Система вентиляции Siemens LOGO

Разработка системы управления приточно-вытяжной вентиляцией офисного помещения на программируемом контроллере LOGO фирмы "Siemens". Проектирование функциональной и принципиальной электрической схемы объекта. Программирование и размещение контроллера.

Рубрика Коммуникации, связь, цифровые приборы и радиоэлектроника
Вид дипломная работа
Язык русский
Дата добавления 19.02.2012
Размер файла 4,3 M

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

Все встроенные функции хранятся в памяти логического модуля в виде двух библиотек. Библиотека GF содержит набор функций, выполняющих все основные логические операции. В библиотеку SF собраны специальные функции: триггеры, счетчики, таймеры, импульсные реле, компараторы, генераторы импульсов и т.д.

Пакет LOGO! Soft Comfort позволяет производить разработку и отладку программ для LOGO! на компьютере, документировать программы и эмулировать работу разрабатываемого устройства. Поддерживается программирование в виде функциональных блоков и релейно-контактных схем. Пакет может работать под управлением операционных систем Windows 95/98/NT/ME/2000/XP, Linux, MAC OS-X.

Готовая программа может загружаться в память логического модуля через кабель ПК или записываться в модуль памяти через специальное устройство LOGO! Prom.

Максимальная надежность устройств и компонентов LOGO! достигается реализацией широкомасштабных и влияющих на величину издержек мероприятий при разработке и изготовлении.

Сюда относятся:

· использование высококачественных компонентов;

· проектирование всех цепей в расчете на наихудшие условия;

· систематическое автоматизированное тестирование всех компонентов;

· тренировка всех схем высокой интеграции (напр., процессоров, памяти и т.д.);

· меры по предотвращению статического разряда при работе с интегральными МОП-схемами;

· визуальный контроль на различных этапах изготовления;

· испытание на нагрев при длительной работе при повышенной температуре окружающей среды в течение нескольких дней;

· тщательные окончательные приемочные испытания под управление компьютера;

· статистический анализ всех возвращенных систем и компонентов для немедленного проведения корректирующих мероприятий;

· контроль важнейших компонентов устройства управления с использованием онлайнового тестирования (циклическое прерывание для CPU и т.д.).

Различные модели модулей оснащены транзисторными или релейными выходами. Транзисторные выходы способны коммутировать токи до 0.3А в цепях напряжением =24В и оснащены электронной защитой от короткого замыкания. Релейные выходы способны коммутировать токи до 10А (активная нагрузка) или до 3А (индуктивная нагрузка) в цепях напряжением =12/24В, ~24В или ~/= 115/240В.

Для увеличения количества обслуживаемых входов-выходов и максимальной адаптации к требованиям решаемой задачи к каждому логическому модулю LOGO! могут подключаться модули расширения.

Модули DM8 имеют 8-, модули DM16 - 16 канальную структуру (4 входа/4 выхода или 8 входов/8 выходов). Релейные выходы модулей при активной нагрузке способны коммутировать токи до 5А. Внутренняя шина модулей DM8/DM16 может быть подключена только к модулю с таким же уровнем напряжения питания.

Коммуникационные модули позволяют производить подключение логических модулей к сетям AS-Interface, EIB и LON. В сети AS-Interface модули LOGO! способны выполнять функции интеллектуальных ведомых устройств, в сетях EIB и LON - функции ведущих устройств. Коммуникационные модули рекомендуется устанавливать последними в линейке расширения. По внутренней шине они могут подключаться к модулям с любым напряжением питания.

Механическое устройство модулей контроллера

Таблица №2 - расшифровка позиций

1. Источники питания

5. Панель управления

9. Механическое кодиование - шрифты

2. Входы

6. ЖКД

10. Механическое кодиование - гнезда

3. Выходы

7. Индикатор состояния

11. Защелка

4. Гнездо для модуля с крышкой

8. Интерфейс расширения

12. Клемма PE для подключения экрана аналоговой изм. линии.

На рисунке 8-9 приведено механическое устройство модулей контроллера «LOGO!», а в таблице 2 расшифровка позиций.

Технические характеристики

В таблице №3 указаны технические характеристики контроллера.

Таблица №3 - технические характеристики контроллера

Входное напряжение

24 В

Допустимый диапазон

20,4 … 28,8 В

Потребление тока из источника 24 В

20…75 мА

Входное напряжение:

0

1

<5В

>12 В

Время цикла для формирования аналоговых значений

300 мс

Диапазон температуры для аналогового входа АМ2 Pt100

-50…+200 °С

Аналоговый выход

=0…10 В

5.2 Выбор вспомогательных элементов управления

Датчики

Первичный измерительный преобразователь температуры типа QAC2010

Наружные датчики предназначены для измерения наружной температуры и, в меньшей степени - уровня солнечной радиации, влияния ветра и температуры стены здания.

Датчик может использоваться в качестве:

*контрольного датчика для управления температурой подающей в зависимости от погодных условий;

*измерительного датчика в целях оптимизации.

Наружный датчик с чувствительным элементом Pt 100 Ом при 0 °С. Датчик помещен в пластмассовый корпус со снимающейся крышкой.

Чувствительный элемент залит синтетической резиной. Доступ к клеммам для подключения датчика обеспечивается после снятия крышки. Кабель подключается либо с тыльной стороны (скрытая проводка), либо с нижней стороны (открытая проводка). В нижнюю часть корпуса может вкручиваться уплотнитель кабельного ввода Рk11.

Технические характеристики:

- диапазон измерения: -50…+70 0С;

- чувствительный элемент Pt 100 Ом при 0 °С;

- допустимые отклонения: ±1 0С при -10…+20 °С

- постоянная времени: 10 мин.;

- допустимая влажность: 5…100%;

- степень защиты корпуса: IP43;

- вес: 0,120 кг;

В зависимости от цели использования, датчик может устанавливаться:

* Для контроля:

На стене дома или здания, на которой имеются окна, выходящие из жилых помещений. При этом на датчик не должны падать солнечные утренние лучи. Если это не гарантируется, его лучше установить на стене с северной или с северо-западной стороны.

Для оптимизации:

Во всех случаях - на самой холодной стене дома или здания (обычно на стене с северной стороны). Попадание на датчик солнечных утренних лучей не допускается.

