м2).
11. Определяем тепловую проводимость между поверхностью корпуса и окружающей средой :
, (3.20)
(Вт/(м2К)
12. Рассчитываем перегрев корпуса блока РЭА во втором приближении :
,
где коэффициент, зависящий от коэффициента перфорации корпуса; коэффициент, учитывающий атмосферное давление окружающей среды;
,
,
=0,229 и = 0,995
(оС).
13. Определяем ошибку расчета:
,
.
Так как величина погрешности меньше допустимой, то расчет можно считать законченным.
14. Рассчитываем температуру корпуса:
, (oC).
Полученное значение температуры корпуса находится в пределах допустимой нормы, а перегрев нашей платы невелик - 0,0904 oC, следовательно, тепловой режим устройства соблюдается.
3.4.3 Расчёт механической прочности
Современная РЭС испытывает целый ряд механических воздействий, которые, влияя на работу радиоаппаратуры, снижают её надежность. К этим факторам, в частности, как наиболее проявляющимся, относятся вибрационные и ударные нагрузки. Вибрации и удары, воздействующие на РЭА, вызывают:
- изменение выходных параметров радиоаппаратуры;
- отказ РЭА из-за коротких замыканий и обрывов соединений;
- усталость материала несущих конструкций и его разрушение;
- раскручивание крепежа, обрыв защелок;
- механические повреждения электромонтажных соединений и установочных элементов;
- отслаивание фольги печатных плат;
- искажение диаграмм направленности антенн и т.п.
Уменьшение частоты отказов РЭА, работающей в условиях повышенных вибраций, достигается комплексом мероприятий, в число которых входят:
- разработка схемы и конструкции с учетом возможных условий эксплуатации;
- применение ЭРЭ и материалов, отвечающих заданным условиям эксплуатации;
- разработка методики контроля и испытаний, соответствующих условиям эксплуатации;
- строгое соблюдение технологии изготовления РЭА и ее совершенствование.
Кроме того, для борьбы с вибрациями применяют следующие меры:
- ужесточение конструкции с целью повышения собственных частот колебаний (заливка, вакуумированная герметизация и т.п.);
- применение прижимающих и антивибрационных устройств;
- правильное закрепление РЭА в отсеках на борту и в помещениях (в местах наименьшей амплитуды вибраций);
- применение различного рода амортизирующих прокладок из резины, поролона и других материалов.
В практических случаях элементы конструкции блоков РЭА имеют сложную конфигурацию. При расчетах сложный элемент заменяют его упрощенной моделью в виде балки, стержня, пластины, мембраны.
Рассчитав собственные частоты элементов конструкции и всего блока, сравнивают их с частотами возмущающих колебаний.
В правильно сконструированной аппаратуре собственная частота конструкции не должна находиться в спектре частот внешних воздействий. Хотя любая конструкция обладает несколькими значениями собственных частот, расчет выполняется только для низших значений. Если нижнее значение частоты входит в диапазон внешних воздействий, то конструкцию блока дорабатывают, ужесточая ее, с целью увеличения собственной частоты и выхода из спектра частот внешних воздействий, либо переходят на её амортизацию и производят соответствующие расчеты.
Многие конструктивные элементы РЭС могут быть представлены в виде пластин. К пластинам можно отнести печатные платы (ПП), днища шасси, элементы экранов, панели и т.п.
Пластиной называют плоское тело, ограниченное двумя поверхностями, расстояние между которыми мало, по сравнению с размерами поверхностей. В конструкциях РЭС обычно используются прямоугольные и круглые пластины с различными способами закрепления.
В математическом отношении задача динамического расчета пластин, т.е. расчета на вибрационные и ударные воздействия, достаточно сложна. Для этих целей используются точные (аналитические), приближенные и численные методы расчета.
Практическое применение аналитических методов решения задач динамики конструкций сопряжено с рядом трудностей. Конструкции современной аппаратуры представляют собой сложные механические системы с множеством упругих и жестких связей, с неклассическими способами крепления отдельных конструктивных элементов. Для такой механической системы сложно построить расчетную модель, достаточно простую и в то же время хорошо отражающую физические и динамические свойства, тем более что конструкция содержит множество неконтролируемых параметров, например усилия затяжки соединений при сборке плат в пакет, коэффициенты механических потерь материалов элементов. Поэтому широко используют приближенные и численные методы расчета.
Для начала расчёта необходимо отметить, что ПП с одной стороны имеет закрепление защелками, а противоположная сторона крепко прижата к корпусу устройства.
Данная ПП имеет размеры: а=0,065 м, b=0,055 м, h=1•10-3м.
Материал ПП - стеклотекстолит марки FR-4
Плотность =2,4•103 кг/м3;
Общая масса ЭРЭ Мэ=0,0205 кг;
Модуль Юнга Е=3•1010 Н/м2=0,3*105 МПа;
Коэффициент Пуассона =0,28;
Максимальной амплитудой ускорения корпуса Smax=2g;
Логарифмический декремент колебания ?=0,12.
