Сегнетоэлектрики, их свойства и применение
Общие сведения о сегнетоэлектриках, диэлектрические свойства и электропроводность, линейные и нелинейные свойства. Сегнетоэлектрики и антисегнетоэлектрики, области спонтанной поляризации (доменов). Направления применения сегнетоэлектрических кристаллов.
Рубрика | Коммуникации, связь, цифровые приборы и радиоэлектроника |
Вид | курсовая работа |
Язык | русский |
Дата добавления | 29.07.2009 |
Размер файла | 10,0 M |
Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже
Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.
Запоминающие устройства на сегнетоэлектриках сравнимы с запоминающими устройствами на ферритах; однако последние имеют преимущество, обусловленное тем, что техника ферритов развивалась уже в течение ряда лет. Следует отметить, что время переключения сегнетоэлектриков с точки зрения требований современной техники велико, если пользоваться матричной селекцией. Время переключения определяется амплитудой импульса, а амплитуда импульса в свою очередь -- коэрцитивным полем материала. В случае титаната бария этот предел составляет около 10 мксек.
В сдвигающих регистрах и счетчиках вычислительных машин матричная селекция не употребляется, поэтому здесь можно использовать импульсы напряжения большей амплитуды. Это обстоятельство уменьшает указанный выше предел времени срабатывания. При малой емкости выходного конденсатора напряжение с выхода одной ячейки может быть непосредственно приложено к другой ячейке. Подобные регистры были построены с применением монокристаллов титаната бария и транзисторных управляющих цепей. Были также созданы регистры и накопители на керамиках. Одно из устройств, допускающих неразрушающее считывание информации с ячейки памяти, описано Кауфманом. Принцип его работы заключается в том, что при переполяризации ячейки в результате изменения знака спонтанной поляризации фаза выходного сигнала изменяется так, что последний находится или в фазе, или в противофазе с опорным переменным пьезоэлектрическим сигналом, вырабатываемым при ультразвуковой вибрации ячейки.
Сегнетоэлектрическая резонансная пара может служить основой бистабильных элементов вычислительных машин. Если частота срабатывания магнитных феррорезонансных пар составляет примерно 20 кГц, то с сегнетоэлектриками можно получить большее быстродействие. В одном из типов таких устройств применяются два контура последовательного резонанса, подключенных параллельно источнику переменного напряжения. В каждой такой цепи последовательно соединены нелинейный сегнетоэлектрический конденсатор и линейная индуктивность. Условие резонанса нелинейной цепи зависит от амплитуды. Если амплитуда напряжения мала, то в обоих плечах может иметь место линейный резонанс, но имеется такой интервал амплитуд, для которого осуществляется нелинейный резонанс, при котором заряд, протекающий в одном плече, много больше, чем в другом. Больший ток может протекать в любом из плеч. Переключение с одного состояния нелинейного резонанса на другое осуществляется при помощи индуктивной связи.
7. Тезисы доклада по реферату: « Сегнетоэлектрики - свойства и применение»
1. Диэлектрические свойства сегнетоэлектриков характеризуются нелинейными зависимостями между D и Е, гистерезисом, зависимостью от напряженности поля, что связано с наличием электрических доменов.
2. Электропроводность сегнетоэлектриков в определенном отношении также связана с доменной структурой. Как и у некоторых других диэлектриков, при включении постоянного поля в сегнетоэлектриках наблюдается спад тока, связанный в частности, с сегнетоэлектрической релаксационной поляризацией.
3. Барьеры у контактов, на границах зерен и электрических доменов определяют ряд физических явлений в сегнетоэлектриках.
4. Антисегнетоэлектрики, т. е. диэлектрики, имеющие домены, в которых результирующая спонтанная поляризация равна нулю, в слабых полях имеют линейную зависимость D как функцию Е, но в достаточно сильных полях могут переходить в сегнетоэлектрическое состояние. Антисегнетоэлектрики отличают от линейных диэлектриков и рядом других свойств.
5. Сегнетоэлектрики находят широкое практическое применение. Наиболее широко применяют сегнетоэлектрики в малогабаритных конденсаторах большой емкости; причем обычно используют в виде керамики твердые растворы, которые выбирают так, чтобы получался размытый фазовый переход для сглаживания температурных зависимостей.