Высота установки:

Предпочтительно посередине стены дома или здания, или зоны обогрева, но не ниже 2,5 м от уровня земли.

Не допускается крепление датчика в следующих местах:

Над окнами, дверьми, вентиляционными решетками и другими источниками тепла;

Под балконами или козырьками крыш.

Во избежание ошибок измерения, вызванных циркуляцией воздуха, кабельный ввод датчика необходимо закрыть уплотнителем. Покраска корпуса датчика не допускается.

Датчик-реле перепада давления воздуха QBM81.5

Используется для контроля перепада давления, а также для контроля за пониженным и повышенным давлением в системах вентиляции и кондиционирования воздуха.

Применяется для контроля:

· засорения фильтра;

· аварийной остановки двигателя.

Принцип действия: перепад давления между обоими соединениями деформирует пружинную диафрагму.

Он пригоден для крепления на воздуховодах или стенах. Рекомендуемая ориентация - вертикальная, хотя в принципе приемлемо любое местоположение. Соединительные трубки могут иметь произвольную длину, однако если они длиннее 2-х метров, время реакции на перепад давления увеличивается. Датчик должен устанавливаться таким образом, чтобы он находился сверху от точек соединения. Для того чтобы избежать конденсации, трубопроводы должны прокладываться так, чтобы от точек соединения их с датчиком-реле трубопроводный участок имел уклон (без образования петли).

Диапазон измерения 50…500Па. Производитель фирма «Siemens».

Термостат накладной типа RAK-TW.5000

Термостат осуществляет контроль защиты от замерзания по температуре воды в обратном трубопроводе, снабжен однополюсным перекидным микропереключателем. Установленная пороговая температура отображается в окошке на корпусе термостата.

При достижении температуры уставки при понижении температуры (функция защиты), перекидной контакт выработает сигнал и передаст его в щит управления.

Диапазон измерения 5…65 °С. Производитель фирма «Siemens».

Первичный измерительный преобразователь температуры типа QAC 21

Накладной датчик температуры предназначен для измерения температуры в трубопроводе. Измерение температуры в трубопроводе производится для контроля или ограничения температуры потока, ограничение температуры воды обратного трубопровода, контроля горячей воды.

Чувствительный элемент Pt100 снимает показания температуры трубопровода. Сопротивление чувствительного элемента изменяется в зависимости от температуры среды.

Диапазон измерения -30…+130 °С. Производитель фирма «Siemens».

Термостат защиты от замерзания типа QAF81.3

Термостат контролирует температуру воздуха после теплообменника в системе вентиляции и кондиционирования тем самым, защищая его от замерзания и последующего разрушения теплообменника.

Газонаполненный капилляр, соединенный с диафрагмированной камерой, представляет собой измерительный элемент, который механически связан с микропереключателем. Термостат чувствителен к падению температуры ниже установленного порога на длине участка капилляра 30 см.

При превышении температуры выше порога происходит автоматический сброс термостата.

Капилляр термостата должен быть установлен непосредственно после калорифера по потоку воздуха (до калорифера - в случае охлаждающего теплообменника). Его необходимо уложить петлями в плоскости, параллельной теплообменнику, на расстоянии от теплообменника около 5 см на специальных кронштейнах. Капилляр термостата должен перекрывать все сечение воздуховода после калорифера. Диапазон измерения -5…+15 °C. Производитель фирма «Siemens».

Первичный измерительный преобразователь температуры типа QAM2110.040

Канальный датчик температуры используется в установках кондиционирования воздуха в качестве:

- датчика температуры входящего или выходящего воздуха.

- датчика-ограничителя (например, ограничение по минимуму) в приточном канале.

- управляющего датчика, как например, для регулирования температуры помещения по наружной температуре.

- датчика точки росы.

- измерительного датчика, как например, для индикации измеряемых величин или подачи данных измерении централизованной системы контроля.

Технические характеристики:

- рабочий диапазон: -50 +80 °С;

- измерительный элемент: Pt100 Ом/0 °C;

- постоянная времени: 30 с;

Место установки:

- в установках кондиционирования воздуха после воздуходувки, если она является последней конструктивной единицей, в ином случае после последней конструктивной единицы на расстояние не менее 0,5 м.

- в вытяжном канале всегда до вытяжного вентилятора.

- в качестве ограничителя температуры входящего воздуха по возможности ближе к помещению.

- при регулировании влажности воздуха по методу точки росы непосредственно после каплеуловителя увлажнителя.

- чувствительный элемент не должен касаться стенок канала.

Диапазон измерения -30…+120 °C. Производитель фирма «Siemens».

Исполнительные механизмы и насосы.

Привод воздушного клапана типа GMA126.1E

Электропривод воздушного клапана со встроенной пружиной возврата предназначен для открытия и закрытия клапана. Воздушный клапан перекрывает поступление воздуха в помещение и из него через воздуховоды системы вентиляции.

Двух позиционные привод имеет угол поворота 90°. У него имеется встроенный дополнительные контакты, настроенные на срабатывание на угле 5°…90°. Производитель фирма «Siemens».

Циркуляционный насос типа UPS 25-20

В системах кондиционирования воздуха насосы являются ответственным элементом систем тепло- и холодоснабжения аппаратов для изменения параметров воздуха. От надежной работы насосов зависит стабильная и надежная работа системы кондиционирования воздуха. В России и других странах мира широкое применение получили насосы фирмы «Grundfos».

Для работы насосов в составе систем кондиционирования воздуха и систем тепло- и холодоснабжения характерны два основных режима: при постоянном расходе жидкости; при переменном расходе жидкости.

При постоянном расходе жидкости рекомендуется применение насосов с постоянной частотой вращения ротора приводного электродвигателя рабочего колеса насосов.

Фирма «Grundfos» для постоянных расходов воды в системах кондиционирования воздуха производит насосы типа UPS, которые монтируются на трубопроводах без фундаментов. Для ручного регулирования производительности систем по жидкости конструкции насосов имеет ручное переключение на три частоты вращения.

Циркуляционный насос в контуре нагрева создает циркуляцию воды в контуре узла регулирования подачей теплоносителя в воздухонагреватель, чем снижает вероятность замерзания воды в калорифере.