1) Находим массу ЭРЭ, приведённую к единице площади платы:
2) Находим массу единицы площади ПП:
3) Находим коэффициент, учитывающий массу ЭРЭ:
4) Находим коэффициент частоты для первой формы колебаний пластины (ПП):
5) Находим цилиндрическую жёсткость ПП:
6) Находим собственную частоту колебаний:
7) Находим первую собственную частоту колебаний:
Следовательно, собственная частота платы не попадает в диапазон воздействующих частот f=1..60 Гц в режиме работы.
8) Найдем виброперемещение Z. Рассчитаем для заданного вида закрепления платы в корпусе максимальное перемещение точки А с координатами Х=0,065 и У=0,055
где ?1х и ?1у =0,5098 ? коэффициенты вовлечения форм собственных колебаний; Х1 (х)=1 и У2 (у)=1 ? значения балочных функций;
К1дин ?коэффициент динамичности:
9) Теперь полученное значение необходимо проверить на условие виброжесткости:
где ?adm? допустимый прогиб для данной пластины.
где ?adm норм =30 мм ? допустимая стрела прогиба; lнорм=1 м ? нормированная длина.
Вывод: Плата удовлетворяет условию виброжесткости, поэтому никаких дополнительных конструкторских мер не требуется. Выбранный вариант закрепления платы соответствует условиям эксплуатации изделия. Однако необходимо учитывать ряд ограничений при транспортировке устройства:
- устройство нельзя перевозить в самолётных, ракетных и космических видах транспорта;
- транспортировочная тара должна быть снабжена элементами, амортизирующими вибрационные воздействия (пенопласт, пленка и др.).
Заключение
В данном курсовом проекте была решена задача конструирование и технология изготовления звукового сигнализатора отключения сетевого напряжения. На основании технического задания и схемы электрической принципиальной были рассмотрены основные вопросы проектирования данного устройства.
Исходя из проведенной работы по анализу определяющих факторов и требований, предъявляемых к конструкции, выполнена компоновка устройства, выбраны технически обоснованные технологические процессы изготовления основных элементов и материалы, с учетом применяемых методов обработки.
Результаты расчета надежности показывают, что выбранные электрорадиоэлементы, входящие в схему электрическую принципиальную, и заданные режимы работы и эксплуатации полностью обеспечивают надежную работу устройства в период, заданный техническим заданием.
В технологической части курсового проекта проведена оценка технологичности конструкции печатного узла генератора, приведена маршрутная карта технологического процесса сборки, которая показывает этапы подготовительных и основных операций сборки печатного узла, а также необходимый инструмент для выполнения данной работы.
Графическая часть курсового проекта позволяет представить конструкцию разработанного устройства, его основных составных частей и выполнена в полном объеме, заданном техническим заданием.
Таким образом все требования технического задания выполнены полностью.
Библиографический список
1. Технология поверхностного монтажа (Компоненты. Печатные платы):
Учебное пособие / В.В. Сускин, С.А. Лобанов. Рязан. гос. радиотехн.
акад. Рязань, 1998. 64 с.: ил.
2. Технология поверхностного монтажа (Контроль качества): Учебное по-
собие / В.В. Сускин, С.А. Лобанов. Рязан. гос. радиотехн. акад. Рязань,
1999. 64 с.: ил.
3. Проектирование конструкций радиоэлектронной аппаратуры: Учебное
пособие для вузов / Е.М. Парфенов, Э.Н. Камышная, В.П. Усачев. М.:
Радио и связь, 1989. 272 с.: ил.
4. Аксенов А.И., Нефедов А.В. Резисторы, конденсаторы. Провода, при-
пои, флюсы: Справочное пособие. М.: Солон-Р, 2000. 239 с.
5. Партала О.Н. Радиокомпоненты и материалы: Справочник. М.: КубК-а,
1998. 710 с.
6. Электронные компоненты: Каталог. М.: АО «Платан». №4. 1998.
7. Электронные компоненты: Каталог. СПб.: АО «Симметрон». 2000.
8. Электронные компоненты: Прайс - лист. СПб.: АО «Симметрон».2000
9. P-CAD 2006. Разработка печатных плат / Уваров А.С. ? М.: СОЛОН-Пресс, 2007 - 544 с.
10. ГОСТ 12.0.002-80 80 «Основные понятия. Термины и определения».
11. ГОСТ 2.301 ? ГОСТ 2.321 «ЕСКД. Общие правила выполнения чертежей».
12. ГОСТ 23594-79 «Маркировка».
13. ГОСТ 23751-86 «Платы печатные. Основные параметры конструкции».
14. Допуски и посадки / Белкин И.М. - М.: Машиностроение, 1992, 306 с.
15. Допуски и посадки: Справочник, под ред. Мягкова - М.: Машиностроение, 1982.
16. Конструирование радиоэлектронных средств: Методические указания к курсовому проектированию / Румянцев В.П. - Рязань: РРТИ, 1993, 24 с.