Сегнетоэлектрики применяют также в качестве нелинейных элементов. На основе ВаТЮ8 разработаны и серийно выпускаются вариконды, предназначенные для управляемых фильтров, частотных модуляторов, генераторов развертки, умножителей частоты и т. д. Имеются как объемные, так и пленочные варианты элементов. Развиваются применение сегнетоэлектриков в качестве запоминающих элементов и ячеек памяти в вычислительных устройствах.
Список использованной литературы
1. Дж. Барфут, Введение в физику сегнетоэлектрических явлений, изд-во «Мир»,352 стр., 1970.
2. Ф. Иона Д. Ширане, Сегнетоэлектрические кристаллы, изд-во «Мир»,556 стр., 1965.
3. В.А. Овчинников, Общая физика электричества и магнетизма, М., 248 стр., 1975.
4. А.С. Сонин Б.А. Струков, Введение в сегнетоэлектричество М., 438 стр.,1970.
5. В.М. Гуревич, Электропроводность сегнетоэлектриков М., 359 стр., 1969.
Подобные документы
Общие сведения о резисторах, классификация, система условных обозначений и маркировка. Основные электрические параметры и свойства резисторов. Характеристики и свойства переменных и постоянных резисторов, назначение и использование резисторных наборов.
реферат [33,4 K], добавлен 30.08.2010Принцип действия полупроводниковых диодов, свойства p-n перехода, диффузия и образование запирающего слоя. Применение диодов в качестве выпрямителей тока, свойства и применение транзисторов. Классификация и технология изготовления интегральных микросхем.
презентация [352,8 K], добавлен 29.05.2010Влияние нелинейностей на свойства систем и их фазовые портреты. Устойчивость нелинейных систем "в малом", "в большом" и "в целом". Системы, эквивалентные устойчивым линейным и абсолютная устойчивость. Области устойчивости системы в фазовой плоскости.
реферат [1,2 M], добавлен 30.12.2009Полупроводниковые приборы. Выпрямительные свойства диодов. Динамический режим работы диодов. Принцип действия диода. Шотки, стабилитроны, стабисторы, варикапы. Туннельные диоды. Обращённый диод. Статическая характеристика и применение обращённого диода.
реферат [515,0 K], добавлен 14.11.2008Преобразователи тока и напряжения, их свойства и применение. Понятие коэффициента трансформации, реакторы и трансреакторы. Фазоповоротные и частотно-зависимые схемы. Насыщающиеся трансформаторы тока, преобразователи синусоидальных токов и напряжений.
курсовая работа [2,6 M], добавлен 11.08.2009Общие сведения о графене - двумерной аллотропной модификации углерода, история его открытия, структура, псевдомагнитные свойства. Получение нового полупроводникового материала на основе графена. Один из способов создания графенового двоичного триггера.
доклад [3,8 M], добавлен 20.05.2013Понятие и общие свойства датчиков. Рассмотрение особенностей работы датчиков скорости и ускорения. Характеристика оптических, электрических, магнитных и радиационных методов измерения. Анализ реальных оптических, датчиков скорости вращения и ускорения.
курсовая работа [1,4 M], добавлен 14.01.2016Полупроводники и их физические свойства. Генерация и рекомбинация свободных носителей заряда. Влияние донорных и акцепторных примесей. Понятие р-п -перехода и факторы, влияющие на его свойства. Полупроводниковые диоды и биполярные транзисторы, их виды.
контрольная работа [1,2 M], добавлен 19.03.2011Частотные характеристики, основные свойства и конструкции сегнетокерамики варикондов. Особенности изготовления керамических конденсаторов. Анализ вариантов возможного применения импульсных схем, управляемых с помощью варикондов, и построения шифраторов.
курсовая работа [3,7 M], добавлен 31.07.2010Изучение температурной зависимости подвижности и проводимости носителей заряда в полупроводниках. Основные электрофизические свойства кремния и германия, мелкие акцепторные и донорные уровни. Спектральный диапазон оптической прозрачности чистого кремния.
курсовая работа [266,1 K], добавлен 22.12.2014