Привод ЗРК типа SSB61U

Электромеханические приводы предназначены для использования в системах с фанкойлами и охлаждаемыми потолками для управления клапанами нагрева и охлаждения. Привод имеет пропорциональный сигнал управления 0…10В, это сигнал приводит в действие шток привода, воздействующий на шток клапана.

Клапан открывается пропорционально напряжению на выходе Y. Электромеханические приводы предназначены для использования совместно с 3-х ходовыми клапанами с номинальным ходом штока 5,5 мм типа VXP45.

Производитель фирма «Siemens».

Регулирующие клапана.

Запорно-регулирующий клапан 3-х ходовой типа VXP45.20-4 (ЗРК)

Клапан применяется в системах вентиляции и кондиционирования для управления протоком по системам замкнутого контура, с фанкойлами, с калориферами и вторичными охладителями, для использования в 2-х трубных системах с одним теплообменником для нагрева и охлаждения (летний - зимний период).

Основной характеристикой регулирующего клапана является kvs - номинальный расход воды (м3/ч) через полностью открытый клапан (ход штока 100%) при перепаде давления в 1 бар и температуре воды 20 °С.

Силовые автоматические выключатели

Для защиты двигателей от перегрева устанавливаются токоограничивающие силовые автоматические выключатели типа 3RV1 фирмы Siemens. Характеристики расцепления силовых выключателей рассчитаны главным образом для защиты трехфазных двигателей. Расчетный ток защищаемого двигателя устанавливается на настроечной шкале. Расцепитель тока короткого замыкания настроен на заводе на 13-кратную величину расчетного тока. Этим обеспечивается нормальный пуск и надежная защита двигателя. Чувствительность выключателя к выпадению фазы гарантирует, что выключатель своевременно сработает при выпадении фазы и при вызванными этими обстоятельствами сверх токах в других фазах.

Силовые автоматические выключатели также обеспечивают защиту линии.

Для двигателей мощностью 1кВт из таблицы данных каталога Siemens выберем автоматический выключатель типа 3RV10 11-1DA1.

Выключатель имеет следующие характеристики:

· токовый расцепитель перегрузки 2,2-3,2А;

· максимальный расцепитель тока без выдержки времени 42А;

· отключающая способность при коротком замыкании при 400В 100кА;

· типоразмер S00.

6. Программирование контроллера

6.1 Общие данные

Для программирования контроллера воспользуемся программой LOGO! Soft Comfort.

Программное обеспечение LOGO! Soft Comfort предоставляет наиболее широкие возможности по разработке, отладке и документированию программ логических модулей LOGO! Разработка программы может выполняться на языках LAD (Ladder Diagram) или FBD. Допускается использование символьных имен для переменных и функций, а также необходимых комментариев.

В отличие от программирования с клавиатуры обеспечивается наглядное представление всей программы, поддерживается множество сервисных функций, повышающих удобство разработки и редактирования программы.

Разработка, отладка и полное тестирование работы программы может осуществляться в автономном режиме без наличия реального модуля LOGO!

Готовая программа может загружаться в логический модуль или записываться в модуль памяти, а также сохраняться на жестком диске компьютера.

LOGO! будет распознавать, считывать и включать входы и выходы всех модулей расширения независимо от их типа. Входы и выходы представлены в той же последовательности, в которой расположены модули. Для программирования имеются в распоряжении следующие входы, выходы и флаги: от I1 до I24, от AI1 до AI8, от Q1 до Q16, AQ1 и AQ2, от M1 до M24 и от AM1 до AM6. Кроме того, имеются биты регистра сдвига от S1 до S8, 4 клавиши управления курсором C^, C>, CЎ и C< и 16 свободных выходов от X1 до X16. В LOGO! 12/24… и LOGO! 24/24o для входов I7 и I8 имеет силу следующее: если I7 или I8 используется в коммутационной программе, то сигнал, прилагаемый к соединительному элементу, интерпретируется как цифровой; если используется AI1 или AI2, то сигнал интерпретируется как аналоговый.

Значительно более мощными являются специальные функции:

* Импульсное реле;

* Реверсивный счетчик;

* Задержка включения;

* Программный выключатель.

На рисунке 21 показано окно среды программирования LOGO! Soft Comfort.

Проект ВЕНТИЛЯЦИИ на S7-200

6.2 Описание работы программы

Алгоритм программы работы контроллера приведен в приложении А.

При поступлении на вход I1 логической единицы сигнал поступает на RS-триггер. С RS-триггера сигнал пуска поступает на выход Q1, а также поступает на блоки для запуска системы в летнем режиме и для перевода системы в холодное период в режим прогрева. С задержкой времени, которую формирует B024, сигнал подается на Q3 и Q4.

После поступления сигнала на Q3 включается задержка включения на вход I5, сигнал пропадет после открытия воздушной заслонки, если сигнал поступает через 10 секунд, то контроллер остановит систему, и на выход Q5 будут поступать сигналы с периодичностью 1 секунда, которую формирует блок B029.

Для сброса данного положения надо подать сигнал на вход I2.

Во время работы при поступлении сигнала на вход I6 на выход Q7 поступит сигнал и через 72 часа, если сигнал продолжает поступать остановит систему. Для сброса данного положения надо подать сигнал на вход I2.

При поступлении сигналов на I7 или I8 поступает сигнал на выход Q8, и система переходит в режим прогрева и после пропадания сигнала на этих входах система перезапуститься.

Контроль входов I9, I10, I11 и I12 включается с задержкой времени 10 секунд после появления сигнала на выходах Q3 и Q4. Если после этогосигнал поступает или поступил, подается на остановку системы и на выход Q9. Для сброса данного положения надо подать сигнал на вход I2.

Для формирования режима работы в ручном режиме на входы I4 и I5 должны поступить сигналы.

Для формирования сигнала режима работы в автоматическом режиме установлен аналоговой триггер B006. В зависимости от сигнала поступающего с AI1 триггер вырабатывает сигнал для переключения режимов работы.

В зимний период работы в дежурном режиме работы сигнал 0…10В на выходе AQ1 формируется в зависимости от поступающей информации на аналоговый вход AI3.