17. Методы расчета теплового режима приборов / Дульнев Г.Н. М.: Радио и связь, 1990, 312 с.: ил.
18. Основы конструирования радиоэлектронных приборов / Аксенова И.К., Мельников А.А. - М.: Высшая школа, 1986.
19. ОСТ 4Г0.091.219 - 76 «Узлы и блоки радиоэлектронной аппаратуры. Методика оценки и нормативы показателей технологичности конструкций».
20. ОСТ 4.ГО.054.010 «Сборка и пайка узлов на печатных платах. Типовые технологические процессы».
21. Расчет надежности радиоэлектронной аппаратуры / Цветков А.Ф. - Рязань: РРТИ, 1973, 159 с.
22. Расчет пластинчатых конструкций РЭС на вибрационные воздействия: Методические указания к курсовому и дипломному проектированию / РГРТА; Сост. В.И. Дыкин. Рязань, 1995, 28 с.
23. Резисторы: Справочник / под общ. ред. И.И. Четверкова, В.М. Терехова - М.: Радио и связь, 1987.
24. Элементы схем бытовой РА. Диоды. Транзисторы / А.И. Аксёнов, А.В. Нефёдов, А.М. Юшин, М: «Радио и связь», 1993.
25. Марти Браун «Источники питания», Киев, «МК-Пресс», 2007.
26. Богдан Грабовски «Справочник по электронике», Москва, «ДМК», 2009
27. «Сварка, резка, контроль», справочник под редакцией Н.П. Алешина, Г.Г. Чернышева, том1, Москва, «Машиностроение», 2004.
28. «Сварка и резка материалов», под редакцией Ю.В. Казакова, издание 5, стереотипное, Москва, «Академия», 2006.
29. Технология конструкционных материалов: Учебник для машиностроительных специальностей ВУЗов / А.М. Дольский, И.А. Арутюнова, Т.М. Барсукова и др.; Под ред. А.М. Дольского. - М.: Машиностроение, 2005. - 448 с.
Подобные документы
Краткое описание принципиальной схемы и назначения устройства. Выбор элементной базы и конструирование устройства генератора "воющего" шума. Конструирование печатного узла и деталей (корпуса). Технология проектирования, изготовления, сборки и монтажа.
курсовая работа [2,4 M], добавлен 19.09.2010Технические характеристики, описание конструкции и принцип действия (по схеме электрической принципиальной). Выбор элементной базы. Расчёт печатной платы, обоснование ее компоновки и трассировки. Технология сборки и монтажа устройства. Расчет надежности.
курсовая работа [56,7 K], добавлен 07.06.2010Структура и назначение арифметическо-логического устройства, порядок его проектирования. Выбор элементной базы, конструкции данного блока и основные требования к нему. Расчет частоты собственных колебаний блока АЛУ, оценка уровня его унификации.
курсовая работа [1,3 M], добавлен 01.09.2008Выбор и обоснование элементной базы, структурной и принципиальной схем, компоновки устройства. Расчет узлов и блоков, потребляемой мощности и быстродействия. Выбор интегральной микросхемы и радиоэлектронных элементов, способа изготовления печатной платы.
дипломная работа [149,1 K], добавлен 23.10.2010Анализ влияния напряжения питания на работу микроэлектронных устройств. Принцип действия и характеристика устройств контроля напряжения. Выбор типа микроконтроллера. Функции, выполняемые супервизором. Разработка алгоритма и структурной схемы устройства.
диссертация [3,1 M], добавлен 29.07.2015Назначения и характеристика устройства. Требования по устойчивости к внешним воздействиям. Выбор и обоснование конструкции устройства. Конструкторско-технологические расчеты печатной платы. Технологический процесс сборки и монтажа. Расчет технологичности.
курсовая работа [167,7 K], добавлен 19.06.2014Выбор резистивного материала, проводников, подложки. Расчет размеров плёночных резисторов. Выбор конструкции корпуса, навесных компонентов, оборудования. Разработка топологии платы, схемы коммутации. Технология изготовления платы и сборки микросхемы.
курсовая работа [610,8 K], добавлен 26.11.2014Определение элементной базы электронного устройства. Определение технологии изготовления печатной платы. Обзор современных систем автоматизированного проектирования печатных плат. Анализ трудоемкости работ по проектированию электронного устройства.
курсовая работа [1,9 M], добавлен 18.12.2013Назначение, конструкция, принцип работы и технические характеристики расходомера топлива. Проведение анализа элементной базы оригинальных деталей устройства. Разработка конструкторской схемы и технологического маршрута сборки и монтажа данного изделия.
курсовая работа [58,4 K], добавлен 10.01.2011Разработка принципиальных схем синтезатора. Выбор и обоснование элементной базы. Разработка концептуального алгоритма устройства. Разработка, выбор и обоснование конструктивных составляющих синтезатора. Выбор и обоснование методов монтажа и межсоединений.
дипломная работа [249,8 K], добавлен 24.06.2010