В зимний период работы во время работы сигнал 0…10В на выходе AQ1 формируется в зависимости от поступающей информации на аналоговый вход AI2 на регуляторе B009. В случае превышения сигнала на входе AI3 над установленным значением 45 °С срабатывает триггер B016, который переключит формирование сигнала от регулятора B010. После снижения сигнала AI3 формирование опять переходит от регулятора B009.

Данные переключения осуществляет аналоговый мультиплексор B013. В летний период работы во время работы сигнал 0…10В на выходе AQ1 формируется в зависимости от поступающей информации на аналоговый вход AI2 на регуляторе B009.

При поступлении сигнала на вход I13 контроллер переведет систему в режим остановки без возможности автоматического перезапуска.

Проектный отдел компании Аларм Телеком осуществляет проектирование всех видов вентиляционных систем для самых разных объектов: частные дома, квартиры, офисные и торговые центры, производства и заводы, различные предприятия. Вот уже более 10 лет наши специалисты выполняют проекты вентиляции на объектах, площадью от 20 до 60 000 квадратных метров. Мы выполняем проектирование систем вентиляции в Москве для объектов, расположенных на всей территории РФ.

Проектирование осуществляется на основаниях пожеланий Заказчика, технического задания, архитектурных чертежей, проектов дизайна. Наши специалисты производят согласование проекта вентиляции на стадии его изготовления с надзорными органами, архитектором, дизайнером и строителями. По желанию возможно осуществление авторского надзора.

Решение задач при проектировании.

Основные задачи, решаемые при проектировании систем вентиляции воздуха:

1. Производство расчета воздухообмена для конкретных помещений.

2. При проектировании вентиляции воздуха осуществляется аэродинамический расчет, который показывает общий расход воздуха, определяются сечения воздуховодов, рассчитывается потеря давления в воздуховодах.

3. Важной задачей является акустический расчет, в результате которого определяется звуковые параметры на выходе из систем воздухораспределения.

4. На основании расчетов по вентиляции воздуха в помещении, осуществляется окончательный точный подбор материалов и оборудования, определяются места размещения вентиляционных приточных и вытяжных систем, а также места прокладки воздуховодов.

Система вентиляции, полученная в результате расчетов, проходит проверку на соответствие всем нормам и требованиям, а также по уровню шума, вибрации, энергопотреблению. При завышенных параметрам или их несоответствию, производится доработка до приемлемых значений. Проекты систем вентиляции, созданные специалистами компании Аларм Телеком, предусматривают не только задачи по воздухообмену, но и по охлаждению или нагреву воздуха, его очистке и управлению параметрами влажности. Учитывается и существующие системы отопления, кондиционирования, что позволяет существенно снизить энергопотребление.

Важно еще на стадии проектирования грамотно интегрировать систему вентиляции с остальными инженерными системами здания для слаженной работы комплекса всех систем. Наше вентиляционное оборудование работает под управлением известной всем системы Умный дом и другими системами автоматизации и управления инженерных систем. В результате наш заказчик получает современную и функциональную систему управления.

Перспективные технологии в проектировании вентиляции.

Уже на стадии проектирования вентиляции, наши специалисты внедряют самые инновационные технические решения, которые зарекомендовали себя надежностью, технологичностью и функциональностью. Особое внимание уделяется энергопотреблению, а именно, применению энергосберегающих технологий в системе вентиляции воздуха. В наши дни это важный аспект в любом оборудовании, поэтому в большинстве проектов по вентиляции мы используем энергосберегающие приточные и вытяжные вентиляционные установки, в том числе с использованием рекуператоров - эффективных устройств по сохранению энергии.

Эстетичность и эргономичность вентиляции.

Для простоты управления, расположения и эстетичного вида, в проектировании вентиляции уделяется внимание и этому. Оборудование размещается в доступных местах, модули управления корректно вписываются в интерьер помещения. Таким образом, проведение обслуживания вентиляции происходит без дополнительных трудностей, а управление становится простым и понятным. Согласование размещения вентиляционного оборудования, комплектующих, вентиляционных решеток и модулей управления всегда согласуется с Заказчиком, дизайнерами и архитекторами, поэтому оптимально вписывается в дизайн помещений.

Состав проектной документации вентиляции.

Любой проект вентиляции должен иметь свой правильный состав и должен включать в себя полный пакет документации. В него входит монтажная схема вентиляции, спецификации вентиляционного оборудования, пояснительная записка, другие расчеты и сведения. Для понимания раскроем этот состав.

Монтажная схема вентиляции - это обозначение систем вентиляции и материалов на схеме, отображается схематичная установка оборудования без размеров, параметров, привязок и пересечений. Не присутствует также аксонометрия и спецификация. Такая схема может использоваться для осуществления монтажа вентиляции, но не всегда. Часто, указанной в монтажной схеме информации, не достаточно для осуществления качественного монтажа систем вентиляции, в этом случае требуется произвести полный комплекс работ по проектированию вентиляции, в результате которого и рождается проект системы вентиляции.

Проект вентиляции, в соответствие с ГОСТ, СНиП, СанПин - это полная нормативная документация с содержанием всех параметров и характеристик: обозначения вентиляционного оборудования, материалов и комплектующих, размеры и привязки, указание точного расположения агрегатов, узлы и пересечения, аксонометрия и расчеты, спецификация и пояснительная записка.

Стоимость проектирования систем вентиляции.

При изготовлении монтажной схемы для систем вентиляции, стоимость проектных услуг в компании Аларм Телеком составляет от $1,3 за кв.м. Цена изготовления проекта вентиляции составляет от $6,5 за кв.м. При заказе услуг, составляется договор на проектирование систем вентиляции, где указывается стоимость и сроки выполнения документации. Для расчета услуг по проектированию можно обратиться к менеджерам компании Аларм Телеком.

Срок изготовления проекта вентиляции.

Срок выполнения проектной документации по системам вентиляции зависит от площади объекта. Примерные сроки отражены в таблице:

Площадь объекта

Срок проектирования

Монтажная схема

Проект вентиляции

до 300 кв.м.

10 рабочих дней

-

300-600 кв.м.

15 рабочих дней

20 рабочих дней

600-1000 кв.м.

25 рабочих дней

40 рабочих дней

1000-2000 кв.м.

30 рабочих дней

60 рабочих дней

более 2000 кв.м.

определяется индивидуально

7. Размещение средств автоматизации

7.1 Требования к АСУ, монтаж

АСУ должна быть разработана и внедрена в соответствии с требованиями действующих Правил, ГОСТов и СНиПов:

· ГОСТ21.101-97 «Основные требования к проектной и рабочей документации»;

· ГОСТ21.613-88 «Силовое электрооборудование. Рабочие чертежи»;

· ГОСТ21.614-88 «Изображения условные графические электрооборудования и проводок на планах»;

· ГОСТ21.408-93 «Правила выполнения рабочей документации автоматизации технологических проектов»;

· СНиП 3.05.06-85 «Электротехнические устройства»;

· СНиП 3.05.07-85 «Системы автоматизации»;

· СНиП 2.04.05-91 (2000) «Отопление, вентиляция и кондиционирование»;

· отвечать требованиям СНиП 21.01-97 (Пожарная безопасность зданий и сооружений) по пожарной безопасности;

· Эксплуатационная документация оформляется в соответствии с требованиями-ГОСТ2.601-95.

АСУ разработата с использованием отечественного и импортного оборудования, отвечающего современному уровню качества и надежности.

Все оборудование должно быть сертифицировано для применения в РФ в соответствии с действующими нормативными документами. Базовым для разработки АСУ принять оборудование фирмы «SIEMENS» (датчики, исполнительные механизмы, программируемые контроллеры).

Автоматизация инженерных систем предусматривается на базе свободно-программируемых контроллеров, связанных с датчиками аналоговых и дискретных сигналов и электроприводами.

Контроллеры устанавливаются в совмещенных щитах автоматики и управления (ЩАУ), содержащих также и силовую аппаратуру. Шкафы ЩАУ должны находиться в непосредственной близости от соответствующего технологического оборудования.

Все используемые в системе аналоговые датчики измерения температуры, давления, влажности, расхода и т.п., должны иметь унифицированный электрический выходной сигнал, сопрягаемый с контроллерами системы.

Дискретные датчики должны иметь выходной сигнал типа «сухой контакт».

Приводы исполнительных механизмов должны управляться стандартным аналоговым выходным сигналом контроллера в диапазоне 0-10В.

Объектами автоматизации являются приточно-вытяжные системы вентиляции и кондиционирования. АСУ должна обеспечить полную автоматизацию процессов стабилизации температурных параметров, как в процессе обработки воздуха, так и при регулировании этих параметров в обслуживаемых помещениях.

Основными задачами автоматизации приточно-вытяжной вентиляции является

· автоматическое регулирование температуры приточного воздуха в соответствии с заданной уставкой;

· предварительный прогрев калорифера перед включением приточного вентилятора в зимнее время;

· защиту калорифера от замерзания по температуре обратной воды и по температуре приточного воздуха и по контактному датчику;

· контроль работы вентилятора по контактному датчику воздушного потока и его аварийное выключение;

· защита двигателей от перегревания;

· контроль засорения фильтра;

· контроль температуры воды, возвращаемой в сеть и защиту от ее перегрева;

· сигнализация аварий;

· автоматическое отключение приточных и вытяжных установок при срабатывании датчиков пожарной сигнализации. Работоспособность систем защиты от замораживания калорифера при этом должна сохраняться;

· ручное управление агрегатами систем с местных ЩАУ.

7.2 Особенности монтажа электропроводок объекта

Тип электропроводки и способ ее прокладки определяют номинальным напряжением сети, характером помещений, состоянием окружающей среды, в которой она будет находиться, условиями техники безопасности и пожарной безопасности. Окружающая среда характеризуется влажностью, температурой, наличием пыли, вредно действующих химически активных паров и газов.

Сухие помещения-это такие, в которых относительная влажность воздуха не превышает 60%. Если в этих помещениях в течение длительного времени температура не поднимается выше 30 °С, не выделяется большое количество технологической пыли и химически активных веществ, то такие сухие помещения называют нормальными.

Пыльные помещения-это помещения, в которых по условиям производства выделяется технологическая пыль в таком количестве, что она может оседать па проводах, проникать внутрь машин, аппаратов и т.п.

Влажные помещения - это помещения, в которых пары или конденсирующаяся влага выделяются лишь временно и притом в небольших количествах, а относительная влажность более 60, но не выше 75%.

Сырые помещения - это помещения, в которых относительная влажность в течение длительного времени превышает 75%.

Особо сырые помещения-это помещения, в которых потолок, стены, пол и находящиеся в них предметы покрыты влагой, а относительная влажность воздуха приближается к 100%.

Жаркие помещения - это помещения, в которых температура в течение длительного времени превышает 30 °С.

Пожароопасные - помещения или наружные установки, в которых хранят или применяют горючие вещества.

Изоляция проводов и кабелей должна соответствовать напряжению сети и условиям окружающей среды. Для сетей напряжением до 500 В провода должны иметь изоляцию, рассчитанную на напряжение не ниже 500 В.

Провода электропроводок удаляют от печей и труб отопления во избежание перегрева и преждевременного старения изоляции.

Нулевой провод должен иметь отличительную расцветку или у места ответвления и при вводе в арматуру его метят бандажом из цветных ниток, а головки роликов или изоляторов нулевого провода окрашивают эмалевой краской. На прямых участках окрашенные ролики устанавливают с интервалом через два или три обычных ролика.

Для надежного и быстрого отключения при коротком замыкании необходимо, чтобы ток короткого замыкания был не менее чем в 3 раза больше номинального тока предохранителя.

7.3 Соединение и оконцевание жил, проводов и кабелей

От правильного выполнения контактных соединений зависит надежность и безопасность эксплуатации электроустановок. Контактные соединения должны быть устойчивыми к резким колебаниям температуры, влажности, влиянию окружающей среды. Надежные электрические контактные соединения могут быть выполнены одним из следующих основных способов: опрессованием (обжатием), сваркой, пайкой, свинчиванием.

Опрессование применяют для соединения и оконцевания проводов и кабелей любой площади сечения на напряжение от 10 (соединение) до 35 кВ (оконцевание), а также медных (для всех категорий электроустановок) и алюминиевых жил (за исключением городских кабельных сетей столичных и областных городов и электростанций с агрегатами мощностью от 50000 кВт и выше). Соединение многопроволочных медных жил площадью поперечного сечения до 10 мм2 в силовых и осветительных сетях выполняют путем обертывания соединяемых жил двумя слоями тонкой медной или латунной ленты толщиной 0,2…0,3 мм и опрессовкой места соединения при помощи пуансонов и матриц, вставляемых в малые одноручные клещи типа.

7.4 Технический уход за электрооборудованием

Технические уходы позволяют поддерживать парк электрооборудования в работоспособном состоянии. При технических уходах электрооборудование очищают, проверяют, регулируют, смазывают и заменяют некоторые недолговечные сменяемые части. Кроме того, определяют техническое состояние электрооборудования и при наличии неисправностей дают заключение о необходимости текущего или капитального ремонта.

Операции технического ухода проводят согласно заранее составленному графику через строго установленные периоды работы электрооборудования.

Максимальная эффективность технических уходов достигается в том случае, когда периодичность и номенклатура работ, выполняемых при каждом техническом уходе, в наибольшей степени соответствует конструктивным особенностям электрооборудования, его техническому состоянию, условиям эксплуатации и др.

Режим технических уходов, применяемый для средних условий эксплуатации, следует корректировать в каждом конкретном случае с учетом условий, в которых работает электрооборудование. Некачественное и несвоевременное проведение технических уходов снижает работоспособность электрооборудования, увеличивает расходы на проведение ремонтов и повышает себестоимость сельскохозяйственной продукции.

Особенно важное значение имеет проверка и наладка электрооборудования перед вводом в эксплуатацию, а также наблюдение за его техническим состоянием в первый период работы. Даже при самых высоких требованиях к испытаниям электрооборудования перед отправкой потребителю часть недостатков выявляют и устраняют в течение некоторого времени с начала его работы. В большой мере это относится к регулируемым параметрам электрооборудования.

При технических уходах по возможности должны быть выявлены все неисправности как механического, так и электрического происхождения. Причинами неисправностей также может быть нарушение регулировок.

Неисправности механического происхождения чаще всего возникают вследствие износа, ударов и деформации, коррозии и поломки деталей. Их обычно выявляют при осмотре и путем несложных измерений.

Неисправности электрического характера возникают вследствие пробоя изоляции, протекания токов коротких замыканий, действия электрической дуги, перенапряжений и др. Эти неисправности при технических уходах также выявляют в большинстве случаев внешним осмотром. Если конструкция электрической машины или аппарата не позволяет провести внешний осмотр, электрические неисправности определяют с помощью приборов (мегомметр, омметр и др.).

Технический уход за низковольтной аппаратурой

Низковольтную аппаратуру широко используют в сельском хозяйстве для управления, автоматизации и защиты электрифицированных машин, механизмов, установок и другого оборудования.

В связи с тем, что при проведении технических уходов можно визуально определить состояние основных деталей низковольтной аппаратуры и вовремя заметить и устранить дефекты, технические уходы являются очень важным элементом системы технического обслуживания магнитных пускателей, автоматических выключателей, реле и другой аппаратуры, обеспечивающей их бесперебойную работу.

Технический уход за внутренними электропроводками

При проведении технических уходов за электропроводками выполняют следующие работы.

1. В сухих помещениях волосяной щеткой очищают провода от пыли; в сырых помещениях пользуются влажным обтирочным материалом. Кабели, наружную часть труб с электропроводкой и корпуса ответвительных коробок очищают обтирочным материалом. Масляные пятна с трубопроводов удаляют обтирочным материалом, смоченным в бензине.

2. Очищают изоляторы обтирочным материалом, смоченным в 5%-ном растворе каустической соды.

3. Пошатыванием рукой проверяют надежность крепления труб, протяжных и ответвительных коробок, якорей, крюков, штырей, а также уголков, предохраняющих кабели и провода от механических повреждений. Ослабленные места укрепляют.

4. Осмотром убеждаются в целости изоляторов, а пошатыванием рукой - в надежности их крепления на крюках, якорях или штырях. Изоляторы, имеющие трещины или сколы, заменяют новыми. Сорванные с крюков или ослабленные изоляторы закрепляют пенькой, пропитанной протертым на олифе суриком.

5. Внимательно осматривают изоляцию проводов. Участки проводов, имеющие незначительные нарушения изоляции, изолируют наложением нескольких слоев хлопчатобумажной или полихлорвиниловой ленты. Участки проводов со значительными нарушениями изоляции заменяют новыми.

6. Проверяют натяжение проводов. Провода не должны сильно провисать и касаться строительных конструкций и технологического оборудования. Чрезмерное провисание проводов устраняют перетяжкой.

7. Вскрывают крышки ответвительных коробок и осматривают места соединения проводов. Соединения с пересохшей или обуглившейся изоляцией переизолируют полихлорвиниловой изоляционной лентой типа ПХЛ.

Перед изолированием в зависимости от вида соединения устраняют нарушение контакта зачисткой контактных поверхностей, подтягиванием резьбовых соединений, сваркой, пайкой и др.

8. Осмотром убеждаются в наличии металлического соединения между трубами и ответвительными коробками, а также заземляющим проводником. Ослабленные контакты подтягивают, а окислившиеся разбирают, зачищают до металлического блеска, смазывают техническим вазелином и собирают.

9. Проверяют состояние сальниковых уплотнений на вводах в ответвительные коробки. Ослабленные сальниковые уплотнения подтягивают.

10. При необходимости окрашивают крюки, якоря, штыри, трубы и ответвительные коробки.

11. В помещениях с нормальной средой один раз в два года, а в сырых, пыльных и пожароопасных помещениях раз в год мегомметром на 1000 В измеряют сопротивление изоляции проводок.

При измерении сопротивления изоляции отсоединяют от проводов все электрооборудование (электродвигатели, аппараты, установки и пр.), вынув предохранители, выключив рубильники, магнитные пускатели, автоматические выключатели и т.д.

7.5 Принцип расположения оборудования

При разработке расположения оборудования, необходимо чтобы приборы автоматики устанавливались в местах, удобных для монтажа и эксплуатации.

На схеме ДП АТ061 К897 Э7 показано расположения оборудования в венткамере.

Щит управления устанавливают на стене венткамеры, а справа от него установлены узлы управления подачей теплоносителя и хладоносителя.

На приточной и вытяжной системах подвесного типа, показано расположение датчиков и исполнительных механизмов.

Кабельные проводки в венткамерах выполняются в пластмассовых кабельканалах или трубах, отводы кабелей к датчикам и к двигателям агрегатов заключить в гофрированный шланг.

7.6 Разработка компоновочной схемы щита

В соответствии с техническим заданием проектируемая система содержит элементы автоматики, установленные в щите управления и оконечные устройства управления и сбора информации, находящиеся непосредственно на самой установке приточно-вытяжной вентиляции. Конструкция щита должна позволять производить быструю замену входящих в его состав узлов с целью восстановления работоспособности. Так же необходимо обеспечить удобное расположение органов управления и визуального контроля, и учесть возможность транспортировки.

Щит удовлетворяет международной спецификации степени защиты IP65 (6 - полная защита от пыли, 5 - Защита от струй воды).

С целью возможности быстрой замены неисправного узла, крепление элементов осуществляется с помощью направляющих DIN-реек, на которые устанавливаются вспомогательные элементы, автоматы и контроллер.

Электрические соединения реализуется посредством проводов и клеммников.

Щит крепится на вертикальную поверхность, например, стену.

Общий вид разработанной конструкции щита приведён в графической части проекта.

Электромагнитная совместимость технических средств, используемых на промышленных предприятиях

Проблема электромагнитных помех появилась вместе с появлением электронных средств. С течением времени количество электронных средств неуклонно растет и к ним предъявляются все более жесткие требования по электромагнитной совместимости (ЭМС). Именно поэтому ведется разработка новых методов и средств борьбы с помехами. Надежность и бесперебойность работы технических средств (ТС) на промышленных предприятиях в настоящее время в значительной степени определяется способностью обеспечивать их электромагнитную совместимость.

Количество и качество параметров ЭМС ТС определяется путем проверок, измерений и испытаний на ЭМС. В последние годы в России вводятся в действие новые отечественные стандарты и методы испытаний (свыше 50 стандартов), гармонизированные с международными и европейскими стандартами, регламентирующими объем современных требований к техническим средствам по обеспечению электромагнитной совместимости.

К сожалению, в настоящее время не существует четкого перечня параметров, влияющих на электромагнитную совместимость (ЭМС) технических средств, по которому можно было бы характеризовать электромагнитную обстановку на предприятии.

Из всего многообразия факторов или параметров, влияющих на ЭМС технических средств можно выделить основные и наиболее значимые:

· устойчивость к колебаниям напряжения (ГОСТ Р 51317.4.14-2000);

· устойчивость к электростатическим помехам (ГОСТ Р 513.17.4.2-99);

· устойчивость к излучаемым электромагнитным и радиочастотным помехам (ГОСТ Р 51317.4.3-99 [2]; ГОСТ Р 51317.4.1-2000 -- стандарт применяется при установлении требований к электротехническим, электронным и радиоэлектронным изделиям, оборудованию и системам по устойчивости к электромагнитным помехам и соответствующих видов испытаний применительно к условиям электромагнитной обстановки при эксплуатации технических средств;

· устойчивость к кондуктивным помехам, наведенным радиочастотными электромагнитными полями (ГОСТ Р 51317. 4.6-99 [4]);

· устойчивость к радиопомехам от электрического, светового и аналогичного оборудования (ГОСТ Р 51318.15-99);

· уровень электромагнитных помех (электромагнитная обстановка) (ГОСТ Р 51317.2.2-2000; ГОСТ Р 51317.2.5-2000);

· гармоники тока и фликер;

· уровень «загрязнения» электрической сети предприятия гармониками всех уровней (нормы устанавливаются в ГОСТ 13109-97 [1], а также в РД 153-34.0-15.501-00 [3] отдельно для сетей 0,4 и 6/10 кВ (подробнее см. табл. 1 «Нормы на коэффициент n-й гармонической составляющей напряжения»);

· устойчивость к динамическим изменениям напряжения электропитания (ГОСТ Р 51317.4.11-99).

Это лишь небольшой перечень нормативных документов, на которые следует обратить внимание при исследовании вопроса ЭМС ТС на предприятии (как говорилось выше стандартов более 50, здесь выделяются основные). Зачастую ТС на промышленных предприятиях эксплуатируют в условиях воздействия на них электромагнитных и радиочастотных излучений. Источниками этих излучений часто являются портативные приемопередатчики, применяемые эксплуатационным персоналом и службами безопасности, стационарные радио и телевизионные передатчики, радиопередатчики подвижных объектов, а также различные промышленные источники излучений.

Электромагнитная обстановка на территории предприятия (как внутри, так и снаружи) определяется напряженностью электромагнитного поля (напряженностью поля). Для измерения напряженности поля необходимы сложные измерительные приборы. Расчет напряженности поля с использованием классических выражений и формул затруднен из-за влияния окружающих предметов или близости других ТС, которые будут искажать и/или отражать электромагнитные волны.

Все испытания, которые необходимо проводить при оценке электромагнитной совместимости технических средств, отражены в ряде ГОСТов и в общем виде они представлены на рис.1

Испытания на помехоустойчивость к излучаемым электромагнитным радиочастотным полям проводятся в соответствии с ГОСТ Р 51317.4.3-99 (МЭК 61000-4-3-95) [2], в котором приведены степени жесткости испытаний при различных полосах частот.

Устанавливаемые степени жесткости испытаний соответствуют типичным уровням воздействующего электромагнитного поля. Вместе с тем в некоторых местах размещения ТС указанные уровни могут быть превышены, например при одновременной установке в одном здании двух мощных радиопередатчиков, которые используются для обеспечения радиосвязи на всей территории предприятия. В этих случаях более предпочтительным, чем установление для всех ТС повышенных требований устойчивости к электромагнитному полю, может быть экранирование помещения или здания, в котором расположены радиопередатчики, и применение помехоподавляющих фильтров в силовых кабелях и кабелях передачи сигналов.

Эффекты, вызываемые высшими гармониками напряжения и тока, могут быть разделены на эффекты мгновенного и длительного возникновения.

К проблемам мгновенного возникновения относят:

· искажение формы питающего напряжения;

· падение напряжения в распределительной сети;

· эффект гармоник, кратных трем (в трехфазных сетях);

· резонансные явления на частотах высших гармоник;

· наводки в телекоммуникационных и управляющих сетях;

· повышенный акустический шум в электромагнитном оборудовании;

· вибрация в электромашинных системах;

· недостоверные показания измерительных приборов и некоторых датчиков обратной связи в системах АСКУЭ.

К проблемам длительного возникновения относят:

· нагрев и дополнительные потери в трансформаторах и электрических машинах;

· нагрев конденсаторов;

· нагрев кабелей распределительной сети.

Нормально допустимые значения коэффициента n-й гармонической составляющей напряжения в точках присоединения к электрическим сетям с разным номинальным напряжением Uном приведены в таблице 1.

Таблица 1. Значения коэффициента n-й гармонической составляющей напряжения, в %

Нечетные гармоники, не кратные 3 при Uном, кВ

Нечетные гармоники,| не кратные 3* при Uном, кВ

Четные гармоники при Uном, кВ

n

0,38

6-20

n

0,38

6-20

n

0,38

6-20

5

6,0

4,0

3

5,0

3,0

2

2,0

1,5

7

5,0

3,0

9

1,5

1,0

4

1,0

0,7

11

3,5

2,0

15

0,3

0,3

6

0,5

0,3

13

3,0

2,0

21

0,2

0,2

8

0,5

0,3

17

2,0

1,5

>21

0,2

0,2

10

0,5

0,3

19

1,5

1,0

12

0,2

0,2

23

1,5

1,0

>12

0,2

0,2

25

1,5

1,0

>25

0,2+ +1,3* *25/n

0,2+ +0,8* *25/n

n -- номер гармонической составляющей напряжения. * -- нормально допускаемые значения, приведенные для n, равных 3 и 9, относятся к однофазным электрическим сетям. В трехфазных трехпроводных электрических сетях эти значения принимают вдвое меньшими приведенных в таблице.

Предельно допустимое значение коэффициента n-й гармонической составляющей напряжения вычисляют по формуле:

КU(n)пред = 1,5 * КU(n)норм

где КU(n)норм -- нормально допустимое значение коэффициента n-й гармонической составляющей напряжения, определяемое по таблице 1.

Следует отметить, что для точного решения задачи кондиционирования гармоник требуется:

· знание условий эксплуатации и технические характеристики источников энергии, распределительной системы и автоматов защиты;

· точное знание характеристик нагрузок (гармонического состава токов, потребляемой мощности, места их подключения в системе электропитания);

· использование специальных измерительных приборов для экспериментального определения гармонического состава тока в различных участках распределительной системы электропитания;

· проведение анализа и моделирования изучаемой системы электропитания.

Комплекс этих мероприятий необходим для правильного проектирования или изменения уже существующей системы электроснабжения и выбора требуемой спецификации оборудования, способной обеспечить электромагнитную совместимость (ЭМС), соответствующую современным международным стандартам.

Для определения степени обеспечения электромагнитной совместимости технических средств на любом промышленном предприятии, на 1-м этапе, необходимо проводить испытания не по всем вышеуказанным параметрам, а достаточно получить данные по 3 основным:

· устойчивость к кондуктивным помехам, наведенным радиочастотными электромагнитными полями [4];

· устойчивость к излучаемым электромагнитным радиочастотным помехам [2];

· уровень «загрязнения» электрической сети предприятия гармониками всех уровней [1, 3].

Если же результаты испытаний не соответствуют нормам, указанным в стандартах, то требуется проведение дополнительных испытаний по другим показателям, которые перечислены в этой статье.

Анализ, проведенный авторами, показал, что для нормального и бесперебойного функционирования предприятия в современном мире необходимо разработать практический алгоритм действий, обеспечивающий оценку реального состояния электромагнитной совместимости технических средств, используемых на предприятии, а также влияния электромагнитного излучения на состояние окружающей среды, что позволяет вести постоянный контроль параметров ЭМС в процессе эксплуатации технических средств, а также выявлять новые источники «загрязнения» электрической сети предприятия гармониками всех уровней, но это уже тема для следующей статьи.

8. Организационная часть

8.1 Техника безопасности при проведении технического обслуживания электрооборудования

Работы по техническому обслуживанию электроустановок должны проводить электромонтеры или электрослесари, которые прошли проверку знаний по технике безопасности и имеют соответствующую квалификационную группу.

Инженер-электрик или лицо, ответственное за технику безопасности, должны проводить инструктаж по безопасным методам работы в электротехнических установках при техническом обслуживании, обучать рабочих правилам безопасного пользования оборудованием, инструментом, приспособлениями, проверять техническое состояние оборудования, инструмента, приспособлений, защитных средств, следить за санитарным состоянием помещения участка текущего ремонта электрооборудования и передвижных электроремонтных мастерских.

При техническом обслуживании электрооборудования следует применять оборудование и инструмент, отвечающие требованиям техники безопасности и обеспечивающие безопасное проведение работ.

Все защитные средства должны быть проверены при приемке в эксплуатацию, а в дальнейшем проверяться через определенные промежутки времени согласно нормам.

Обычно технические уходы и текущие ремонты электрооборудования проводят при полностью снятом напряжении, т.е. электроустановка полностью отключена от сети. Если работы выполняют без наложения заземления, принимают меры, исключающие ошибочную подачу напряжения к месту работы персонала. Для этого снимают предохранители, прокладывают изоляционный материал между губками и ножами рубильников или между контактами автоматов, отсоединяют кабели и др.


Подобные документы

Работы в архивах красиво оформлены согласно требованиям ВУЗов и содержат рисунки, диаграммы, формулы и т.д.
PPT, PPTX и PDF-файлы представлены только в архивах.
Рекомендуем скачать работу.